Log in

Use of the SPP scale for the analysis of molecular systems with dual emissions resulting from the solvent polarity

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The solvent polarity/polarizability (SPP) scale is shown to be highly useful for analyzing the solvatochromic behavior of molecular systems emitting dual fluorescence by virtue of the solvent polarity. Stokes' shift data are presented on a test set of seven solutes in 58 solvents correlating with the SPP (single parameter polarity/polarizability index). SPP values for seven further solvents are given, extending the previously available list.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. R. Grabowski, K. Rotkiewicz, A. Siemiarczuk, D. J. Coley, and W. Baumann (1979)New J. Chem. 3, 443.

    Google Scholar 

  2. W. Rettig (1986)Angew. Chem. Int. Ed. Engl. 25, 971.

    Google Scholar 

  3. E. Lippert, W. Rettig, V. Bonacic-Koutecky, F. Heisel, and J. A. Miehé (1987)Adv. Chem. Phys. 68, 1.

    Google Scholar 

  4. W. Rettig and W. Baumann (1992) in J. F. Rabek (Ed.),Progress in Photochemistry and Photophysics, CRC Press, Boca Raton, Chap. 3.

    Google Scholar 

  5. E. Lippert, W. Luder, and H. Boss (1962)Adv. Mol. Spectrosc. 1, 442.

    Google Scholar 

  6. F. Scheneider and E. Lippert (1968)Ber. Bunsenges. Phys. Chem. 72, 1155.

    Google Scholar 

  7. F. Scheneider and E. Lippert (1970)Ber. Bunsenges. Phys. Chem. 74, 624.

    Google Scholar 

  8. J. Catalán, V. López, P. Pérez, R. Martin-Villamil, and R. Rodríguez (1995)Liebigs Ann. 241.

  9. J. Catalán, V. López, and P. Pérez,Chem. Ber. (in press).

  10. E. Lippert (1955)Z. Naturforsch. 10a, 541; (1957)Z. Elektrochem. 61, 962; (1956)Z. Phys. Chem. N.F. 6, 125.

    Google Scholar 

  11. N. Mataga, Y. Kaifu, and M. Koizumi (1955)Bull. Chem. Soc. Jap. 28, 690; (1956)29, 465.

    Google Scholar 

  12. N. Mataga and Y. Torihashi (1963)Bull. Chem. Soc. Jap. 36, 356.

    Google Scholar 

  13. N. Mataga (1963)Bull. Chem. Soc. Jap. 36, 620; (1963)36, 654.

    Google Scholar 

  14. Y. Ooshika (1954)J. Phys. Japan. 9, 594.

    Google Scholar 

  15. N. G. Bakhshiev (1961)Opt. Spektrosk. 10, 717; (1962)12, 473; (1962)Ukr. Fix. Zh. 7, 920; (1963)Dokl. Akad. Nauk. SSSR 152, 577; (1964)Opt. Spektrosk. 16, 821; (1965)19, 345; (1965)19, 535.

    Google Scholar 

  16. L. Onsager (1936)J. Am. Chem. Soc. 58, 1486.

    Google Scholar 

  17. L. R. Khundkar and A. H. Zewail (1986)J. Chem. Phys. 84, 1302.

    Google Scholar 

  18. K. Yamasaki, K. Arita, O. Kajimoto, and K. Hara (1986)Chem. Phys. Lett. 123, 277.

    Google Scholar 

  19. O. Kajimoto, K. Yamasaki, K. Arita, and K. Hara (1986)Chem. Phys. Lett. 125, 184.

    Google Scholar 

  20. A. Subaric-Leitis, Ch. Monte, A. Roggan, P. Zimmermann, and J. Heinze (1990)J. Chem. Phys. 93, 4543.

    Google Scholar 

  21. K. Honma, K. Arita, K. Yamasaki, and O. Kajimoto (1991)J. Chem. Phys. 94, 3496.

    Google Scholar 

  22. W. A. Acree, Jr., D. C. Wilkins, S. A. Tucker, J. M. Griffin, and J. R. Powell (1994)J. Phys. Chem. 98, 2537.

    Google Scholar 

  23. L. U. Bilot and A. Kawski (1962)Z. Naturforsch. 17a, 621.

    Google Scholar 

  24. G. A. Reynolds and K. H. Drexhage (1975)Opt. Commun. 13, 222.

    Google Scholar 

  25. R. F. Kubin and A. N. Fletcher (1983)Chem. Phys. Lett. 99, 49.

    Google Scholar 

  26. G. Jones II, W. R. Jackson, S. Kanoktanaporn, and A. M. Halpern (1980)Opt. Commun. 33, 315.

    Google Scholar 

  27. G. Jones II, W. R. Jackson, C. Choi, and W. R. Bergmark (1985)J. Phys. Chem. 89, 294.

    Google Scholar 

  28. M. Maroncelli and G. R. Fleming (1987)J. Chem. Phys. 86, 6221.

    Google Scholar 

  29. A. Gaplosvky, P. Hrdlovic, J. Donovalová, and P. Hrnciar (1991)J. Photochem. Photobiol. A Chem. 59, 221.

    Google Scholar 

  30. K. Dimroth, C. Reichardt, T. Siepmann, and F. Bohlmann (1963)Ann. Chem. 661, 1; K. Dimroth and C. Reichardt (1969)Ann. Chem. 727, 93; C. Reichardt (1971)Liebigs Ann. Chem. 752, 64; C. Reichardt (1979)Angew. Chem. 91, 119; C. Reichardt (1992)Chem. Soc. Rev. 21, 147.

    Google Scholar 

  31. M. S. A. Abdel-Mottaleb, M. S. Antonious, M. Abo-Aly, L. F. M. Ismaiel, B. A. El-Sayed, and A. M. K. Sherief (1989)J. Photochem. Photobiol. A Chem. 50, 259.

    Google Scholar 

  32. M. Zander and W. Rettig (1984)Chem. Phys. Lett. 110, 602.

    Google Scholar 

  33. J. Dobkowski, Z. R. Grabowski, B. Paeplow, W. Rettig, K. H. Koch, K. Müllen, and R. Lapouyade (1994)New J. Chem. 18, 525.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Catalán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Catalán, J., López, V. & Pérez, P. Use of the SPP scale for the analysis of molecular systems with dual emissions resulting from the solvent polarity. J Fluoresc 6, 15–22 (1996). https://doi.org/10.1007/BF00726722

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00726722

Key words

Navigation