Log in

A Study of the Reichardt \(E_{{\text{T}}}^{{\text{N}}} \left( {30} \right)\) Parameter using Solvent Molecular Properties Derived from Computation Chemistry and Consideration of the Kamlet and Taft α Scale of Solvent Hydrogen Bond Donor Acidities

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Reichardt’s normalized \(E_{{\text{T}}}^{{\text{N}}} \left( {30} \right)\) parameter for solvent polarity has been analyzed in terms of properties of solvent molecules estimated from quantum–mechanical calculations of isolated solvent molecules. The analyses show that \(E_{{\text{T}}}^{{\text{N}}} \left( {30} \right)\) has a strong dependence on the partial charge on the most positive hydrogen atom in the solvent molecule, reflecting hydrogen bonding at the pendant oxygen atom of the betaine dye used to define the ET(30) scale. There are smaller, and roughly equal, dependences on the dipole moments and quadrupolar amplitudes of the solvent molecules and an inverse dependence on the solvent polarizability. These three dependences reflect the solvent polarity, that is, the ability to stabilize charge through longer-range interactions. The reason for the inverse dependence on the solvent polarizability is unclear, but a similar dependence was found previously in the analysis of the Kamlet, Abboud and Taft π* scale. The resulting equation for \(E_{{\text{T}}}^{{\text{N}}} \left( {30} \right)\) reproduces the experimental values for around 160 solvents, representing most classes of organic solvents, with a standard deviation of around 0.07 {\(E_{{\text{T}}}^{{\text{N}}} \left( {30} \right)\) values range from 0 to 1}. The Kamlet and Taft α scale of hydrogen bond donor acidities, which is, in effect, derived from the differences between the \(E_{{\text{T}}}^{{\text{N}}} \left( {30} \right)\) and π* values for a solvent, is discussed. The results of the present analyses of \(E_{{\text{T}}}^{{\text{N}}} \left( {30} \right)\) and earlier analyses of π* indicate that, while the α values capture the effect of solvent hydrogen bond donor acidity, it also contains residual dependences on other molecular properties. These residual dependences result from the differences in the dependences of the \(E_{{\text{T}}}^{{\text{N}}} \left({30} \right)\) and π* on solvent properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The quadrupolar amplitude is calculated as \(A = \sqrt {\sum {q_{ij} q_{ij} } } {\text{ with }}i = (x,y,z){\text{ and }}j = (x,y,z),\) where the qij are the components of the traceless quadrupole.

  2. The differences quoted refer to values calculated using density functional theory and charges derived using the CM5 charge model; those from other calculations and charge models are similar. The differences are given as \(E_{{\text{T}}}^{{\text{N}}} \left( {30} \right)_{{{\text{calc}}}} - E_{{\text{T}}}^{{\text{N}}} \left( {30} \right)_{{\exp}}\).

  3. Complex charge distributions, such as those of polyatomic molecules, are commonly represented by a series of superimposed point objects. The first is a point charge (the net charge), which is a scalar quantity, the second is the dipole, which is a vector and the third is the quadrupole, which is a tensor. Just as the dipole has no net charge, the quadrupole has no net moment. The dipole moment and quadrupolar amplitude are used here simply as quantitative measures of the scale of charge centers imbedded in the bulk solvent, the “intensity” of embedded charges. The simplest way to see the necessity for both the dipolar and quadrupolar contributions is to consider CO2, which, despite having partial charges on the O and C atoms, has a zero dipole moment, but a non-zero quadrupolar amplitude.

  4. In reference [2] the derivation is in terms of the energies of the electronic transitions but, as these lead to \(E_{{\text{T}}} \left( {30} \right)\) and π*, Eq. 6 accurately represents the α-scale.

References

  1. Kamlet, M.J., Taft, R.W.: The solvatochromic comparison method. I. The β-scale of solvent hydrogen-bond acceptor (HBA) basicities. J. Am. Chem. Soc. 98, 377–383 (1976)

    Article  CAS  Google Scholar 

  2. Taft, R.W., Kamlet, M.J.: The solvatochromic comparison method 2 The α-scale of solvent hydrogen-bond donor (HBD) acidities. J. Am. Chem. Soc. 98, 2886–2894 (1976)

    Article  CAS  Google Scholar 

  3. Kamlet, M.J., Abboud, J.L., Taft, R.W.: The solvatochromic comparison method. 6. The π* scale of solvent polarities. J. Am. Chem. Soc. 99, 6027–6038 (1977)

    Article  CAS  Google Scholar 

  4. Taft, R.W., Abboud, J.L., Kamlet, M.J.: Linear solvation energy relationships. 12. The dδ term in thhe solvatochromic equations. J. Am. Chem. Soc. 103, 1080–1086 (1981)

    Article  CAS  Google Scholar 

  5. Abraham M.H.: Hydrogen bonding. Part 7. A scale of solute hydrogen-bond acidity based on log k values for complexation in tetrachloromethane. J. Chem. Soc., Perkin Trans. 699–711 (1989).

  6. Abraham M.H.: Hydrogen bonding. Part 10. A scale of solute hydrogen-bond basicity using log k values for complexation in tetrachloromethane. J. Chem. Soc., Perkin Trans. 521–529 (1990)

  7. Abraham M.H.: Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 73–83 (1993)

  8. Dimroth, K., Reichardt, C., Siepmann, T., Bohlmann, F.: Über Pyridinium-N-phenol-Betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln. Justus Liebigs Ann. Chem. 661, 1–37 (1963)

    Article  CAS  Google Scholar 

  9. Gutmann, V.: Empirical parameters for donor and acceptor properties of solvents. Electrochim. Acta 21, 661–670 (1976)

    Article  CAS  Google Scholar 

  10. Kosower, E.M.: The effect of solvent on spectra. I. A new empirical measure of solvent polarity: Z-values. J. Am. Chem. Soc. 80, 3253–3260 (1958)

    Article  CAS  Google Scholar 

  11. Gritzner, G.: The softness parameter (SP), a measure of the soft donor properties of solvents. Z. Phys. Chem. 158, 99–107 (1988)

    Article  CAS  Google Scholar 

  12. Marcus, Y.: The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22, 409–416 (1993)

    Article  CAS  Google Scholar 

  13. Reichardt, C.: Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994)

    Article  CAS  Google Scholar 

  14. Machado, V.G., Stock, R.I., Reichardt, C.: Pyridinium-N-phenolate betaine dyes. Chem. Rev. 114, 10429–10475 (2014)

    Article  CAS  Google Scholar 

  15. Katritzky, A.R., Fara, D.C., Yang, H., Tamm, K., Tamm, T., Karelson, M.: Quantitative measures of solvent polarity. Chem. Rev. 104, 175–198 (2004)

    Article  CAS  Google Scholar 

  16. Waghorne, W.E., O’Farrell, C.: Solvent basicity, a study of Kamlet-Taft β and Gutmann DN values using computationally derived molecular properties. J. Solution Chem. 47, 1609–1625 (2018)

    Article  Google Scholar 

  17. Waghorne W.E.: A study of the Kamlet–Taft β and π* scales of solvent basicity and polarity using computationally derived molecular properties. J. Solution Chem. (submitted 27 August, 2019)

  18. Devereux, M., Popelier, P.L.A., McLay, I.M.: A refined model for prediction of hydrogen bond acidity and basicity parameters from quantum mechanical descriptors. Phys. Chem. Chem. Phys. 11, 1595–1603 (2009)

    Article  CAS  Google Scholar 

  19. Marcus, Y.: Properties of Solvents. Wiley, Chichester, New York (1998)

    Google Scholar 

  20. Reichardt, C., Eschner, M., Schäfer, G.: Synthesis and UV-visible spectroscopic properties of new ‘fluorophilic’ fluorine- and perfluoroalkyl-substituted solvatochromic pyridinium N-phenolate betaine dyes. J. Phys. Org. Chem. 14, 737–751 (2001)

    Article  CAS  Google Scholar 

  21. Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci, B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin E.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas O., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian 09 ed., Gaussian, Inc.: Wallingford CT (2009).

  22. Hirshfeld, F.L.: Bonded-atom fragments for describing molecular charge densities. Theor. Chim. Acta 44, 129–138 (1977)

    Article  CAS  Google Scholar 

  23. Ritchie, J.P.: Electron density distribution analysis for nitromethane, nitromethide, and nitramide. J. Am. Chem. Soc. 107, 1829–1837 (1985)

    Article  CAS  Google Scholar 

  24. Ritchie, J.P., Bachrach, S.M.: Some methods and applications of electron density distribution analysis. J. Comp. Chem. 8, 499–509 (1987)

    Article  CAS  Google Scholar 

  25. Foster, J.P., Weinhold, F.: Natural hybrid orbitals. J. Am. Chem. Soc. 102, 7211–7218 (1980)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Earle Waghorne.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 kb)

Supplementary file2 (XLSX 943 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Waghorne, W.E. A Study of the Reichardt \(E_{{\text{T}}}^{{\text{N}}} \left( {30} \right)\) Parameter using Solvent Molecular Properties Derived from Computation Chemistry and Consideration of the Kamlet and Taft α Scale of Solvent Hydrogen Bond Donor Acidities. J Solution Chem 49, 1360–1372 (2020). https://doi.org/10.1007/s10953-020-01002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-01002-1

Keywords

Navigation