Accelerating QM/MM Calculations by Using the Mean Field Approximation

  • Chapter
  • First Online:
Quantum Modeling of Complex Molecular Systems

Abstract

It is well known that solvents can modify the frequency and intensity of the solute spectral bands, the thermodynamics and kinetics of chemical reactions, the strength of molecular interactions or the fate of solute excited states. The theoretical study of solvent effects is quite complicated since the presence of the solvent introduces additional difficulties with respect to the study of analogous problems in gas phase. The mean field approximation (MFA) is used for many of the most employed solvent effect theories as it permits to reduce the computational cost associated to the study of processes in solution. In this chapter we revise the performance of ASEP/MD, a quantum mechanics/molecular mechanics method developed in our laboratory that makes use of this approximation. It permits to combine state of the art calculations of the solute electron distribution with a detailed, microscopic, description of the solvent. As examples of application of the method we study solvent effects on the absorption spectra of some molecules involved in photoisomerization processes of biological systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation methods. Chem Rev 105:2999–3093

    Article  CAS  Google Scholar 

  2. Cramer CJ, Truhlar DG (1999) Chem Rev 99:2161

    Google Scholar 

  3. Rivail JL, Rinaldi D (1976) Chem Phys 18:233–242

    Article  CAS  Google Scholar 

  4. Ruiz-López MF (2008) In: solvation effects on molecules and biomolecules: computational methods and applications. In: Canuto S (ed) Springer series: Challenges and advances in computational chemistry and physics, Springer

    Google Scholar 

  5. Warshel A, Levitt M (1976) J Mol Biol 103:227–249

    Article  CAS  Google Scholar 

  6. Singh UC, Kollman PA (1986) J Comput Chem 7:718–730

    Article  CAS  Google Scholar 

  7. Field M J, Bash PA, Karplus M (1990) J Comput Chem 11(6):700–733

    Google Scholar 

  8. Sánchez ML, Martín ME, Galván IF, Olivares del Valle FJ, Aguilar MA (2002) J Phys Chem B 106:4813

    Article  Google Scholar 

  9. Martín ME, Sánchez ML, Corchado JC, Muñoz-Losa A, Galván IF, Olivares del Valle FJ, Aguilar MA (2011) Theor Chem Acc 128:783–793

    Article  Google Scholar 

  10. Yamamoto T (2008) J Chem Phys 129:244104

    Article  Google Scholar 

  11. Warshel A (1991) Computer modelling of chemical reactions in enzymes and solutions. Wiley Interscience Publication, New York

    Google Scholar 

  12. Ten-no S, Hirata F, Kato S (1993) Chem Phys Lett 214:391

    Article  CAS  Google Scholar 

  13. Sato H, Hirata F, Kato S (1996) J Chem Phys 105:1546

    Article  CAS  Google Scholar 

  14. Hirata F (ed) (2003) Molecular theory of solvation (understanding chemical reactivity). Springer, Berlin

    Google Scholar 

  15. Nakano H, Yamamoto T (2013) J Chem Theory Comput 9:188–203

    Article  CAS  Google Scholar 

  16. Kaminski JW, Gusarov S, Kovalenko A, Wesolowski TA (2010) J Phys Chem A 114:6082

    Article  CAS  Google Scholar 

  17. Sánchez ML, Aguilar MA (1997) Olivares del Valle FJ. J Comput Chem 18:313

    Article  Google Scholar 

  18. Sánchez ML, Martín ME, Aguilar MA (2000) Olivares del Valle FJ J Comput Chem 21:705

    Article  Google Scholar 

  19. Galván IF, Sánchez ML, Martín ME, Olivares del Valle FJ (2003) Aguilar MA Comput Phys Commun 155:244

    Google Scholar 

  20. Tapia O (1991) In: Maksic ZB (ed) Theoretical treatment of large molecules and their interactions, vol 4. Springer, Berlin, p 435

    Chapter  Google Scholar 

  21. Angyán JG (1992) J Math Chem 10:93

    Article  Google Scholar 

  22. Sánchez ML, Aguilar MA, Olivares del Valle FJ (1997) J Comput Chem 18:313

    Article  Google Scholar 

  23. Canuto S, Coutinho K (1997) Avd Quantum Chem 28:89

    Google Scholar 

  24. Coutinho K, Oliveira MJ et al (1998) Int J Quantum Chem 66:249

    Article  CAS  Google Scholar 

  25. Martín ME, Sánchez ML, Olivares del Valle FJ, Aguilar MA (2002) J Chem Phys 116:1613

    Article  Google Scholar 

  26. Martín ME, Muñoz Losa A, Galván IF, Aguilar MA (2003) J Chem Phys 118:255

    Article  Google Scholar 

  27. Galván IF, Martín ME, Aguilar MA (2004) J Comput Chem 25:1227

    Article  Google Scholar 

  28. Galván IF, Sánchez ML, Martín ME, Olivares del Valle FJ, Aguilar MA (2003) J Chem Phys 118:255

    Article  Google Scholar 

  29. Okuyama-Yoshida N, Nagaoka M, Yamabe T (1998) Int J Quantum Chem 70:95

    Article  CAS  Google Scholar 

  30. Okuyama-Yoshida N, Kataoka K, Nagaoka M, Yamabe T (2000) J Chem Phys 113:3519

    Article  CAS  Google Scholar 

  31. Hirao H, Nagae Y, Nagaoka M (2001) Chem Phys Lett 348:350

    Article  CAS  Google Scholar 

  32. Banerjee A, Adams N, Simons J, Shepard R (1985) J Phys Chem 89:52

    Article  CAS  Google Scholar 

  33. Lippert E, Lüder W, Moll F, Nägele W, Boos H, Prigge H, Seibold-Blankenstein I (1961) Angew Chem 73:695–706

    Article  CAS  Google Scholar 

  34. Rotkiewicz K, Grellmann KH, Grabowski ZR (1973) Chem Phys Lett 19:315–318

    Article  CAS  Google Scholar 

  35. Grabowski ZR, Rotkiewicz K, Rettig W (2003) Chem Rev 103:3899–4032

    Article  Google Scholar 

  36. Kukura P, McCamant DW, Yoon S, Wandschneider DB, Mathies RA (2005) Science 310:1006

    Article  CAS  Google Scholar 

  37. Muñoz Losa A, Martin ME, Galván IF, Sánchez ML, Aguilar MA (2011) J Chem Theory Comput 7:4050–4059

    Article  Google Scholar 

  38. Meyer TE (1985) Biochim Biophys Acta 806:175

    Article  CAS  Google Scholar 

  39. Muñoz-Losa A, Galván IF, Aguilar MA, Martín ME (2007) J Phys Chem B 111:9864–9870

    Article  Google Scholar 

  40. Muñoz-Losa A, Martín ME, Galván I, Sánchez ML, Aguilar MA (2011) J Chem Theory Comput 7:4050–4059

    Article  Google Scholar 

  41. Muñoz-Losa A, Galván IF, Aguilar MA, Martín ME (2013) J Chem Theory Comput 9:1548–1556

    Article  Google Scholar 

  42. García-Prieto FF, Galván IF, Muñoz-Losa A, Aguilar MA, Martín ME (2013) J Chem Theory Comput 9:4481–4494

    Article  Google Scholar 

  43. Kort R, Vonk H, Xu X, Hoff WD, Crielaard W, Hellingwerf K (1996) J FEBS Lett 382:73

    Article  CAS  Google Scholar 

  44. **e A, Hoff WD, Kroon AR, Hellingwerf K (1996) J Biochem 35:14671

    Article  CAS  Google Scholar 

  45. Unno M, Kumauchi M, Sasaki J, Tokunaga F, Yamaguchi S (2000) J Am Chem Soc 122:4233

    Article  CAS  Google Scholar 

  46. Genik UK, Soltis SM, Kuhn P, Canestrelli IL, Getzoff ED (1998) Nature 392:206

    Article  Google Scholar 

  47. Rocha-Rinza T, Christiansen O, Rajput J, Gopalan A, Rahbek DB, Andersen LH, Bochenkova AV, Granovsky AA, Bravaya KB, Nemukhim AV, Chistiansen KL, Nielsen MB (2009) J Phys Chem A 113:9442

    Article  CAS  Google Scholar 

  48. Nielsen IB, Boyé-Péronne S, El Ghazaly MOA, Kristensen MB, Nielsen SB, Andersen LH (2005) Biophys J 89:2597

    Article  CAS  Google Scholar 

  49. Putschögl M, Zirak P, Penzkofer A (2008) Chem Phys 343:107

    Article  Google Scholar 

  50. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery JA Jr, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson BG, Chen W, Wong MW, Andres JL, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian 98, revision A11.3. Gaussian, Inc., Pittsburgh

    Google Scholar 

  51. Andersson K, Barysz M, Bernhardsson A, Blomberg MRA, Carissan Y, Cooper DL, Cossi M, Fleig T, Fu¨lscher MP, Gagliardi L, de Graaf C, Hess BA, Karlström G, Lindh R, Malmqvist P-Å, Neogrády P, Olsen J, Roos BO, Schimmelpfennig B, Schütz M, Seijo L, Serrano-Andrés L, Siegbahn PEM, Stalring J, Thorsteinsson T, Veryazov V, Wierzbowska M, Widmark P-O (2003) MOLCAS Version 5.2, University of Lund, Lund, Sweden

    Google Scholar 

  52. Refson K (2000) Comput Phys Commun 126:310

    Article  CAS  Google Scholar 

  53. Berendsen HJC, van der Spoel D, van Drunen R (1995) Comp Phys Comm 91:43–56

    Article  CAS  Google Scholar 

  54. Jorgensen W, Maxwell DS, Tirado-Rives J (1996) J Am Chem Soc 118:11225

    Article  CAS  Google Scholar 

  55. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) J Chem Phys 79:926

    Article  CAS  Google Scholar 

  56. Chirlian LE, Francl MM (1987) J Comput Chem 8:894

    Article  CAS  Google Scholar 

  57. Breneman M, Wiberg KB (1990) J Comput Chem 11:316

    Article  Google Scholar 

  58. Zuev D, Bravaya KB, Crawford TD, Lindh R, Krilov AI (2011) J Chem Phys 134:034310

    Article  Google Scholar 

  59. Gromov E, Burghardt I, Hynes I, Köppel H, Cederbaum LS (2007) J Photochem Photobiol A 190:241

    Article  CAS  Google Scholar 

  60. Gromov E, Burghardt I, Köppel H, Cederbaum LS (2007) J Am Chem Soc 129:6798

    Article  CAS  Google Scholar 

  61. Boggio-Pasqua M, Groenhof G (2012) J Phys Chem B 115:7021

    Article  Google Scholar 

  62. Putschögl M, Zirak P, Penzkofer A (2008) Chem Phys 343:107

    Article  Google Scholar 

  63. Rocha-Rinza T, Christiansenm O, Rajput H, Gopalan A, Rahbek DB, Andersen LH, Bochenkova AV, Granovsky AA, Bravaya KB, Nemukhin AV, Christiansen KL, Nielsen MB (2009) J Phys Chem A 113:9442

    Article  CAS  Google Scholar 

  64. Nielsen IB, Boye-Peronne S, El Ghazaly MOA, Kristensen MB, Nielsen SB (2005) Anderson LH. Biophys J 89:2597

    Article  CAS  Google Scholar 

  65. Zuev D, Bravaya KB, Crawford TD, Lindh R, Krylov AI (2011) J Chem Phys 134:034310

    Article  Google Scholar 

  66. Gromov EV, Burghardt I, Hynes JT, Köppel H, Cederbaum LS (2007) J Photochem Photobiol A Chem 190:241

    Article  CAS  Google Scholar 

  67. Muguruza González E, Guidoni L, Molteni C (2009) Phys Chem Chem Phys 11:4556

    Article  Google Scholar 

  68. Sergi A, Crüting M, Ferrario M (2001) F Buda J Phys Chem B 105:4386

    Article  CAS  Google Scholar 

  69. Naseem S, Laurent AD, Carroll EC, Vengris M, Kumauchi, Hoff MWD, Krylov AI, Larsen DS (2013) J Photochem Photobiol A Chem 270:43

    Article  CAS  Google Scholar 

  70. Wang Y, Li H (2010) J Chem Phys 133:034108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel A. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Martín, M.E., Sánchez, M., Muñoz-Losa, A., Fdez. Galván, I., Aguilar, M.A. (2015). Accelerating QM/MM Calculations by Using the Mean Field Approximation. In: Rivail, JL., Ruiz-Lopez, M., Assfeld, X. (eds) Quantum Modeling of Complex Molecular Systems. Challenges and Advances in Computational Chemistry and Physics, vol 21. Springer, Cham. https://doi.org/10.1007/978-3-319-21626-3_5

Download citation

Publish with us

Policies and ethics

Navigation