Molecular mechanisms on carbonate, phosphate, and silica deposition in the living cell

  • Conference paper
  • First Online:
Topics in Current Chemistry

Part of the book series: Topics in Current Chemistry ((TOPCURRCHEM,volume 64))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Berki, E., Koranyi, A., Major, E., and Peres, T.: Ultrastructural study of inorganic substances in atherosclerotic aorta tissue. Calc. Tiss. Res. 4, 85–91 (1969).

    Article  Google Scholar 

  2. Eilberg, R. G., and Mori, K.: Calcification in vitro of human aortic tissue. Nature 216, 195–196 (1967).

    CAS  Google Scholar 

  3. Ross, R., and Glomset, J. A.: Atherosclerosis and the arterial smooth muscle cell. Science 180, 1332–1339 (1973).

    CAS  Google Scholar 

  4. Boyce, W. H. (Disc. leader): Kidney stone. In: Biology of hard tissue (ed. A. M. Budy), Vol. 1, pp. 196–254. New York: New York Acad. Sci. Interdic. Com. Progr. 1967.

    Google Scholar 

  5. Friedlander, A. M., and Braude, A. I.: Production of bladder stones by human T mycoplasmas. Nature 247, 67–69 (1974).

    Article  CAS  Google Scholar 

  6. Baylink, D., and Wergedal, J.: Bone formation and resorption by osteocytes. In: Cellular mechanism for calcium transfer and homeostasis (eds. G. Nichols, Jr. and R. H. Wasserman). New York and London: Acad. Press 1971, 257–289.

    Google Scholar 

  7. Lowenstam, H. A.: Biologic problems relating to the composition and diagenesis of sediments. In: The earth sciences: problems and progress in current research (ed. T. W. Donelly), pp. 137–195. Chicago: Chicago Press 1963. (Rice University, Semicentennial Publications).

    Google Scholar 

  8. Lowenstam, H. A.: Biogeochemistry of hard tissues, their depth and possible pressure relationships. In: Barobiology and the experimental biology of the deep sea (ed. R. W. Brauer), pp. 19–32. Chapel Hill: Univ. North Carolina 1973.

    Google Scholar 

  9. Budy, A. M. (ed.): Biology of hard tissue. New York Acad. Sci. Interdic. Com. Progr., New York 1967.

    Google Scholar 

  10. Comar, C., and Bronner, F. (eds.): Mineral metabolism. Acad. Press, New York 1969.

    Google Scholar 

  11. Collins, D.: Pathology of bone. London: Butterworth 1966.

    Google Scholar 

  12. Eales, N. B. (ed.): Skeletal growth and structure in animals. Proc. Malacolog. Soc. London 38, 543–557 (1969).

    Google Scholar 

  13. Defretin, R.: The tubes of polychaete annelids. In: Comprehensive biochemistry, (eds. M. Florkin and E. H. Stotz), pp. 713–747. Vol. 26C. Amsterdam: Elsevier Publ. Comp. 1971.

    Google Scholar 

  14. Eastoe, J. E.: Dental enamel. In: Comprehensive biochemistry (eds. M. Florkin and E. H. Stotz), pp. 785–834. Vol. 26 C. Amsterdam: Elsevier Publ. Comp. 1971.

    Google Scholar 

  15. Elliot, K., and Fitzsimons, D. W. (eds.): Hard tissue growth, repair and remineralization. Elsevier-Excerpta Medica-North Holland, Amsterdam-London-New York: Assoc. Sci. Publ. 1973.

    Google Scholar 

  16. Erben, H. K.: Ultrastrukturen und Mineralisation rezenter und fossiler Eischalen bei Vögeln und Reptilien. Biomineralisation 1, 1–66 (1970).

    Google Scholar 

  17. Erben, H. K.: über die Bildung und das Wachstum vom Perlmutt. Biomineralisation 4, 16–46 (1972).

    Google Scholar 

  18. Erben, H. K.: Wie entstehen ZÄhne und Austernschalen? Umschau 74, Heft 2, 35–36 (1974).

    Google Scholar 

  19. Fernandez-Madrid, F.: Collagen biosynthesis. A review. Clin. Orthop. 68, 103–181 (1970).

    Google Scholar 

  20. Fleisch, H., Blackwood, H. J. J., and Owen, M. (with the assistance of M. P. Fleisch-Ronchetti) (eds.): Calcified Tissues, 1965. New York Inc.: Springer 1966.

    Google Scholar 

  21. Hall, D. A. (ed.): International review of connective tissue research. New York and London: Acad. Press 1963 contn.

    Google Scholar 

  22. Hancox, N. M.: Biology of bone. Cambridge: University Press 1972.

    Google Scholar 

  23. Herring, G. M.: A review of recent advances in the chemistry of calcifying cartilage and bone matrix. Calc. Tiss. Res. 4, 17–23 (1970).

    Article  CAS  Google Scholar 

  24. Jope, M.: Constituents of brachiopod shells. In: Comprehensive biochemistry (eds. M. Florkin and E. H. Stotz). Vol. 26C. Amsterdam: Elsevier Publ. Comp. 1971, 749–784.

    Google Scholar 

  25. Kennedy, W. J., Taylor, J. D., and Hall, A.: Environmental and biological controls on bivalve shell mineralogy. Biol. Rev. 44, 499–530 (1969).

    CAS  Google Scholar 

  26. Kitano, Y.: On factors influencing the polymorphic crystallization of calcium carbonate found in marine biological systems. In: Recent researches in the fields of hydrosphere, atmosphere, and nuclear geochemistry. Tokyo, 1964, 305–319.

    Google Scholar 

  27. MacIntyre, I.: Calcitonin: A general review. Calc. Tiss. Res. I, 173–190 (1967).

    Google Scholar 

  28. McConnell, D.: Apatite. Its crystal chemistry, mineralogy and biologic occurrences. Wien-New York: Springer 1973.

    Google Scholar 

  29. McLean, F. C., and Urist, M. R.: Fundamentals of the physiology of skeletal tissue. Chicago: Univ. Chicago Press 1968.

    Google Scholar 

  30. McLean, F. C., and Urist, M. R.: Calcified tissue research. Calc. Tiss. Res. I, 1–7 (1967).

    Google Scholar 

  31. Miller, E. J., and Martin, G. R.: The collagen of bone. Clin. Orthop. 59, 195–232 (1968).

    CAS  Google Scholar 

  32. Milliman, J. D.: Marine Carbonates. Berlin-Heidelberg-New York: Springer 1974.

    Google Scholar 

  33. Moss, M. L., Whipple, H. E., and Silverzweig, S. (ds.): Comparative biology of calcified tissue. Ann. New York Acad. Sci. 109, 1–410 (1963).

    Google Scholar 

  34. Mutvei, H.: On the micro-and ultrastructure of the conchiolin in the nacreous layer of some recent and fossil molluses. Acta Univer. Stockholmiensis, Stockholm Contr. Geol. 20, 1–17 (1969).

    Google Scholar 

  35. Nichols, G. Jr., and Wasserman, R. H. (eds.): Cellular mechanism for calcium transfer and homcostasis. New York and London: Acad. Press 1971.

    Google Scholar 

  36. Ramanathan, N. (ed.): Collagen. New York-London: Interscience Publishers 1962.

    Google Scholar 

  37. Schraer, H. (ed.): Biological calcification. Cellular and molecular aspects. Amsterdam: North Holland Publishing Co. 1970.

    Google Scholar 

  38. Selye, H.: Calciphylaxis. Chicago: Chicago Press Ill. (1962).

    Google Scholar 

  39. Sognnaes, R. F. (ed.): Calcification in biological systems. Washington D. C.: Amer. Assoc. Adv. Sci. Publ. 64, 1960.

    Google Scholar 

  40. Sognnaes, R. F. (ed.): Mechanisms of hard tissue destruction. Washington, D. C.: Amer. Assoc. Adv. Sci. Publ. 75, 1963.

    Google Scholar 

  41. Thiele, H.: Histolyse und Histogenese. Frankfurt/Main: Akad. Verlagsgesellschaft 1967.

    Google Scholar 

  42. Towc, K. M., and Cifelli, R.: Wall ultrastructure in the calcareous foraminifera: Crystallographic aspects and a model for calcification. J. Paleontol. 41, 742–776 (1967).

    Google Scholar 

  43. Towe, K. M., and Cifelli, R.: Invertebrate shell structure and the organic matrix concept. Biomineralisation 4, 1–14 (1972).

    Google Scholar 

  44. Vaughan, J. M.: The physiology of bone. Oxford: Clarendon Press 1970.

    Google Scholar 

  45. Wilbur, K. M., and Simkiss, K.: Calcified shells. In: Comprehensive biochemistry (eds. M. Florkin and E. H. Stotz), pp. 229–295. Vol. 26C, Amsterdam: Elsevier Publ. Comp. (1971).

    Google Scholar 

  46. Wise, S. W.: Scanning electron microscope study of molluscan shell ultrastructures. Urbana Champaign: Ph. D. Thesis University of Illinois 1970, 145.

    Google Scholar 

  47. Zipkin, I. (ed.): Biological mineralization. New York-London-Sydney-Toronto: John Wiley & Sons 1973.

    Google Scholar 

  48. Matheja, J., and Degens, E. T.: Structural molecular biology of phosphates Stuttgart: Gustav Fischer Verlag 1971.

    Google Scholar 

  49. Richards, S., Pedersen, B., Silverton, J. V., and Hoard, J. L.: Stereochemistry of ethylenediaminetetraacetato complexes. Inorg. Chem. 3, 27–33 (1964).

    Article  CAS  Google Scholar 

  50. Boedtker, H.: Configurational properties of tobacco mosaic virus ribonucleic acid. J. Mol. Biol. 2, 171–188 (1960).

    CAS  Google Scholar 

  51. Felsenfeld, G., and Huang, S.: The interaction of polynucleotides with cations. Biochim. Biophys. Acta 34, 234–242 (1959).

    Article  CAS  Google Scholar 

  52. Michelson, A. M., Massoulie, J., and Guschelbauer, W.: Synthetic polynucleotides. Progr. Nucleic acid Res. Mol. Biol. 6, 83–141 (1967).

    CAS  Google Scholar 

  53. Felsenfeld, G., and Rich, A.: Studies of the formation of two-and three-stranded polyribonucleotides. Biochim. Biophys. Acta 26, 457–468 (1957).

    Article  CAS  Google Scholar 

  54. Felsenfeld, G., Davies, D. R., and Rich, A.: Formation of a three-stranded polynucleotide molecule. J. Am. Chem. Soc. 79, 2023–2024 (1957).

    Article  CAS  Google Scholar 

  55. Rich, A.: Molecular structure of the nucleic acids. Rev. Mod. Phys. 31, 191–199 (1959).

    CAS  Google Scholar 

  56. Dervichian, D. G.: The physical chemistry of phospholipids. Progr. Biophys. Molec. Biol. 14, 263–342 (1964).

    CAS  Google Scholar 

  57. Braude, E. A., and Nachod, F. C. (eds.): Determination of organic structure by physical methods. New York: Acad. Press, Inc. Publishers 1955.

    Google Scholar 

  58. Parsegian, V. A.: Forces between lecithin bimolecular leaflets are due to a disordered surface layer. Science 156, 939–942 (1967).

    CAS  Google Scholar 

  59. Shinoda, K., Nakagawa, T., Tamamushi, B.-I., and Isemura, T.: Colloidal surfactants. Some physicochemical properties. New York and London: Acad. Press 1963.

    Google Scholar 

  60. Wolstenholme, G. A., and Schulman, J. H.: Metal-monolayer interactions in aqueous systems. Part I. The interaction of monolayers of longchain polar compounds with metal ions in the underlying solution. Trans. Faraday Soc. 46, 475–487 (1950).

    CAS  Google Scholar 

  61. Wolstenholme, G. A., and Schulman, J. H.: Metal-monolayer interactions in aqueous systems. Part III. Steric effects with branched chain fatty acid monolayers. Trans. Faraday Soc. 47, 788–794 (1951).

    Article  CAS  Google Scholar 

  62. Reiss-Husson, F., and Luzzati, V.: Phase transitions in lipids in relation to the structure of membranes. Adv. in Biol. Medical Physis II, 87–105 (1967).

    Google Scholar 

  63. Finean, J. B.: X-ray diffraction studies on the polymorphism of phospholipids. Biochim. Biophys. Acta 10, 371–384 (1953).

    Article  CAS  Google Scholar 

  64. Beevers, C. A.: The crystal structure of dicalcium phosphate dihydrate, CaHPO4·2H2O. Acta Cryst. 11, 273–277 (1958).

    Article  CAS  Google Scholar 

  65. MacLennan, G., and Beevers, C. A.: The crystal structure of monocalcium phosphate monohydrate, Ca(H2PO4)·H2O. Acta Cryst. 9, 187–190 (1956).

    Article  CAS  Google Scholar 

  66. Bretscher, M. S.: Membrane structure: Some general principles. Science 181, 622–629 (1973).

    CAS  Google Scholar 

  67. Engelhardt, W. von: Beeinflussung des Kristallwachstums durch grenzflÄchenaktive Stoffe. III. Intern. Kongr. GrenzflÄchenaktive Stoffe, Bd. II, Sekt. B., S. 202–217 (1960).

    Google Scholar 

  68. Engelhardt, W. von, and Haussühl, S.: Schleiffestigkeit und spezifische freie GrenzflÄchenenergie der Alkalihalogenide vom NaCl-Typus. Kolloid Ztschr. 173, 20–35 (1960).

    CAS  Google Scholar 

  69. Knacke, O., and Stranski, I. N.: Kristalltracht und Adsorption. Ztschr. Elektrochemie 60, 816–822 (1956).

    CAS  Google Scholar 

  70. Neuhaus, A.: Kristalline Korrosionsschichten und Korrosions-Schutzschichten auf Metallen und ihre EpitaxieverhÄltnisse. Coll. Intern. Centre Nat. Rech. Sci. 152, 675–700 (1965).

    Google Scholar 

  71. Neuhaus, A., and Beckmann, H.: Der Einflu\ von Eiwei\lösungsgenossen auf Keimbildung von CuCl2·2H2O in wÄsserigen Lösungen. Kolloid-Zeitschr. u. Ztschr. f. Polym. 182, 121–123 (1962).

    CAS  Google Scholar 

  72. White, J. C., Elmes, P. C., Balashov, V., Preston, R. D., and Ripley, G. W.: A lattice distortion of alkali chloride crystals in the presence of nucleoprotein microfibrils. Nature 180, 696–697 (1957).

    CAS  Google Scholar 

  73. Aigrain, P., and Dougas, C.: Adsorption sur les semi-conducteurs. Ztschr. Elektrochem. 56, 363–366 (1952).

    CAS  Google Scholar 

  74. Clark, A.: Oxides of the transition metals as catalysts. Ind. Eng-Chem. 45, 1476–1480 (1953).

    CAS  Google Scholar 

  75. Eucken, A.: Untersuchungen über Kontaktanalyse. Naturwiss. 36, 48–53 and 74–81 (1949).

    CAS  Google Scholar 

  76. Garner, W. E., Gray, T. J., and Stone, E. S.: The oxidation of copper and the reaction of hydrogen and carbon monoxide with copper oxide. Proc. Roy. Soc. London A. 197, 294–314 (1949).

    Google Scholar 

  77. Gray, T. J., and Darby, P. W.: Semi-conductivity and catalysis in the nickel oxide system. J. Phys. Chem. 60, 209–217 (1956).

    CAS  Google Scholar 

  78. Hauffe, K., and Engell, H. J.: Zum Mechanismus der Chemisorption vom Standpunkt der Fehlordnungstheorie. Ztschr. Elektrochem. 56, 366–373 (1952).

    CAS  Google Scholar 

  79. Houghton, G., and Winter, E. R. S.: Exchange reactions of solid oxides. Part III. Magnesium oxide. J. Chem. Soc., 1954, 1509–1516.

    Google Scholar 

  80. Stone, F. S.: The chemistry of the solid state. London: Butterworth 1955.

    Google Scholar 

  81. Weisz, P. B.: Effect of electronic charge transfer between adsorbate and solid on chemisorption and catalysis. J. Chem. Phys. 21, 1531–1538 (1953).

    CAS  Google Scholar 

  82. Winter, E. R. S.: The oxidation of copper and zinc. J. Chem. Soc. 1954, 3342–3344.

    Google Scholar 

  83. Fischer, E. W.: Orientierte Kristallisation des PolyÄthylens auf Steinsalz. Kolloid-Ztschr. 159, 108–118 (1958).

    CAS  Google Scholar 

  84. Ambady, G. K.: Studies on collagen. III. Oriented crystallisation of inorganic salt on collagen. Proc. Ind. Acad. Sci. 49, 136–143 (1959).

    Google Scholar 

  85. Niedermayer, R., and Mayer, H. (eds.): Basic problems in thin film physics. Proc. Intern. Symp. Clausthal-Göttingen 6–11. Sept. 1965, Göttingen: Vandenhoeck and Ruprecht 1966.

    Google Scholar 

  86. Neuhaus, A.: über Keimbildung und orientierten Stoffabsatz auf artfremden kristallinen OberflÄchen. Ztschr. Elektrochem. 56, 453–458 (1952).

    CAS  Google Scholar 

  87. Menzel-Kopp, C.: Neue Forderungen über die Epitaxie: Die Reliefbedingungen. Ztschr. Naturforschung 21a, 1247–1251 (1966).

    Google Scholar 

  88. Neuhaus, A.: Orientierte Kristallabscheidung (Epitaxie). Angew. Chem. 64, 158–162 (1952).

    CAS  Google Scholar 

  89. Haurowitz, F.: Biosynthese der Proteine und ihre Beeinflussung durch Antigene. Naturwiss. 46, 60–63 (1959).

    Article  CAS  Google Scholar 

  90. Calvin, M.: Evolution of enzymes and the photosynthetic apparatus. Science 130, 1170–1175 (1959).

    CAS  Google Scholar 

  91. Calvin, M.: From microstructure to macrostructure and function in the photochemical apparatus. Brookhaven Nat. Lab. Symp. Biol. 11, 160–180 (1958).

    Google Scholar 

  92. Latimer, W. M.: Oxidation potentials. Englewood Cliffs N. J.: Prentice-Hall Inc. 1959.

    Google Scholar 

  93. Fyfe, W. S., and Bischoff, J. L.: The calcite-aragonite problem. Soc. Econ. Paleontol. Mineral., Spez. Publ. 13, 3–13 (1965).

    Google Scholar 

  94. Bischoff, J. L., and Fyfe, J. L.: Catalysis, inhibition and the calcite-aragonite problem. I. The aragonite calcite transformation. Amer. J. Sci. 266, 65–79 (1968).

    CAS  Google Scholar 

  95. Gregoire, Ch., and Lorent, R.: Alterations in conchiolin matrices of mother-of-pearl during conversion of aragonite into calcite under experimental conditions of pyrolysis and pressure. Biomineralisation 6, 70–83 (1972).

    CAS  Google Scholar 

  96. Gregoire, Ch., Gisbourne, C. M., and Hardy, A.: über experimentelle Diagenese der Nautilusschale. Beitr. elektronenmikroskop. Dir. Oberfl. 2, 223–238 (1969).

    Google Scholar 

  97. Voss-Foucart, M. F., and Gregoire, Ch.: On biochemical and structural alterations in fossil and pyrolysed modern mother-of-pearl. Biomineralisation 6, 134–140 (1972).

    CAS  Google Scholar 

  98. Jackson, T. A., and Bischoff, J. L.: The influence of amino acids on the kinetics of the recrystallization of aragonite to calcite. J. Geol. 79, 493–497 (1971).

    CAS  Google Scholar 

  99. Seifert, H.: Zur Kristallisation von Hochpolymeren an kristallinen GrenzflÄchen. Kolloid Ztschr. und Ztschr. Polym. 224, 97–124 (1968).

    CAS  Google Scholar 

  100. Seifert, H.: Matrizenprinzip und Biogenese des Kalks. Biomineralisation 6, 107–133 (1972).

    CAS  Google Scholar 

  101. Degens, E. T., and Matheja, J.: Formation of polymers on inorganic templates. In: Prebiotic and Biochemical Evolution (eds. A. P. Kimball and J. Oró), pp. 39–60. Amsterdam: North Holland 1971.

    Google Scholar 

  102. Degens, E. T.: Synthesis of organic matter in the presence of silicate and lime. Chem. Geol. 13, 1–10 (1974).

    Article  CAS  Google Scholar 

  103. Chave, K. E.: Mineral particles suspended in surface seawater: Preliminary report. Marine Science Center, Lehigh Univers. Bethlehem, Pennsylv. 1965, 1–21.

    Google Scholar 

  104. Chave, K. E.: Carbonates: Association with organic matter in surface seawater. Science 148, 1723–1724 (1965).

    CAS  Google Scholar 

  105. Chave, K. E.: Carbonate-organic interaction in seawater. In: Organic matter in natural waters (ed. D. W. Hood). Inst. Mar. Sci. Univ. Alaska, Occasional Publ. 1, 373–385 (1970).

    Google Scholar 

  106. Chave, K. E., and Suess, E.: Suspended minerals in seawater. New York Acad. Sci. Trans. ser. 2, 29, 991–1000 (1967).

    Google Scholar 

  107. Suess, E.: Interaction of organic compounds with calcium carbonate. I. Association phenomena and geochemical implications. Geochim. Cosmochim. Acta 34, 157–168 (1970).

    Article  CAS  Google Scholar 

  108. Meyers, P. A., and Quinn, J. G.: Interaction between fatty acids and calcite in seawater. Limnol. Oceanogr. 16, 992–997 (1971).

    CAS  Google Scholar 

  109. Mitterer, R. M.: Calcified proteins in the sedimentary environment. Adv. Org. Geochem. 5, 441–451 (1971).

    Google Scholar 

  110. Mitterer, R. M.: Biogeochemistry of aragonite mud and oolites. Geochim. Cosmochim. Acta 36, 1407–1422 (1972).

    Article  CAS  Google Scholar 

  111. Mopper, K., and Degens, E. T.: Aspects of the biogeochemistry of carbohydrates and proteins in aquatic environments. Techn. Rep. WHOI-72-68, Woods Hole Oceanogr. Inst., Woods Hole, Mass., pp. 118 (1972).

    Google Scholar 

  112. Armstrong, W. D., and Singer, L.: Composition and constitution of the mineral phase of bone. Clin. Orthop. 38, 179–190 (1965).

    CAS  Google Scholar 

  113. Garrels, R. M., and Christ, C. L.: Solutions, minerals, and equilibria. New York: Harper and Row 1965.

    Google Scholar 

  114. Skirrow, G.: The dissolved gases — carbon dioxide. In: Chemical oceanography (eds. J. P. Riley and G. Skirrow), Vol. I, pp. 227–322. Acad. Press 1965.

    Google Scholar 

  115. Culberson, C., and Pytkowicz, R. M.: Effect of pressure on carbonic acid, boric acid, and the pH in seawater. Limnol. Oceanogr. 13, 403–417 (1968).

    CAS  Google Scholar 

  116. Pytkowicz, R. M.: Calcium carbonate saturation in the ocean. Limnol. Oceanogr. 10, 220–225 (1965).

    Google Scholar 

  117. Pytkowicz, R. M., Disteche, A., and Disteche, S.: Calcium carbonate solubility in seawater at in situ pressures. Earth. Plan. Sci. Letters 2, 430–432 (1967).

    CAS  Google Scholar 

  118. Deffeyes, S.: Carbonate equilibria: A graphic and algebraic approach. Limnol. Oceanogr. 10, 412–426 (1965).

    Google Scholar 

  119. Berner, R. A.: Activity coefficients of bicarbonate, carbonate and calcium ions in seawater. Geochim. Cosmochim. Acta 29, 947–965 (1965).

    Article  CAS  Google Scholar 

  120. Berner, R. A.: The role of magnesium in the crystal growth of calcite and aragonite from seawater. Geochim. Cosmochim. Acta 39, 489–504 (1975).

    Article  CAS  Google Scholar 

  121. Pytkowicz, R. M.: Rates of inorganic calcium carbonate nucleation. J. Geol. 73, 196–199 (1965).

    CAS  Google Scholar 

  122. Pytkowicz, R. M., and Fowler, G. A.: Solubility of foraminifera in seawater at high pressures. Geochim. J. 1, 169–182 (1967).

    CAS  Google Scholar 

  123. Hudson, J. D.: Speculations on the depth relations of calcium carbonate solution in recent and ancient seas. Mar. Geol. 5, 473–480 (1967).

    Article  Google Scholar 

  124. Ben-Yaakov, S., Ruth, E., and Kaplan, I. R.: Carbonate compensation depth: Relation to carbonate solubility in ocean waters. Science 184, 982–984 (1974).

    CAS  Google Scholar 

  125. Chave, K. E., and Suess, E.: Calcium carbonate saturation in seawater: Effects of dissolved organic matter. Limnol. Oceanogr. 15, 633–637 (1970).

    CAS  Google Scholar 

  126. Suess, E., and Fütterer, D.: Aragonitic ooides: Experimental precipitation from seawater in the presence of humic acid. Sedimentol. 19, 129–139 (1972).

    CAS  Google Scholar 

  127. Kitano, Y., Kanamori, N., and Tokuyama, A.: Influence of organic matter on inorganic precipitation. In: Organic matter in natural waters (ed. D. W. Hood). Inst. Mar. Sci. Univ. Alaska, Occasional Publ. 1, 413–447 (1970).

    Google Scholar 

  128. Towe, K. M., and Malone, P. G.: Precipitation of metastable carbonate phases from seawater. Nature 226, 348–349 (1970).

    Article  CAS  Google Scholar 

  129. Pytkowicz, R. M., and Kester, D. R.: Relative calcium phosphate saturation in two regions of the North Pacific ocean. Limnol. Oceanogr. 12, 714–718 (1967).

    CAS  Google Scholar 

  130. Kester, D. R., and Pytkowicz, R. M.: Determination of the apparent dissociation constants of phosphoric acid in seawater. Limnol. Oceanogr. 12, 243–252 (1967).

    CAS  Google Scholar 

  131. Dietz, R. S., Emery, K. O., and Shepard, F. P.: Phosphorite deposits on the sea floor off southern California. Bull. Geol. Soc. Amer. 53, 815–848 (1942).

    CAS  Google Scholar 

  132. Kramer, J. R.: Equilibrium models and composition of the Great Lakes. In: Equilibrium concepts in natural water systems (ed. R. F. Gould) Amer. Chem. Soc. Publ. Adv. Chem. Ser. 67, 243–254 (1967).

    Google Scholar 

  133. Roberson, C. E.: Solubility implications of apatite in sea water. M. S. Thesis, Univ. California, San Diego, Calif. 1965.

    Google Scholar 

  134. Tooms, J. S., Summerhayes, C. P., and Cronan, D. S.: Geochemistry of marine phosphate and manganese deposits. Oceanogr. Mar. Biol. Ann. Rev. 7, 49–100 (1969).

    CAS  Google Scholar 

  135. Kato, K., and Kitano, Y.: Solubility and dissolution rate of amorphous silica in distilled and sea water at 20 ‡C. J. Oceanogr. Soc. Japan 24, 147–152 (1968).

    Google Scholar 

  136. Stöber, W.: Formation of silicic acid in aqueous suspensions of different silica modifications. In: Equilibrium concepts in natural water systems (ed. R. F. Gould). Amer. Chem. Soc. Publ. Adv. Chem. Ser. 67, 161–182 (1967).

    Google Scholar 

  137. Bramlette, M. N.: The Monterey formation of California and the origin of its siliceous rocks. U. S. Geol. Surv. Prof. Pap. 212, 1–55 (1946).

    Google Scholar 

  138. Krauskopf, K. B.: Dissolution and precipitation of silica at low temperatures. Geochim. Cosmochim. Acta 10, 1–26 (1956).

    Article  CAS  Google Scholar 

  139. Okamoto, G., Okura, T., and Goto, K.: Properties of silica in water. Geochim. Cosmochim. Acta 12, 123–132 (1957).

    Article  CAS  Google Scholar 

  140. Alexander, G. B., Heston, W. M., and Iler, H. K.: The solubility of amorphous silica in water. J. Phys. Chem. 58, 453–455 (1954).

    Article  CAS  Google Scholar 

  141. Maren, T. H.: Carbonic anhydrase: Chemistry, physiology, and inhibition. Physiolog. Rev. 47, 595–780 (1967).

    CAS  Google Scholar 

  142. Carter, M. J.: Carbonic anhydrase: Isoenzymes, properties, distribution, and functional significance. Biol. Rev. 47, 405–513 (1972).

    Google Scholar 

  143. Coleman, J. E.: Mechanism of action of carbonic anhydrase, substrate, sulfonamide, and anion binding. J. Biol. Chem. 242, 5212–5219 (1967).

    CAS  Google Scholar 

  144. Edsall, J.: Multiple molecular forms of carbonic anhydrase in erythrocytes. Ann. N. Y. Acad. Sci. 1968, 41–63.

    Google Scholar 

  145. Lin, K.-T. D., and Deutsch, H. F.: Human carbonic anhydrases. X. Preparation of large peptide fragments of carbonic anhydrase B used for sequence studies. J. Biol. Chem. 248, 1881–1884 (1973).

    CAS  Google Scholar 

  146. Lin, K.-T. D., and Deutsch, H. F.: Human carbonic anhydrases. XI. The complete primary structure of carbonic anhydrase B. J. Biol. Chem. 248, 1885–1893 (1973).

    CAS  Google Scholar 

  147. Liljas, A., Kannan, K. K., Bergsten, P.-C., Waara, I., Fridborg, K., Strandberg, B., Carlbom, U., JÄrup, L., Lövgren, S., and Petef, M.: Crystal structure of human carbonic anhydrase C. Nature New Biology 235, 131–137 (1972).

    CAS  Google Scholar 

  148. Kannan, K. K., Liljas, A., Waara, I., Bergsten, P.-C., Lövgren, S., Strandberg, B., Bengtsson, U., Carlbom, U., Fridborg, K., JÄrup, L., and Petef, M.: Crystal structure of human erythrocyte carbonic anhydrase C. VI. The three-dimensional structure at high resolution in relation to other mammalian carbonic anhydrases. Cold Spring Harbor Symp. Quant. Biol. 36, 221–231 (1972).

    CAS  Google Scholar 

  149. Kannan, K. K., Notstrand, B., Fridborg, K., Lövgren, S., Ohlson, A., and Petef, M.: Crystal structure of human erythrocyte carbonic anhydrase B. Three-dimensional structure at a nominal 2.2-å resolution: Proc. Nat. Acad. Sci. USA 72, 51–55 (1975).

    CAS  Google Scholar 

  150. Pocker, Y., and Meany, J. E.: The catalytic versatility of erythrocyte carbonic anhydrase. I. Kinetic studies of the enzyme catalysed hydration of acetaldehyde. Biochemistry 4, 2535–2541 (1965).

    Article  CAS  Google Scholar 

  151. Pocker, Y., and Meany, J. E.: The catalytic versatility of erythrocyte carbonic anhydrase. II. Kinetic studies of the enzyme-catalysed hydration of pyridine aldehydes. Biochemistry 6, 239–246 (1967).

    CAS  Google Scholar 

  152. Verpoorte, J. A., Metha, S., and Edsall, J. T.: Esterase activities of human carbonic anhydrases B and C. J. Biol. Chem. 242, 4221–4229 (1967).

    CAS  Google Scholar 

  153. Pocker, Y., and Guilbert, L. J.: Carbonic anhydrase catalysed hydrolysis and decarboxylation. Kinetic studies of enzyme-catalysed decomposition of mono-and disubstituted derivatives of carbonic acid. Biochemistry 13, 70–78 (1974).

    CAS  Google Scholar 

  154. Riepe, M. E., and Wang, J. H.: Infrared studies on the mechanism of action of carbonic anhydrase. J. Biol. Chem. 243, 2779–2787 (1968).

    CAS  Google Scholar 

  155. Wang, J. H.: Directional character of proton transfer in enzyme catalysis. Proc. Nat. Acad. Sci. U.S.A. 66, 874–881 (1970).

    CAS  Google Scholar 

  156. Wang, J. H.: Facilitated proton transfer in enzyme catalysis. Science 161, 328–334 (1968).

    CAS  Google Scholar 

  157. Khalifah, R. G.: The carbon dioxide hydration activity of carbonic anhydrase. I. Stopflow kinetic studies on the native human isoenzymes B and C. J. Biol. Chem. 246, 2561–2573 (1971).

    CAS  Google Scholar 

  158. Koenig, S. H., and Brown, R. D.: H2CO3 as substrate for carbonic anhydrase in the dehydration of HCO 3 . Proc. Nat. Acad. Sci. U.S.A. 69, 2422–2425 (1972).

    CAS  Google Scholar 

  159. Taylor, P. W., and Burgen, A. S. V.: Kinetics of carbonic anhydrase inhibitor complex formation. A comparison of anion-and sulfonamide-binding mechanisms. Biochemistry 10, 3859–3866 (1971).

    CAS  Google Scholar 

  160. Taylor, P. W., Feeney, J., and Burgen, A. S. V.: Investigation of the mechanism of ligand binding with cobalt (II) human carbonic anhydrase by 1H and 19F nuclear magnetic resonance spectroscopy. Biochemistry 10, 3866–3875 (1971).

    CAS  Google Scholar 

  161. Taylor, J. S., and Coleman, J. E.: Nitrogen ligands at the active site of alkaline phosphatase. Proc. Nat. Acad. Sci. U.S.A. 69, 859–862 (1972).

    CAS  Google Scholar 

  162. Lazdunski, Cl., Chappelet, D., Petitclerc, Cl., Letterrier, F., Douzou, P., and Lazdunski, M.: The Cu2+-alkaline phosphatase of Escherichia coli. Eur. J. Biochem. 17, 239–245 (1970).

    Article  CAS  Google Scholar 

  163. Applebury, M. L., and Coleman, J. E.: Escherichia coli alkaline phosphatase. Metal binding, protein conformation, and quaternary structure. J. Biol. Chem. 244, 308–318 (1969).

    CAS  Google Scholar 

  164. Csopak, H., and Falk, K. E.: The specific binding of copper (II) to alkaline phosphatase of E. coli. FEBS Letters 7, 147–150 (1970).

    Article  CAS  Google Scholar 

  165. Applebury, M. L., Johnson, B. B., and Coleman, J. E.: Phosphate binding to alkaline phosphatase. Metal ion dependence. J. Biol. Chem. 245, 4968–4976 (1970).

    CAS  Google Scholar 

  166. Harris, M. I., and Coleman, J. E.: The biosynthesis of apo-and metalloalkaline phosphatases of Escherichia coll. J. Biol. Chem. 243, 5063–5073 (1968).

    CAS  Google Scholar 

  167. Matheja, J., and Degens, E. T.: Function of amino acid side chains. Adv. Enzym. 34, 1–39 (1971).

    CAS  Google Scholar 

  168. Woltgens, J. H. M., Bonting, W. L., and Bijvoet, O. L. M.: Relationship of inorganic pyrophosphatase and alkaline phosphatase activities in hamster molars. Calc. Tiss. Res. 5, 333–343 (1970).

    CAS  Google Scholar 

  169. Eaton, R. H., and Moss, D. W.: Inhibition of orthophosphatase and pyrophosphatase activities of human phosphatase preparation. Biochem. J. 102, 917–921 (1967).

    CAS  Google Scholar 

  170. Fleisch, H., and Russell, R. G. G.: Pyrophosphate and polyphosphate. In: International encyclopedia of pharmacology and therapeutics, pp. 61–100. Oxford: Pergamon Press 1970.

    Google Scholar 

  171. Anderson, H. C.: Calcium-accumulating vesicles in the intercellular matrix of bone. (Disc. R. G. G. Russell, pp. 229–232). In: Hard tissue growth, repair and remineralization (eds. K. Elliot and D. W. Fitzsimons), pp. 213–246. Amsterdam-London-New York: Elsevier-Excerpta Medica-North Holland Ass. Sci. Publ. 1973.

    Google Scholar 

  172. Dixit, P. K.: Quantitative histochemistry of cartilage. Alkaline phosphatase and glucose-6-phosphate dehydrogenase activity in different zones of rachitic rat cartilage during healing. Calc. Tiss. Res. 10, 49–57 (1972).

    Article  CAS  Google Scholar 

  173. Salomon, C. D.: A fine structural study on the extracellular activity of alkaline phosphatase and its role in calcification. Calc. Tiss. Res. 15, 201–212 (1974).

    Article  CAS  Google Scholar 

  174. Cuthbert, A. W. (ed.): Calcium and cellular function. New York: St. Martin's Press. Inc. 1970.

    Google Scholar 

  175. Drabikowski, W., Strzelecka-Golaszewska, H., and Carafoli, E. (eds.): Calcium binding proteins. Proc. Int. Symp. Jablonna July 9–12, 1973, Amsterdam: Elsevier Scientific Publ. Comp. Warszawa and PWN-Polish Scientific Publ. 1974.

    Google Scholar 

  176. Bygrave, F. L.: Cellular calcium and magnesium metabolism. In: An introduction to bioinorganic chemistry (ed. D. R. Williams). London: Butterworth in press.

    Google Scholar 

  177. Anderson, J. M., Charbonneau, H., and Cormier, M. J.: Mechanism of calcium induction of Renilla bioluminescence. Involvement of a calcium-triggered luciferin binding protein. Biochemistry 13, 1195–1200 (1974).

    Article  CAS  Google Scholar 

  178. Martonosi, A., Boland, R., and Halpin, R. A.: The biosynthesis of sarcoplasmic reticulum membranes and the mechanism of calcium transport. Cold Spring Harbor Symp. Quant. Biol. 37, 455–468 (1972).

    Google Scholar 

  179. Martonosi, A., Boland, A. R. D., Boland, R., Vanderkooi, J. M., and Halpin, R. A.: The mechanism of Ca transport and the permeability of sarcoplasmic reticulum membranes. In: Myocardial biology: recent advances in studies on cardiac structure and metabolism (ed. N. S. Dhalla) Vol. 4, pp. 473–494, Baltimore: Univers. Park Press (1974).

    Google Scholar 

  180. MacLennan, D. H., and Holland, P. C.: Calcium transport in sarcoplasmic reticulum. Ann. Rev. Biophys. Broeng. 4 (1975).

    Google Scholar 

  181. Meissner, G., and Fleischer, S.: Characterization, dissociation and reconstitution of sarcoplasmic reticulum. In: Calcium binding proteins (eds. W. Drabikowski, H. Strzelecka-Golaszewska and E. Carafoli), pp. 281–313. Amsterdam: Elsevier Scientific Publ. Comp., and Warszawa PWN-Polish Scientific Publ. 1974.

    Google Scholar 

  182. MacLennan, D. H., Yip, C. C., Iles, G. H., and Seeman, P.: Isolation of sarcoplasmic reticulum proteins. Cold Spring Harbor Symp. Quant. Biol. 37, 469–477 (1972).

    Google Scholar 

  183. Ikemoto, N., Nagy, B., Bhatnagar, G. M., and Gergely, J.: Localization of Ca-binding sites in two proteins of the sarcoplasmic reticulum. In: calcium binding Proteins (eds. W. Drabikowski, H., Strzelecka-Golaszweska and E. Carafoli), pp. 403–424. Amsterdam: Elsevier Scientific Publ., and Warszawa PWN-Polish Scientific Publ. 1974.

    Google Scholar 

  184. Sarzala, M. G., Zubrzycka, E., and Drabikowski, W.: Characterization of the constituents of sarcoplasmic reticulum membrane. In: Calcium binding proteins (eds. W. Drabikowski, H. Strzelecka-Golaszewska and E. Carafoli, pp. 315–346. Amsterdam: Elsevier Scientific Publ. Comp. and Warszawa: PWN-Polish Scientific Publ. 1974.

    Google Scholar 

  185. Martonosi, A., Pucell, A. G., and Halpin, R. A.: Recent observation on the mechanism of Ca2+ transport by fragmented sarcoplasmic reticulum membranes. In: Cellular mechanisms for calcium transfer and homeostasis (eds. G. Nichols, Jr. and R. H. Wasserman), pp. 175–193. New York and London: Acad. Press 1971.

    Google Scholar 

  186. Martonosi, A., Lagwinska, E., and Oliver, M.: Elementary processes in the hydrolysis of ATP by sarcoplasmic reticulum membranes. Ann. New York Acad. Sci. 227, 549–567 (1974).

    CAS  Google Scholar 

  187. Scandella, C. J., Devaux, P., and McConnell, H. M.: Rapid lateral diffusion of phospholipids in rabbit sarcoplasmic reticulum. Proc. Nat. Acad. Sci. U.S.A 69, 2056–2060 (1972).

    CAS  Google Scholar 

  188. Scarpa, A., Baldassare, J., and Inesi, G.: The effect of calcium ionophores on fragmented sarcoplasmic reticulum. J. Gen. Physiol. 60, 735–749 (1972).

    Article  CAS  Google Scholar 

  189. Inesi, G., Millman, M., and, Eletr, S.: Temperature-induced transitions of function and structure in sarcoplasmic reticulum membranes. J. Mol. Biol. 81, 483–504 (1973).

    Article  CAS  Google Scholar 

  190. Esfahani, M., Limbrick, A. R., Knutton, S., Oka, T., and Wakil, S. J.: The molecular organization of lipids in the membrane of Escherichia coli: Phase transitions. Proc. Nat. Acad. Sci. U.S.A. 68, 3180–3184 (1971).

    CAS  Google Scholar 

  191. Nakajima, Y., and Endo, M.: Release of calcium induced by “depolarisation” of the sarcoplasmic reticulum membrane. Nature New Biology 246, 216–218 (1973).

    CAS  Google Scholar 

  192. Murray, J. M., and Weber, A.: The cooperative action of muscle proteins. Scientific American 1974, 59–71 (Febr.).

    Google Scholar 

  193. Weber, A., and Murray, J. M.: Molecular control mechanisms in muscle contraction. Physiol. Rev. 53, 612–673 (1973).

    CAS  Google Scholar 

  194. Ashley, C. C.: Calcium und die Skelettmuskel Aktivierung. Endeavour 30, 18–25 (1971).

    CAS  Google Scholar 

  195. Szent-Györgyi, A. G., Szentkiralyi, E. M., and Kendrick-Jones, J.: The light chains of scallop myosin as regulatory subunits. J. Mol. Biol. 74, 179–203 (1973).

    Google Scholar 

  196. Drabikowski, W., Barylko, B., Dabroska, R., Nowak, E., and Szpacenko, A.: Studies on the properties of TN-C component of troponin and on its effect on the interaction between the constituents of thin filament. In: Calcium binding proteins (eds. W. Drabikowski, H. Strzelecka-Golaszewska and E. Carafoli), pp. 69–107. Amsterdam: Elsevier Scientific Publ. and Warszawa: PWN-Polish Scientific Publ. 1974.

    Google Scholar 

  197. Margossian, S. S., and Cohen, C.: Troponin subunit interactions. J. Mol. Biol. 81, 409–413 (1973).

    Article  CAS  Google Scholar 

  198. Fuchs, F.: Chemical properties of the calcium receptor site of troponin as determined from binding studies. In: Calcium binding proteins (eds. W. Drabikowski, H. Strzelecka-Golaszewska and E. Carafoli), pp. 1–27. Amsterdam: Elsevier Scientific Publ. and Warszawa: PWN-Polish Scientific Publ. 1974.

    Google Scholar 

  199. Ebashi, S., Ohnishi, S., Abe, S., and Maruyama, K.: Ca-dependent interaction of troponin components as the basis of the control mechanism by Ca ion. In: Calcium binding proteins (eds. W. Drabikowski, H. Strzelecka-Golaszewska and E. Carafoli), pp. 179–196. Amsterdam: Elsevier Scientific Publ. and Warszawa: PWN-Polish Scientific Publ. 1974.

    Google Scholar 

  200. Hartshorne, D. J., and Boucher, L. J.: Ion binding by troponin. In: Calcium binding proteins (eds. W. Drabikowski, H. Strzelecka-Golaszewska and E. Carafoli), pp. 29–49. Amsterdam: Elsevier Scientific Publ. and Warszawa: PWN-Polish Scientific Publ. 1974.

    Google Scholar 

  201. Potter, J. D., Seidel, J. C., Leavis, P. C., Lehrer, S. S., and Gergely, J.: Interaction of Ca2+ with troponin. In: Calcium binding proteins (eds. W. Drabikowski, H. Strzelecka-Golaszewska and E. Carafoli), pp. 129–152. Amsterdam: Elsevier Scientific Publ. and Warszawa: PWN-Polish Scientific Publ. 1974.

    Google Scholar 

  202. Winter, M. R. C., Head, J. F., and Perry, S. V.: Conformational changes and complex formation by troponin C. In: Calcium binding proteins (eds. Drabikowski, H. Strzelecka-Golaszewska and E. Carafoli), pp. 109–127. Amsterdam: Elsevier Scientific Publ. and Warszawa: PWN-Polish Scientific Publ. 1974.

    Google Scholar 

  203. Collins, J. H., Potter, J. D., Horn, M. C. J., Wilshire, G., and Jackman, N.: The amino acid sequence of rabbit skeletal muscle troponin C: Gene replication and homology with calciumbinding proteins from carp and hake muscle. FEBS Letters 36, 268–272 (1973).

    Article  CAS  Google Scholar 

  204. Collins, J. H.: Homology of myosin light chains, troponin-C and parvalbumins deduced from comparison of their amino acid sequences. Biochem. Biophysic. Res. Comm. 58, 301–308 (1974).

    CAS  Google Scholar 

  205. Collins, J. H., Potter, J. D., Horn, M. J., Wilshire, G., and Jackman, N.: Structural studies on rabbit skeletal muscle troponin C.: Evidence for gene replication and homology with calcium binding proteins from carp and hake muscle. In: calcium binding proteins (eds. W. Drabikowski, H. Strzelecka-Golaszewska and E. Carafoli), pp. 51–63. Amsterdam: Elsevier Scientific Publ. and Warszawa: PWN-Polish Scientific Publ. 1974.

    Google Scholar 

  206. Kretsinger, R. H.: Gene triplication deduced from the tertiary structure of a muscle calcium binding protein. Nature New Biol. 240, 85–88 (1972).

    CAS  Google Scholar 

  207. Tufty, R. M., and Kretsinger, R. H.: Troponin and parvalbumin calcium binding regions predicted in myosin light chain and T4 lysozyme. Science 187, 167–169 (1975).

    CAS  Google Scholar 

  208. Kretsinger, R. H., and Nockolds, C. E.: Carp muscle calcium-binding protein. J. Biol. Chem. 248, 3313–3326 (1973).

    CAS  Google Scholar 

  209. Davis, W. L.: An electron microscopic study of myofilament calcium binding sites in native, EGTA-chelated and calcium reloaded glycerolated mammalian skeletal muscle. Calc. Tiss. Res. 14, 139–152 (1974).

    Article  CAS  Google Scholar 

  210. Kendrick-Jones, J.: Role of myosin light chains in calcium regulation. Nature 249, 631–634 (1974).

    Article  CAS  Google Scholar 

  211. Frank, G., and Weeds, A. G.: The amino-acid sequence of the alkali light chains of rabbit skeletal-muscle myosin. Eur. J. Biochem. 44, 317–334 (1974).

    CAS  Google Scholar 

  212. Abelson, P. H.: Geochemistry of organic substances. In: Researches in geochemistry (ed. P. H. Abelson), pp. 79–103. New York: John Wiley and Sons, Inc. 1959.

    Google Scholar 

  213. Hare, P. E., and Abelson, P. H.: Proteins in mollusk shells. Carnegie Inst. Washington, Year Book 63, 267–270 (1964).

    Google Scholar 

  214. Hare, P. E., and Abelson, P. H.: Amino acid composition of some calcified proteins. Carnegie Inst. Washington, Year Book 64, 223–231 (1965).

    CAS  Google Scholar 

  215. Hare, P. E.: The amino acid composition of the organic matrix of some recent and fossil shells of some west coast species of Mytilus. Ph. D. Thesis California Institute of Technology, Pasadena, Cal. (1962).

    Google Scholar 

  216. Hare, P. E.: Geochemistry of proteins, peptides, and amino acids. In: Organic geochemistry (eds. G. Eglinton and M. T. J. Murphy), pp. 438–463. New York: Springer Verlag 1969.

    Google Scholar 

  217. Saleuddin, A. S. M., and Hare, P. E.: Amino acid compositions of normal and regenerated shell of Helix. Can. J. Zool. 48, 886–888 (1970).

    CAS  Google Scholar 

  218. King, K., and Hare, P. E.: Amino acid composition of planktonic foraminifera: A paleobiochemical approach to evolution. Science 175, 1461–1463 (1972).

    CAS  Google Scholar 

  219. King, K., and Hare, P. E.: Amino acid composition of the test as a taxonomic character for living and fossil planktonic foraminifera. Micropaleontology 18, 285–293 (1972).

    CAS  Google Scholar 

  220. Piez, K. A.: The amino acid chemistry of some calcified tissues. Ann. N. Y. Acad. Sci. 109, 256–268 (1963).

    CAS  Google Scholar 

  221. Krampitz, G., Erben, H. K., and Kriesten, K.: über AminosÄurenzusammensetzung und Struktur von Eischalen. Biomineralisation 4, 87–99 (1972).

    CAS  Google Scholar 

  222. Ghiselin, M. T., Degens, E. T., Spencer, D. W., and Parker, R. H.: A phylogenetic survey of molluscan shell proteins. Harvard Coll. Mus. Comp. Zool. Breviora 262, 1–35 (1967).

    Google Scholar 

  223. Degens, E. T., Spencer, D. W., and Parker, R. H.: Paleobiochemistry of molluscan shell proteins. Comp. Biochem. Physiol. 20, 533–579 (1967).

    Google Scholar 

  224. Husseini, S. I.: Temporal and diagenetic modifications of the amino acid composition of Pleistocene coral skeletons. Ph. D. Thesis Brown University, Providence, Rhode Island (1973).

    Google Scholar 

  225. Mitterer, R. M.: Comparative amino acid composition of calcified and non-calcified polychaete worm tubes. Comp. Biochem. Physiol. 38B, 405–409 (1971).

    Google Scholar 

  226. Meenakshi, V. R., Hare, P. E., and Wilbur, K. M.: Amino acids of the organic matrix of neogastropod shells. Comp. Biochem. Physiol. 40B, 1037–1043 (1971).

    Google Scholar 

  227. Westbroek, P., de Jong, E. W., Dam, W., and Bosch, L.: Soluble intracrystalline polysaccharides from coccoliths of Coccolithus huxleyi (Lohmann) Kamptner (I). Calc. Tiss. Res. 12, 227–238 (1973).

    Article  CAS  Google Scholar 

  228. de Jong, E. W.: Isolation and characterization of polysaccharides associated with coccoliths. A paleobiochemical study. Ph. D.-Thesis University of Leiden, Holland (June 1975).

    Google Scholar 

  229. Husseini, S. I., and Mopper, K.: Amino acid and sugar composition of Pleistocene and Recent skeletons of the coral Acropora palmata: unpublished manuscript.

    Google Scholar 

  230. Matheja, J. (pers. com.).

    Google Scholar 

  231. Degens, E. T., Deuser, W. G., and Haedrich, R. L.: Molecular structure and composition of fish otoliths. Mar. Biol. 2, 105–113 (1969).

    Article  CAS  Google Scholar 

  232. Meyer, R. J.: Hemocyanins and the systematics of California Haliotis. Ph. D.-Thesis, Stanford Univ. (1967).

    Google Scholar 

  233. Degens, E. T., Johannesson, B. W., and Meyer, R. W.: Mineralization processes in molluscs and their paleontological significance. Naturwissenschaften 54, 638–640 (1967).

    Article  CAS  Google Scholar 

  234. Crenshaw, M. A.: The soluble matrix from Mercenaria mercenaria shell. Biomineralisation 6, 6–11 (1972).

    CAS  Google Scholar 

  235. Warwicker, J. O.: The crystal structure of silk fibroin. Acta Cryst. 7, 565–573 (1954).

    Article  CAS  Google Scholar 

  236. Shoemaker, D. P., Barieau, R. E., Donohue, J., and Chia-Si, L.: The crystal structure of DL-serine. Acta Cryst. 6, 241–256 (1953).

    Article  CAS  Google Scholar 

  237. Warner, D. T.: Proteins may have hexagonal structure. Rep. Art. C. & En. 1964, 53–54.

    Google Scholar 

  238. Towe, K. M., and Thompson, G. R.: The structure of some bivalve shell carbonates prepared by ion-beam thinning. Calc. Tiss. Res. 10, 38–48 (1972).

    Article  CAS  Google Scholar 

  239. Erben, H. K., and Watabe, N.: Crystal formation and growth in bivalve nacre. Nature 248, 128–130 (1974).

    Article  Google Scholar 

  240. Erben, H. K.: On the structure and growth of the nacreous tablets in gastropods. Biomineralisation 7, 14–27 (1974).

    Google Scholar 

  241. Bevelander, G., and Nakahara, H.: An electron microscope study of the formation of the nacreous layer in the shell of certain bivalve molluscs. Calc. Tiss. Res. 3, 84–92 (1969).

    Article  CAS  Google Scholar 

  242. Nakahara, H., and Bevelander, G.: The formation and growth of the prismatic layer of Pinctada radiata. Calc. Tiss. Res. 7, 31–45 (1971).

    Article  CAS  Google Scholar 

  243. Towe, K. M., and Hamilton, G. H.: Ultrastructure and inferred calcification of the mature and develo** nacre in bivalve molluscs. Calc. Tiss. Res. 1, 306–318 (1968).

    CAS  Google Scholar 

  244. Wise, S. W.: Microarchitecture and mode of formation of nacre (mother-of-pearl) in pelecypods, gastropods, and cephalopods. Eclog. Geol. Helv. 63, 775–797 (1970).

    Google Scholar 

  245. Wise, Jr. S. W.: Microarchitecture and deposition of gastropod nacre. Science 167, 1486–1488 (1970).

    Google Scholar 

  246. Wada, K.: Nucleation and growth of aragonite crystals in the nacre of some bivalve molluscs. Biomineralisation 6, 141–159 (1972).

    CAS  Google Scholar 

  247. Mutvei, H.: Ultrastructure of the mineral and organic components of molluscan nacreous layers. Biomineralisation 2, 48–72 (1970).

    Google Scholar 

  248. Gregoire, C.: Sur la structure des matrices organiques des coquilles des mollusques. Biol. Rev. 42, 653–681 (1967).

    CAS  Google Scholar 

  249. Wise, S. W., and de Villiers, J.: Scanning electron microscopy of molluscan shell ultrastructures: Screw dislocations in pelecypod nacre. Trans. Amer. Microsc. Soc. 90, 376–380 (1971).

    Google Scholar 

  250. Williams, A.: Spiral growth of the laminar shell of the brachiopod crania. Calc. Tiss. Res. 6, 11–19 (1970).

    Article  CAS  Google Scholar 

  251. Wada, K.: Spiral growth of nacre. Nature 211, 1427 (1966).

    Google Scholar 

  252. Chothia, C.: Hydrophobic bonding and accessible surface area in proteins. Nature 248, 338–339 (1974).

    Article  CAS  Google Scholar 

  253. Némethy, G., and Scheraga, H. A.: The structure of water and hydrophobic bonding in proteins. III. The thermodynamic properties of hydrophobic bonds in proteins. J. Phys. Chem. 66, 1773–1789 (1962).

    Google Scholar 

  254. Scheraga, H. A.: Role of hydrophobic bonding in protein structure. Ber. Bunsenges. 63. Hauptversammlung 1964, 838–839.

    Google Scholar 

  255. Berendsen, H. J.C., and Migchelsen, C.: Hydration structure of fibrous macromolecules. Ann. New York Acad. Sci. 125, 365–379 (1965).

    CAS  Google Scholar 

  256. Grant, E. H.: The structure of water neighbouring proteins, peptides and amino acids as deduced from dielectric measurements. Ann. New York Acad. Sci. 125, 418–427 (1965).

    CAS  Google Scholar 

  257. Lumry, R., and Rajender, S.: Enthalpy-entropy compensation phenomena in water solutions of proteins and small molecules: An ubiquitous property of water. Biopolymers 9, 1125–1227 (1970).

    CAS  Google Scholar 

  258. Hasl, G., and, Pauly, H.: Kalorische Eigenschaften des gebundenen Wassers in Proteinlösungen. Biophysik 7, 283–294 (1971).

    Article  CAS  Google Scholar 

  259. Suess, E.: Interaction of organic compounds with calcium carbonate. II. Organo-carbonate association in recent sediments. Geochim. Cosmochim. Acta 37, 2435–2447 (1973).

    Article  CAS  Google Scholar 

  260. Okazaki, M.: Carbonic anhydrase in the calcareous red alga, Serraticardia maxima. Botanica Marina 15, 133–138 (1972).

    CAS  Google Scholar 

  261. Freeman, J. A., and Wilbur, K. M.: Carbonic anhydrase in molluscs. Biol. Bull. 94, 55–59 (1948).

    CAS  Google Scholar 

  262. Freeman, J. A.: Influence of carbonic anhydrase inhibition on shell growth of a fresh-water snail, Physa heterostropha. Biol. Bull. 118, 413–429 (1960).

    Google Scholar 

  263. Wilbur, K. M., and Jodrey, L. H.: Studies on shell formation. V. The inhibition of shell formation by carbonic anhydrase inhibitors. Biol. Bull. 108, 359–365 (1955).

    CAS  Google Scholar 

  264. Costlow, Jr., J. D.: Effect of carbonate anhydrase inhibitors on shell development and growth of Balanus improvisus DARWIN. Biol. Bull. 116, 177–184 (1959).

    Google Scholar 

  265. Goreau, T. F.: The physiology of skeleton formation in corals. I. A method for measuring the rate of calcium deposition by corals under different conditions. Biol. Bull. 116, 59–75 (1959).

    CAS  Google Scholar 

  266. Goreau, T. F.: Problems of growth and calcium deposition in reef corals. Endeavour 20, 32–39 (1961).

    Article  Google Scholar 

  267. Newton, I., and Bogan, J.: Organochlorine residues, eggshell thinning and hatching success in British sparrow-hawks. Nature 249, 582–583 (1974).

    Article  CAS  Google Scholar 

  268. Remsen, C. C., Bowen, V. T., and Honjo, S.: Responses by open ocean microorganisms to environmental pollution. U.S.-Japan Conf. Mar. Microbiol. Symp.: Effect of the ocean environment on microbiological activities, 1–16 (1972).

    Google Scholar 

  269. Honjo, S.: A coccolithophorid alga, Emiliania huxleyi. In: Research in the sea (dir. P. M. Fye). Woods Hole Oceanograph. Inst., Woods Hole Mass., figures on p. 2 (1974).

    Google Scholar 

  270. Goreau, T. F., and Goreau, N. I.: The physiology of skeleton formation in corals: III. Calcification rate as a function of colony weight and total nitrogen content in the reef coral Manicina areolata (Linnaeus). Biol. Bull. 117, 420–429 (1959).

    Google Scholar 

  271. Goreau, T. F.: Calcium carbonate deposition by coralline algae and corals in relation to their roles as reef-builders. Ann. N. Y. Acad. Sci. 109, 127–167 (1963).

    CAS  Google Scholar 

  272. Buchsbaum, Pearse, V.: Incorporation of metabolic CO2 into coral skeleton. Nature 228, 383 (1970).

    Google Scholar 

  273. Steemann Nielsen, E.: The uptake of free CO2 and HCO 3 during photosynthesis of plankton algae with special reference to the coccolithophorid Coccolithus huxleyi. Physiol. Plant. 19, 232–240 (1966).

    Google Scholar 

  274. Keith, M. L., Anderson, G. M., and Eichler, R.: Carbon and oxygen isotopic composition of mollusc shells from marine and fresh-water environments. Geochim. Cosmochim. Acta 28, 1757–1786 (1964).

    CAS  Google Scholar 

  275. Keith, M. L., and Parker, R. H.: Local variation of 13C and 18O content of mollusc shells and the relatively minor temperature effect in marginal marine environments. Mar. Geol. 3, 115–129 (1965).

    Article  Google Scholar 

  276. Deuser, W. G., and Degens, E. T.: Carbon isotope fractionation in the system CO2 (gas)-CO2 (aq)-HCO 3 (aq). Nature 215, 1033–1035 (1967).

    CAS  Google Scholar 

  277. Emrich, K., Ehhalt, D. H., and Vogel, J. C.: Carbon isotope fractionation during the precipitation of calcium carbonate. Earth Plan. Sci. Letters 8, 363–371 (1970).

    CAS  Google Scholar 

  278. Mook, W. G., Bommerson, J. C., and Staverman, W. H.: Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Plan. Sci. Letters 22, 169–176 (1974).

    CAS  Google Scholar 

  279. Weber, J. N., and Raup, D. M.: Fractionation of the stable isotopes of carbon and oxygen in marine calcareous organisms — the Echinoidea. Part II. Environmental and genetic factors. Geochim. Cosmochim. Acta 30, 705–736 (1966).

    CAS  Google Scholar 

  280. Weber, J. N., and Raup, D. M.: Fractionation of the stable isotopes of carbon and oxygen in marine calcareous organisms — the Echinoidea. Part I. Variation of C and O content within individuals. Geochim. Cosmochim. Acta 30, 681–703 (1966).

    CAS  Google Scholar 

  281. Keith, M. L., and Weber, J. N.: Systematic relationships between carbon and oxygen isotopes in carbonates deposited by modern corals and algae. Science 150, 498–501 (1965).

    CAS  Google Scholar 

  282. Istin, M., and Girard, J. P.: Carbonic anhydrase and mobilisation of lamellibranchs. Calc. Tiss. Res. 5, 247–260 (1970).

    CAS  Google Scholar 

  283. Istin, M., and Girard, J. P.: Dynamic state of calcium reserves in freshwater clam mantle. Calc. Tiss. Res. 5, 196–205 (1970).

    CAS  Google Scholar 

  284. Schraer, H., and Schraer, R.: Calcium transfer across the avian shell gland. In: Cellular mechanisms for calcium transfer and homeostasis (eds. G. Nichols, Jr. and R. H. Wasserman), pp. 351–370. New York and London: Academic Press 1971.

    Google Scholar 

  285. Terepka, A. R., Coleman, J. R., Garrison, J. C., and Spataro, R. F.: Active transcellular transport of calcium by embryonic chick chorioallantoic membrane. In: Cellular mechanisms for calcium transfer and homeostasis (eds. G. Nichols, Jr. and R. H. Wasserman), pp. 371–389. New York and London: Academic Press 1971.

    Google Scholar 

  286. Northcote, D. H.: The golgi apparatus. Endeavour 30, 26–33 (1971).

    CAS  Google Scholar 

  287. Isenberg, H. D., Lavine, L. S., Moss, M. L., Kupferstein, D., and Lear, P. E.: Calcification in a marine coccolithophorid. Ann. N. Y. Acad. Sci. 109, 49–64 (1963).

    CAS  Google Scholar 

  288. Norris, R. E.: Living cells of Ceratolithus cristatus (Coccolithophorinae). Arch. Protistenk. 108, 19–24 (1965).

    Google Scholar 

  289. Watabe, N.: Crystallographic analysis of the coccolith of Coccolithus huxleyi. Calc. Tiss. Res. 1, 114–121 (1967).

    Article  CAS  Google Scholar 

  290. Manton, I.: Further observations on scale formation in Chrysochromulina chiton, J. Cell. Sci. 2, 411–418 (1967).

    CAS  Google Scholar 

  291. Manton, I.: Observations on scale production in Pymnesium parvum. J. Cell. Sci. 2, 375–379 (1967).

    Google Scholar 

  292. Manton, I., and Peterfi, L. S.: Observations on the fine structure of coccoliths, scales and the protoplast of a freshwater coccolithophorid, Ilymenomonas roseola Stein, with supplementary observations on the protoplast of Cricosphaera carterae. Proc. Roy. Soc. B. 172, 1–15 (1969).

    Google Scholar 

  293. Klaveness, D., and Paasche, E.: Two different Coccolithus huxleyi cell types incapable of coccolith formation. Arch. Microbiol. 75, 382–385 (1971).

    Google Scholar 

  294. Klaveness, D.: Coccolithus huxleyi (Lohmann) Kamptner. I. Morphological investigations on the vegetative cell and the process of coccolith formation. Protistologica 8, 335–346 (1972).

    Google Scholar 

  295. Klaveness, D.: Coccolithus huxleyi (Lohmann) Kamptner. II. The flagellate cell, aberrant cell types, vegetative propagation and life cycles. Br. phyc. J. 7, 309–318 (1972).

    Google Scholar 

  296. Klaveness, D.: The microanatomy of Calyptrosphaera sphaeroidea, with some supplementary observations on the motile stage of Coccolithus pelagicus. Norw. J. Bot. 20, 151–162 (1973).

    Google Scholar 

  297. Paasche, E., and Klaveness, D.: A physiological comparison of coccolith forming and naked cells of Coccolithus huxleyi. Arch. Mikrobiol. 73, 143–152 (1970).

    Google Scholar 

  298. Outka, D. E., and Williams, D. C.: Sequential coccolith morphogenesis in Hymenomonas carterae. J. Protozool. 18, 285–297 (1971).

    CAS  Google Scholar 

  299. Green, J. C., and Leadbeater, B. S. C.: Chrysochromulina parkeae sp. nov. (Haptophyceae), a new species recorded from S. W. England and Norway. J. Mar. Biol. Ass. U. K. 52, 469–474 (1972).

    Google Scholar 

  300. Honjo, S., and Okada, H.: Community structure of coccolithophores in the photic layer of the mid-Pacific. Micropaleontol. 20, 209–230 (1974).

    Google Scholar 

  301. Parker, B., and Diboll, A.: Alcian stains for histochemical localization of acid and sulfated polysaccharides in algae. Phycologia 6, 37–46 (1966).

    CAS  Google Scholar 

  302. Anderson, N. S., Campbell, J. W., Harding, M. M., Rees, D. A., and Samuel, J. W. B.: X-ray diffraction studies of polysaccharide sulphates: Double helix models for κ-and l-carrageenans. J. Mol. Biol. 45, 85–99 (1969).

    Article  CAS  Google Scholar 

  303. Arrhenius, G.: Pelagic sediments. In: The sea. Ideas and observations on progress in the study of the sea (ed. M. N. Hill), pp. 655–727. New York: Interscience Publ. Inc. 1963.

    Google Scholar 

  304. Bubel, A.: An electron-microscope investigation of the cells lining the outer surface of the mantle in some marine molluscs. Mar. Biol. 21, 245–255 (1973).

    Article  Google Scholar 

  305. Kniprath, E.: Die Feinstruktur des Drüsenpolsters von Lymnaea stagnalis. Biomineralisation 5, 1–11 (1971).

    Google Scholar 

  306. Kniprath, E.: Formation and structure of the periostracum in Lymnaea stagnalis. Calc. Tiss. Res. 9, 260–271 (1972).

    Article  CAS  Google Scholar 

  307. Bubel, A.: An electron-microscope investigation into the distribution of polyphenols in the periostracum and cells of the inner face of the outer fold of Mytilus edulis. Mar. Biol. 23, 3–10 (1973).

    Google Scholar 

  308. Kniprath, E.: Die Feinstruktur der Periostrakumgrube von Lymnaea stagnalis. Biomineralisation 2, 23–37 (1970).

    Google Scholar 

  309. Bevelander, G., and Nakahara, H.: An electron microscope study of the formation of the ligament of Mytilus edulis and Pinctada radiata. Calc. Tiss. Res. 4, 101–112 (1969).

    Article  CAS  Google Scholar 

  310. Bevelander, G., and Nakahara, H.: An electron microscope study of the formation and structure of the periostracum of a gastropod, Littorina littorea. Calc. Tiss. Res. 5, 1–12 (1970).

    Article  CAS  Google Scholar 

  311. Taylor, J. D., and Kennedy, W. J.: The influence of the periostracum on the shell structure of bivalve molluscs. Calc. Tiss. Res. 3, 274–283 (1969).

    Article  CAS  Google Scholar 

  312. Chan, J. F. Y., and Saleuddin, A. S. M.: Acid phosphatase in the mantle of the shell regenerating snail Helisoma duryi duryi. Calc. Tiss. Res. 15, 213–220 (1974).

    Article  CAS  Google Scholar 

  313. Kniprath, E.: Cytochemische Lokalisation von Kalzium im Mantelepithel von Lymnaea stagnalis (Gastropoda). Histochemie 25, 45–51 (1971).

    Article  CAS  Google Scholar 

  314. Simkiss, K.: Calciumtransport durch Zellen. Endeavour 33, 119–123 (1974).

    Article  CAS  Google Scholar 

  315. Carr, N. G., and Whitton, B. A. (eds.): The biology of blue-green algae. Blackwell Scientific Publ. (1973).

    Google Scholar 

  316. Golubić, S., and Fischer. A. G.: Ecology of calcareous nodules forming in Little Conestoga Creek near Lancaster, Pennsylvania. Verh. Int. Ver. Limnol. 19 (in press).

    Google Scholar 

  317. Lucas, G.: La sédimentation calcaire. Action du carbonate de sodium sur l'eau de mer. Compl. Rend. 226, 937–939 (1948).

    CAS  Google Scholar 

  318. Baron, G., and Pesneau, M.: Sur l'existence et un mode de préparation du monohydrate de carbonate de calcium. Comp. Rend. 243, 1217–1219 (1956).

    CAS  Google Scholar 

  319. Malone, Ph. G. and Towe, K. M.: Microbial carbonate and phosphate precipitates from sea water cultures. Mar. Geol. 9, 301–309 (1970).

    Article  CAS  Google Scholar 

  320. Cloud, Jr., P. E., and Semikhatov, M. A.: Proterozoic stromatolite zonation. Amer. J. Sci. 267, 1017–1061 (1969).

    Google Scholar 

  321. Hofmann, H. J.: Stromatolites: Characteristics and utility. Earth Sci. Rev. 9, 339–373 (1973).

    Article  Google Scholar 

  322. Golubić, S.: The relationship between blue-green algae and carbonate deposits. In: The biology of blue-green algae (eds. N. G. Carr and B. A. Whitton), pp. 434–472. Blackwell Scientific Publications 1973.

    Google Scholar 

  323. Walter, M. R., Golubić, S., and Preiss, W. V.: Recent stromatolites from hydromagnesite and aragonite depositing lakes near the Coorong Lagoon, South Australia. J. Sed. Petrol. 43, 1021–1030 (1973).

    Google Scholar 

  324. Pannella, G., and MacClintock, C.: Paleontological evidence of variations in length of synodic month since late Cambrian. Science 162, 792–796 (1968).

    Google Scholar 

  325. Bak, R. P. M.: Coral weight increment in situ. A new method to determine coral growth. Mar. Biol. 20, 45–49 (1973).

    Article  Google Scholar 

  326. Evans, J. W.: Tidal growth increments in the cockle Clinocardium nuttalli. Science 176, 416–417 (1972).

    Google Scholar 

  327. Colthart, B. J., and Johannsen, H. W.: Growth rates of Corallina officinalis (Rhodophyta) at different temperatures. Mar. Biol. 18, 46–49 (1973).

    Article  Google Scholar 

  328. Buchsbaum Pearse, V.: Radioisotopic study of calcification in the articulated coralline alga Bossiella orbigniana. J. Phycol. 8, 88–97 (1972).

    Google Scholar 

  329. Pannella, G.: Fish otoliths: Daily growth layers and periodical patterns. Science 173, 1124–1127 (1971).

    Google Scholar 

  330. Dodge, R. E., Aller, R. C., and Thomson, J.: Coral growth related to resuspension of bottom sediments. Nature 247, 574–576 (1974).

    Article  CAS  Google Scholar 

  331. Knutson, D. W., Buddemeier, R. W., and Smith, S. V.: Coral chronometers: Seasonal growth bands in reef corals. Science 177, 270–272 (1972).

    Google Scholar 

  332. Inagaki, H.: Changes in rates of increase in size and of exoskeletal production during old age in the isopod Ligia oceanica (L.). Nature 247, 154–155 (1974).

    Article  Google Scholar 

  333. Clark II, G. R.: Mollusk shell: Daily growth lines. Science 161, 800–802 (1968).

    Google Scholar 

  334. Weber, J. N.: Basis for skeletal plasticity among reef-building corals. Geology 2, 153–154 (1974).

    Article  Google Scholar 

  335. Rhoads, D. C., and Pannella, G.: The use of molluscan shell growth patterns in ecology and paleoecology. Lethaia 3, 143–161 (1970).

    Google Scholar 

  336. Goreau, T. F., and Goreau, N. I.: The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol. Bull. 117, 239–250 (1959).

    CAS  Google Scholar 

  337. Buchsbaum Pearse, V., and, Muscatine, L.: Role of symbiotic algae (Zooxanthellae) in coral calcification. Biol. Bull. 141, 350–363 (1971).

    Google Scholar 

  338. Kennedy, W. J., Morris, N. J., and Taylor, J. D.: The shell structure, mineralogy and relationships of the Chamacea (Bivalvia). Paleontology 13, 379–413 (1970).

    Google Scholar 

  339. Kennedy, W. J., Taylor, J. D., and Hall, A.: Environmental and biological controls on bivalve shell mineralogy. Biol. Rev. 44, 499–530 (1969).

    CAS  Google Scholar 

  340. Moore, W. S., Krishnaswami, S., and Bhat, S. G.: Radiometrie determinations of coral growth rates. Bull. Mar. Sci. 23, 157–175 (1973).

    CAS  Google Scholar 

  341. Berry, W. B. N., and Barker, R. M.: Fossil bivalve shells indicate longer month and year in Cretaceous than present. Nature 217, 938–939 (1968).

    Google Scholar 

  342. Stark, L. M., Almodovar, L., and Krauss, R. W.: Factors affecting the rate of calcification in Halimeda opuntia (L) Lamouroux and Halimeda discoidea Decaisne. J. Phycol. 5, 305–312 (1969).

    CAS  Google Scholar 

  343. Chave, K. E., Smith, S. V., and Roy, K. J.: Carbonate production by coral reefs. Mar. Geol. 12, 123–140 (1972).

    Article  CAS  Google Scholar 

  344. Scrutton, C. T., and Hipkin, R. G.: Long-term changes in the rotation rate of the earth. Earth-Sci. Rev. 9, 259–274 (1973).

    Google Scholar 

  345. Palmer, J. D.: Biological clocks of the tidal zone. Scientific American 1975, 70–79 (Febr.).

    Google Scholar 

  346. Devereux, I.: Temperature measurements from oxygen isotope ratios of fish otoliths. Science 155, 1684–1685 (1967).

    CAS  Google Scholar 

  347. Morris, R. W., and Kittleman, L. R.: Piezoelectric property of otoliths. Science 158, 368–370 (1967).

    CAS  Google Scholar 

  348. Hathaway, J., and Degens, E. T.: Methane-derived marine carbonates of Pleistocene age. Science 165, 690–692 (1969).

    CAS  Google Scholar 

  349. Njus, D., Sulzman, F. M., and Hastings, J. W.: Membrane model for the circadian clock. Nature 248, 116–120 (1974).

    Article  CAS  Google Scholar 

  350. Dayhoff, M. O.: Atlas of protein sequence and structure 1972. Nat. Biomed. Res. Found. Georgetown Univ. Medic. Cent. Washington 1972.

    Google Scholar 

  351. Degens, E. T.: Metal ion coordination in biogeochemical systems. Adv. Org. Geochem. 6, 849–858 (1973).

    Google Scholar 

  352. Chave, K. E.: Aspects of the biochemistry of magnesium 1. Calcareous marine organisms. J. Geol. 62, 266–283 (1954).

    CAS  Google Scholar 

  353. Malone, P. G., and Dodd, J. R.: Temperature and salinity effects on calcification rate of Mytilus edulis and its paleoecological implications. Limnol. Oceanogr. 12, 432–436 (1967).

    CAS  Google Scholar 

  354. Lowenstam, H. A.: Factors affecting the aragonite: calcite ratios in carbonate-secreting marine organisms. J. Geol. 62, 284–322 (1954).

    CAS  Google Scholar 

  355. Schindewolf, O. H.: Neokatastrophismus? Ztschr. Deutsch. Geol. Ges. 114, 430–445 (1962).

    Google Scholar 

  356. Termine, J. D., and Eanes, E. D.: Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calc. Tiss. Res. 10, 171–197 (1972).

    Article  CAS  Google Scholar 

  357. Termine, J. D., and Posner, A. S.: Amorphous/crystalline interrelationships in bone mineral. Calc. Tiss. Res. I, 8–23 (1967).

    Google Scholar 

  358. Termine, J. D., Eanes, D. J., Greenfield, E. D., and Nylen, M. U.: Hydrazine-deproteinated bone mineral. Physical and chemical properties. Calc. Tiss. Res. 12, 73–90 (1973).

    Article  CAS  Google Scholar 

  359. Elliott, J. C.: Recent progress in the chemistry, crystal chemistry and structure of the apatites. Calc. Tiss. Res. 3, 293–307 (1969).

    Article  CAS  Google Scholar 

  360. McClellan, G. H., and Lehr, J. R.: Crystal chemical investigation of natural apatites. Amer. Mineralog. 54, 1374–1391 (1969).

    Google Scholar 

  361. Newesely, H.: Die mineralogisch-geochemische und die biogene Kristallisation des Apatits. Biomineralisation 2, 39–47 (1970).

    Google Scholar 

  362. Münzenberg, K. J.: Untersuchungen zur Kristallographie der Knochenminerale. Biomineralisation 1, 67–100 (1970).

    Google Scholar 

  363. West, V. C.: Observations on phase transformation of a precipitated calcium phosphate. Calc. Tiss. Res. 7, 212–219 (1971).

    Article  CAS  Google Scholar 

  364. McConnell, D., and Foreman, W. D. Jr.: Texture and composition of bone. Science 172, 971–972 (1971).

    CAS  Google Scholar 

  365. Urist, M. R.: Origins of current ideas about calcification. Clin. Orthop. 44, 13–39 (1966).

    CAS  Google Scholar 

  366. Katz, S., Beck, C. W., and Muhler, J. C.: Crystallographic evaluation of enamel from carious and noncarious teeth. J. Dental. Res. 48, 1280–1283 (1969).

    CAS  Google Scholar 

  367. Selvig, K. A.: Periodic lattice images of hydroxyapatite crystals in human bone and dental hard tissues. Calc. Tiss. Res. 6, 227–238 (1970).

    Article  CAS  Google Scholar 

  368. Selvig, K. A.: The crystal structure of hydroxyapatite in dental enamel as seen with the electron microscope. J. Ultrastructural Res. 41, 369–375 (1972).

    CAS  Google Scholar 

  369. Selvig, K. A.: Electron microscopy of dental enamel: Analysis of crystal lattice images. Z. Zeilforsch. 137, 271–280 (1973).

    CAS  Google Scholar 

  370. American Society for Testing and Materials (ASTM): X-ray powder diffraction file, card No. 9-432, Philadelphia (1967).

    Google Scholar 

  371. McConnell, D.: Crystal chemistry of bone mineral: Hydrated carbonate apatites. Amer. Mineralog. 55, 1659–1669 (1970).

    CAS  Google Scholar 

  372. McConnell, D.: Crystal chemistry of hydroxyapatite. Its relation to bone mineral. Arch. oral. Biol. 10, 421–431 (1965).

    CAS  Google Scholar 

  373. Newesely, H.: Die Realstruktur von Oktacalciumphosphat. M. Chemie 95, 94–101 (1964).

    CAS  Google Scholar 

  374. Füredi-Milhofer, H., Purgaric, B., Brecevic, Lj., and Pavkovic, N.: Precipitation of calcium phosphates from electrolyte solutions. I. A study of the precipitates in the physiological pH region. Calc. Tiss. Res. 8, 142–153 (1971).

    Article  Google Scholar 

  375. Brecevic, Lj, and Füredi-Milhofer, H.: Precipitation of calcium phosphates from electrolyte solutions. II. The formation and transformation of the precipitates. Calc. Tiss. Res. 10, 82–90 (1972).

    CAS  Google Scholar 

  376. Brown, W. E., Smith, J. P., Lehr, J. R., and Frazier, A. W.: Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature 196, 1050–1055 (1962).

    CAS  Google Scholar 

  377. Eanes, E. D., and Posner, A. S.: Kinetics and mechanism of conversion of noncrystalline calcium phosphate to crystalline hydroxyapatite. Trans. N. Y. Acad. Sci. Ser. II, 28, 233–241 (1965).

    CAS  Google Scholar 

  378. Eanes, E. D., Termine, J. D., and Posner, A. S.: Amorphous calcium phosphate in skeletal tissues. Clin. Orthop. 53, 223–235 (1967).

    CAS  Google Scholar 

  379. Termine, J. D., Peckauskas, R. A., and Posner, A. S.: Calcium phosphate in vitro. II. Effects of environment on amorphous-crystalline transformation. Arch. Biochem. Biophys. 140, 318–325 (1970).

    CAS  Google Scholar 

  380. Newesely, H.: Ist Fluor ein essentieller Spurenbestandteil des physiologischen Milieus? Kristallchemische Argumente zur Kariesprophylaxe durch Fluoridierungsma\nahmen. Dtsch. zahnÄrztl. Ztschr. 24, 1483–1486 (1967).

    Google Scholar 

  381. McConnell, D.: Inorganic constituents in the shell of the living brachiopod Lingula. Geol. Soc. Amer. Bull. 74, 363–364 (1963).

    CAS  Google Scholar 

  382. Hayek, E.: Die Mineralsubstanz der Knochen. Klin. Wschr. 45, 857–863 (1967).

    Article  CAS  Google Scholar 

  383. Eanes, E. D., Termine, J. D., and Nylen, M. U.: An electron microscope study of the formation of amorphous calcium phosphate and its transformation to crystalline apatite. Calc. Tiss. Res. 12, 144–158 (1973).

    Article  Google Scholar 

  384. Eanes, E. D.: Thermochemical studies on amorphous calcium phosphate. Calc. Tiss. Res. 5, 133–145 (1970).

    Article  CAS  Google Scholar 

  385. Bachra, B. N., Trautz, O., and Simon, S. L.: Precipitation of calcium carbonates and phosphates. II. A precipitation diagram for the system calcium-carbonate-phosphate and the heterogeneous nucleation of solids in the metastability region. Adv. Arch. Fluorine Res. Dental Caries Prev. 3, 101–118 (1965).

    CAS  Google Scholar 

  386. Bachra, B. N., and van Harskamp, G. A.: The effect of polyvalent metal ions on the stability of a buffer system for calcification in vitro. Calc. Tiss. Res. 4, 359–365 (1970).

    Article  CAS  Google Scholar 

  387. Robertson, W. G.: Factors affecting the precipitation of calcium phosphate in vitro. Calc. Tiss. Res. 11, 311–322 (1973).

    CAS  Google Scholar 

  388. Holmes, J. M., and Beebe, R. A.: Surface areas by gas adsorption on amorphous calcium phosphate and crystalline hydroxyapatite. Calc. Tiss. Res. 7, 163–174 (1971).

    Article  CAS  Google Scholar 

  389. Degens, E. T.: Geochemistry of sediments. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1965).

    Google Scholar 

  390. Amprimo, R., and Engstrom, A.: Study on X-ray absorption and diffraction of bone tissue. Acta Anat. 15, 1–22 (1952).

    Google Scholar 

  391. Eanes, E. D., and Posner, A. S.: Structure and chemistry of bone mineral. In: Biological calcification (ed. H. Schraer), pp. 1–26. New York: Appleton-Century-Crofts 1970.

    Google Scholar 

  392. Wergedal, J. E., and Baylink, D. J.: Electron microprobe measurements of bone mineralization in vivo. Amer. J. Physiol. 226, 345–352 (1974).

    CAS  Google Scholar 

  393. Marotti, G., Favia, A., and Zambonin Zallone, A.: Quantitative analysis on the rate of secondary bone mineralization. Calc. Tiss. Res. 10, 67–81 (1972).

    Article  CAS  Google Scholar 

  394. Papworth, D. G., and Vennart, J.: Retention of 90Sr in human bone at different ages and the resulting radiation doses. Phys. Med. Biol. 18, 169–186 (1973).

    Article  CAS  Google Scholar 

  395. Loutit, J. F.: What is the turnover of bone mineral? Calc. Tiss. Res. 2, 111–114 (1968).

    Article  CAS  Google Scholar 

  396. Simmons, D. J., Simmons, N. B., and Marshall, J. H.: The uptake of calcium-45 in the acellular-boned toadfish. Calc. Tiss. Res. 5, 206–221 (1970).

    Article  CAS  Google Scholar 

  397. Davies, H. G., and Engstrom, A.: Interferometric and X-ray absorption studies of bone tissue. Exptl. Cell. Res. 1, 243–255 (1954).

    Google Scholar 

  398. Richelle, L. J., and Onkelinx, C.: Recent advances in the physical biology of bone and other hard tissues. In: Mineral metabolism (eds. C. Comar and F. Bronner), Vol. III., pp. 123–190. New York: Academic Press 1969.

    Google Scholar 

  399. Bachra, B. B., and van der Meulen-van Harskamp, G. A.: The effect of tetracycline and oxytetracycline on the formation of biological apatite. Calc. Tiss. Res. 11, 95–96 (1973).

    CAS  Google Scholar 

  400. Carlisle, E. M.: Silicon: a possible factor in bone calcification. Science 167, 279–280 (1970).

    CAS  Google Scholar 

  401. Liebau, F.: Die Systematik der Silikate. Naturwissenschaften 49, 481–491 (1962).

    Article  CAS  Google Scholar 

  402. Liebau, F.: Die Kristallchemie der Phosphate. Fortschr. Miner. 42, 266–302 (1966).

    CAS  Google Scholar 

  403. Bergerhoff, G.: Apatit als Struktur mit zentralem Anion. Ztschr. Kristallogr. 124, 452–454 (1967).

    CAS  Google Scholar 

  404. Schiffman, E., Corcoran, B. A., and Martin, G. R. A.: The role of complexed heavy metals in initiating the mineralization of “elastin” and the precipitation of mineral from solution. Arch. Biochem. Biophys. 115, 87–94 (1966).

    Google Scholar 

  405. Klement, R., Hüter, F., and Köhrer, K.: Bildet sich Carbonatapatit in wÄ\rigen Systemen? Ztschr. Elektrochem. 48, 334–336 (1942).

    CAS  Google Scholar 

  406. Baxter, J. D., Biltz, R. M., and Pellegrino, E. D.: The physical state of bone carbonate: A comparative infrared study in several mineralized tissues. Yale J. Biol. Med. 38, 456–470 (1966).

    CAS  Google Scholar 

  407. Pellegrino, E. D., and Biltz, R. M.: Mineralization in the chick embryo. I. Monohydrogen phosphate and carbonate relationships during maturation of the bone crystal complex. Calc. Tiss. Res. 10, 128–135 (1972).

    Article  CAS  Google Scholar 

  408. Newesely, H.: Conditions for the existence of octacalcium phosphate, withlockit and carbonate apatite. A contribution to the crystal chemistry of biological hard substances. Dtsch. zahnÄrztl. Ztschr. 20, 754–766 (1965).

    Google Scholar 

  409. Ames, Jr., L. L.: The genesis of carbonate apatites. Econ. Geol. 54, 829–841 (1959).

    CAS  Google Scholar 

  410. Neuman, W. J., and Neuman, M. W.: Chemical dynamics of bone mineral. University Chicago, III, 101–136 (1958).

    Google Scholar 

  411. Lörcher, K., and Newesely, H.: Calcium carbonate (calcite) as a separate phase besides calcium phosphate apatite in medullary bone of laying hens. Calc. Tiss. Res. 3, 358–362 (1969).

    Article  Google Scholar 

  412. Pellegrino, E. D., and Biltz, R. M.: Calcium carbonate in medullary bone. Calc. Tiss. Res. 6, 168–171 (1970).

    Article  CAS  Google Scholar 

  413. Bird, E. D., and Thomas, W. C. Jr.: Effect of various metals on mineralization in vitro. Proc. Soc. exp. Biol. (N.Y) 112, 640–643 (1963).

    CAS  Google Scholar 

  414. Bachra, B. N., and van Harskamp, G. A.: The effect of polyvalent metal ions on the stability of a buffer system for calcification in vitro. Calc. Tiss. Res. 4, 359–365 (1970).

    Article  CAS  Google Scholar 

  415. Bridges, J. B., and McClure, J.: Experimental calcification in a number of species. Calc. Tiss. Res. 10, 136–141 (1972).

    Article  CAS  Google Scholar 

  416. Baylink, D., Wergedal, J., and Thompson, E.: Loss of protein-polysaccharides at sites where bone mineralization is initiated. J. Histochem. Cytochem. 20, 279–292 (1972).

    CAS  Google Scholar 

  417. Wollast, R., and Burny, F.: Study of bone mineralization at the microscopic level using an electron probe microanalyser. Calc. Tiss. Res. 8, 73–82 (1971).

    Article  CAS  Google Scholar 

  418. Eastoe, J. E.: Chemical aspects of the matrix concept in calcified tissue organisation. Calc. Tiss. Res. 2, 1–19 (1968).

    Article  CAS  Google Scholar 

  419. Urist, M. R.: Biologic initiators of calcification. In: Biological mineralization (ed. I. Zipkin), pp. 757–805. New York-London-Sydney-Toronto: John Wiley & Sons 1973.

    Google Scholar 

  420. Fearnhead, R. W., and Stack, M. V. (eds.): Tooth enamel II. Its composition, properties, and fundamental structure. John Wright & Sons Ltd. Bristol (1971).

    Google Scholar 

  421. Stack, M. V., and Fearnhead, R. W. (eds.): Tooth enamel. Its composition, properties, and fundamental structure. Bristol: John Wright & Sons Ltd. 1965.

    Google Scholar 

  422. Pautard, F. G. E.: Mineralization of keratin and its comparison with the enamel matrix. Nature 199, 531–539 (1963).

    CAS  Google Scholar 

  423. Campo, R. D., and Tourtelotte, C. D.: The composition of bovine cartilage and bone. Biochem. Biophys. Acta 141, 614–624 (1967).

    CAS  Google Scholar 

  424. Herring, G. M.: The mucosubstances of bone. In: Biological mineralization (ed. I. Zipkin), pp. 75–94. New York-London-Sydney-Toronto: John Wiley & Sons 1973.

    Google Scholar 

  425. Lindenbaum, A., and Kuettner, K. E. A.: Mucopolysaccharides and mucoproteins of calf scapula. Calc. Tiss. Res. 1, 153–165 (1967).

    Article  CAS  Google Scholar 

  426. Zamoscianyk, H., and Veis, A.: The isolation and chemical characterization of a phosphatecontaining sialoglyco-protein from develo** bovine teeth. Fed. Proc. 25, 409 (1966).

    Google Scholar 

  427. Shapiro, I. M.: The lipids of skeletal and dental tissues: Their role in mineralization. In: Biological mineralization (ed. I. Zipkin), pp. 117–138. New York-London-Sydney-Toronto: John Wiley & Sons 1973.

    Google Scholar 

  428. Dirksen, T. R., and Marinetti, G. V.: Lipids of bovine enamel and dentin and human bone. Calc. Tiss. Res. 5, 1–10 (1970).

    Google Scholar 

  429. Fincham, A. G., Burkland, G. A., and Shapiro, I. M.: Lipophilia of enamel matrix. A chemical investigation of the neutral lipids and lipophilic proteins of enamel. Calc. Tiss. Res. 9, 247–259 (1972).

    Article  CAS  Google Scholar 

  430. Owen, M., Triffitt, J. T., and Melick, R. A.: Albumin in bone. In: Hard tissue growth, repair and remineralization (eds. K. Elliott and D. W. Fitzsimons), pp. 263–293. Amsterdam-London-New York: Elsevier-Excerpta Medica-North Holland, 1973.

    Google Scholar 

  431. Smillie, A. C.: The chemistry of the organic phase of teeth. In: Biological mineralization (ed. I. Zipkin), pp. 130–163. New York-London-Sydney-Toronto: John Wiley & Sons 1973.

    Google Scholar 

  432. Glimcher, M. J., Friberg, U. A., and Levine, P. T.: The isolation and amino acid composition of the enamel proteins of erupted bovine teeth. Biochem. J. 93, 202–210 (1964).

    CAS  Google Scholar 

  433. Weidmann, S. M., and Eyre, D. R.: The protein of mature and foetal enamel. In: Tooth enamel II. Its composition, properties and fundamental structure (eds. R. W. Fearnhead and M. V. Stack), pp. 72–78. Bristol: John Wright & Sons Ltd. 1971.

    Google Scholar 

  434. Eastoe, J. E.: The amino acid composition of proteins from the oral tissues. II The matrix proteins in dentine and enamel from develo** human deciduous teeth. Arch. oral. Biol. 8, 633–652 (1963).

    CAS  Google Scholar 

  435. Everett, M. M., and Miller, W. A.: Histochemical studies on calcified tissues. I. Amino acid histochemistry of foetal calf and human enamel matrix. Calc. Tiss. Res. 14, 229–244 (1974).

    Article  CAS  Google Scholar 

  436. Glimcher, M. J.: Specificity of the molecular structure of organic matrices in mineralization. In: Calcification in biological systems (ed. R. F. Sognnaes), pp. 421–487. Washington, D. C.: American Association for the Advancement of Science 1960.

    Google Scholar 

  437. Jethi, R. K., Inlow, C. W., and Wadkins, C. L.: Studies of the mechanism of biological calcification. I. Kinetic properties of the in vitro calcification of collagen-containing matrix. Calc. Tiss. Res. 6, 81–92 (1970).

    Article  CAS  Google Scholar 

  438. Bachra, B. N.: Calcification in vitro of collagenous model systems: Chemical and electronmicroscopic aspects. Calc. Tiss. Res. 4 (Suppl.), 31–33 (1970).

    CAS  Google Scholar 

  439. Bachra, B. N.: Nucleation in biological systems. In: Biological mineralization (ed. I. Zipkin), pp. 845–881. New York-London-Sydney-Toronto: John Wiley & Sons 1973.

    Google Scholar 

  440. Bachra, B. N., and Fischer, H. R. A.: Mineral deposition in collagen in vitro. Calc. Tiss. Res. 2, 343–352 (1968).

    CAS  Google Scholar 

  441. Wadkins, C. L.: Experimental factors that influence collagen calcification in vitro. Calc. Tiss. Res. 2, 214–228 (1968).

    Article  CAS  Google Scholar 

  442. Fleisch, H., and Neuman, W. F.: Mechanisms of calcification: Role of collagen, polyphosphate and phosphatase. Amer. J. Physiol. 200, 1296–1300 (1961).

    CAS  Google Scholar 

  443. Taves, D. R., and Neuman, W. F.: Factors controlling calcification in vitro: The calcium/phosphate ratio. Proc. Soc. exp. Biol. (N.Y.) 116, 631–635 (1964).

    CAS  Google Scholar 

  444. Katz, E. P.: The kinetics of mineralization in vitro. I. The nucleation properties of 640 å collagen at 25‡. Biochim. Biophys. Acta 194, 121–129 (1969).

    CAS  Google Scholar 

  445. Bachra, B. N.: Calcification in vitro of demineralized bone matrix. Calc. Tiss. Res. 8, 287–303 (1972).

    CAS  Google Scholar 

  446. Nylen, M. U., Scott, D. B., and Mosley, V. M.: Mineralization of turkey leg tendon. II. Collagen-mineral relations revealed by electron and X-ray microscopy. In: Calcification in biological systems (ed. R. F. Sognnaes), pp. 129–142. Washington, D. C.: 1960.

    Google Scholar 

  447. Luben, R. A., Sherman, J. K., and Wadkins, C. L.: Studies of the mechanism of biological calcification. IV. Ultrastructural analysis of calcifying tendon matrix. Calc. Tiss. Res. 11, 39–55 (1973).

    CAS  Google Scholar 

  448. Gray, W. R., Sandberg, L. B., and Foster, J. A.: Molecular model for elastin structure and function. Nature 246, 461–466 (1973).

    Article  CAS  Google Scholar 

  449. Molinari Tosatti, M. P., Gotte, L., and Moret, V.: Some features of the binding of calcium ions to elastin. Calc. Tiss. Res. 6, 329–334 (1971).

    CAS  Google Scholar 

  450. Schiffmann, E., Lavender, D. R., Miller, E. J., and Corcoran, B. A.: Amino acids at the nucleating site in mineralizing elastic tissue. Calc. Tiss. Res. 3, 125–141 (1969).

    CAS  Google Scholar 

  451. Rucker, R. B., Ford, D., Goettlich-Riemann, W., and Tom, K.: Additional evidence for the binding of calcium ions to elastin at neutral sites. Calc. Tiss. Res. 14, 317–325 (1974).

    Article  CAS  Google Scholar 

  452. Urry, D. W.: Neutral sites for calcium ion binding to elastin and collagen: A charge neutralization theory for calcification and its relationship to atherosclerosis. Proc. Nat. Acad. Sci. USA 68, 810–814 (1971).

    CAS  Google Scholar 

  453. Urry, D. W., Cummingham, W. D., and Osbnishi, T.: A neutral polypeptide-calcium ion complex. Biochem. Biophys. Acta 292, 853–857 (1973).

    CAS  Google Scholar 

  454. Ramachandran, G. N. (ed.): Treatise on collagen. New York and London: Academic Press, 1967.

    Google Scholar 

  455. Ramachandran, G. N.: Structure of fibrous proteins and polypeptides. In: Collagen (ed. N. Ramanathan), pp. 3–35. New York and London: Interscience Publ. 1962.

    Google Scholar 

  456. Yee, R. Y., Englander, S. W., and von Hippel, P. H.: Native collagen has a two-bonded structure. J. Mol. Biol. 83, 1–16 (1974).

    Article  CAS  Google Scholar 

  457. Miller, E. J.: The collagen of bone and cartilage. In: Biological mineralization (ed. I. Zipkin), pp. 95–115. New York-London-Sydney-Toronto: John Wiley & Sons 1973.

    Google Scholar 

  458. Barnes, M. J.: Biochemistry of collagens from mineralized tissues. In: Hard tissue growth, repair and remineralization. (eds. K. Elliott and D. W. Fitzsimons), pp. 247–261. Amsterdam-London-New York: Elsevier-Excerpta Medica-North-Holland 1973.

    Google Scholar 

  459. Speakman, P. T.: Proposed mechanism for the biological assembly of collagen triple helix. Nature 229, 241–243 (1971).

    Article  CAS  Google Scholar 

  460. Schofield, J. D., and Prockop, D. J.: Procollagen — A precursor form of collagen. Clin. Orthop. Rel. Res. 97, 175–195 (1973).

    Google Scholar 

  461. Uitto, J., and Prockop, D. J.: Rate of helix formation by intracellular procollagen. Evidence for a role for disulfide bonds. Biochem. Biophys. Res. Commun. 55, 904–911 (1973).

    Article  CAS  Google Scholar 

  462. Grant, M. E., Schofield, J. D., Kefalides, N. A., and Prockop, D. J.: The biosynthesis of basement membrane collagen in embryonic chick lens. J. Biol. Chem. 248, 7432–7437 (1973).

    CAS  Google Scholar 

  463. Chung, E., and Miller, E. J.: Collagen polymorphism: Characterization of molecules with the chain composition [α 1 (III)]3 in human tissues. Science 183, 1200–1201 (1974).

    CAS  Google Scholar 

  464. Jimenez, S., Harsch, M., and Rosenbloom, J.: Hydroxyproline stabilizes the triple helix of chick tendon collagen. Biochem. Biophys. Res. Commun. 52, 106–114 (1973).

    Article  CAS  Google Scholar 

  465. Uitto, J., Schofield, J. D., and Prockop, D. J.: Disulfide bonding and rate of triple-helix formation during biosynthesis of cartilage procollagen. Fed. Proc. 33, 617 (1974).

    Google Scholar 

  466. Schofield, J. D., Uitto, J., and Prockop, D. J.: Formation of interchain disulfide bonds and helical structure during biosynthesis of procollagen by embryonic tendon cells. Biochemistry 13, 1801–1806 (1974).

    Article  CAS  Google Scholar 

  467. Harwood, R., Grant, M. E., and Jackson, D. S.: The sub-cellular location of inter-chain disulfide bond formation during procollagen synthesis by embryonic chick tendon cells. Biochem. Biophys. Res. Commun. 55, 1188–1196 (1973).

    Article  CAS  Google Scholar 

  468. Berg, R. A., and Prockop, D. J.: Thermal transition of a non-hydroxylated form of collagen. Evidence for a role for hydroxyproline in stabilizing the triple-helix of collagen. Biochem. Biophys. Res. Commun. 52, 115–119 (1973).

    Article  CAS  Google Scholar 

  469. Smith, D. W., Brown, D. M., and Carnes, W. H.: Preparation and properties of salt-soluble elastin. J. Biol. Chem. 247, 2427–2432 (1972).

    CAS  Google Scholar 

  470. Ohnishi, M., and Urry, D. W.: Solution conformation of valinomycin-potassium ion complex. Science 168, 1091–1092 (1970).

    CAS  Google Scholar 

  471. Pinkerton, M., Steinrauf, L. K., and, in part, Dawkins, P.: The molecular structure and some transport properties of valinomycin. Biochem. Biophys. Res. Commun. 35, 512–518 (1969).

    Article  CAS  Google Scholar 

  472. Dobler, M., Dunitz, J. D., and Krajewski, J.: Structure of the K+ complex with enniatin B, a macrocyclic antibiotic with K+ transport properties. J. Mol. Biol. 42, 603–606 (1969).

    Article  CAS  Google Scholar 

  473. Ovchinnikov, Yu. A., Ivanov, V. T., Evstratov, A. V., Bystrov, V. F., Abdullaev, N. D., Popov, E. M., Lipkind, G. M., Arkhipova, S. F., Efremov, E. S., and Shemyakin, M. M.: The physicochemical basis of the functioning of biological membranes: Dynamic conformational properties of enniatin B and its K+ complex in solution. Biochem. Biophys. Res. Commun. 37, 668–676 (1969).

    Article  CAS  Google Scholar 

  474. Linde, A.: Glycosaminoglycans of the dental pulp. A biochemical study. Scand. J. dent. Res. 81, 177–201 (1973).

    CAS  Google Scholar 

  475. de Bernard, B., and, Vittur, F.: A glycoprotein from pre-osseus cartilage composition, Ca2+ binding properties and physiological implications. In: Calcium binding proteins (eds. W. Drabikowski, H. Strzelecka-Golaszewska and E. Carafoli), pp. 835–853. Warszawa: PWN-Polish Scientific Publishers and Amsterdam: Elsevier Scientific Publishing Company 1974.

    Google Scholar 

  476. Sandberg, L. B., Weissman, N., and Smith, D. W.: The purification and partial characterization of a soluble elastin-like protein from copper-deficient porcine aorta. Biochemistry 8, 2940–2945 (1969).

    Article  CAS  Google Scholar 

  477. Urist, M. R., Speer, D. P., Ibsen, K. J., and Strates, B. S.: Calcium binding by chondroitin sulfate. Calc. Tiss. Res. 2, 253–261 (1968).

    Article  CAS  Google Scholar 

  478. Linde, A.: Glycosaminoglycans of the odontoblast-predentine layer in dentinogenically active porcine teeth. Calc. Tiss. Res. 12, 281–294 (1973).

    Article  CAS  Google Scholar 

  479. Pedrini-Mille, A., and Pedrini, V.: Studies of human iliac crest cartilage. II. Proteinpolysaccharides of normal tissues. Calc. Tiss. Res. 8, 96–105 (1971).

    CAS  Google Scholar 

  480. Herring, G. M., Andrews, A. T. de B., and Chipperfield, A. R.: Chemical structure of bone sialoprotein and a preliminary study of its calcium-binding properties. In: Cellular mechanisms for calcium transfer and homeostasis (eds. G. Nichols, Jr. and R. H. Wasserman), pp. 63–73. New York and London: Academic Press 1971.

    Google Scholar 

  481. Feretti, J. L., Locatto, M. E., Savino, D., and Puche, R. C.: The effect of galactose on bone metabolism. Calc. Tiss. Res. 14, 169–175 (1974).

    Google Scholar 

  482. Johnson, P. L., and Bevelander, G.: Histogenesis and histochemistry of pulpal calcification. J. dent. Res. 35, 714–722 (1956).

    CAS  Google Scholar 

  483. Appleton, J., and Williams, M. J. R.: Ultrastructural observations on the calcification of human dental pulp. Calc. Tiss. Res. 11, 222–237 (1973).

    CAS  Google Scholar 

  484. Martin, J. H., and Matthews, J. L.: Mitochondrial granules in chondrocytes. Calc. Tiss. Res. 3, 184–193 (1969).

    Article  CAS  Google Scholar 

  485. Raff, R. A., and Mahler, H. R.: The non-symbiotic origin of mitochondria. Science 177, 575–582 (1972).

    CAS  Google Scholar 

  486. Lehninger, A. L., Carafoli, E., and Rossi, C. S.: Energy-linked ion movements in mitochondrial systems. Adv. Enzym. 29, 259–319 (1967).

    CAS  Google Scholar 

  487. Carafoli, E., and Lehninger, A. L.: A survey of the interaction of calcium ions with mitochondria from different tissues and species. Biochem. J. 122, 681–690 (1971).

    CAS  Google Scholar 

  488. Matthews, J. L., Martin, J. H., Arsenis, C., Eisenstein, R., and Kuettner, K.: The role of mitochondria in intracellular calcium regulation. In: Cellular mechanisms for calcium transfer and homeostasis (eds. G. Nichols, Jr. and R. H. Wasserman), pp. 239–255. New York and London: Academic Press 1971.

    Google Scholar 

  489. Matthews, J. L., Martin, J. H., Kennedy III, J. W., and Collins, E. J.: An ultrastructural study of calcium and phosphate deposition and exchange in tissues. In: Hard tissue growth, repair and remineralization (eds. K. Elliott and D. W. Fitzsimons), pp. 187–211. Amsterdam-London-New York: Elsevier-Excerpta Medica-North-Holland 1973.

    Google Scholar 

  490. Sottocasa, G. L., Sandri, G., Panfili, E., Gazotti, P., and Carafoli, E.: The calcium binding glycoprotein from animal mitochondria. In: Calcium binding proteins (eds. W. Drabikowski, H. Strzelecka-Golaszewska and E. Carafoli), pp. 855–874. Amsterdam: Elsevier Scientific Publ. Comp. and Warszawa: PWN-Polish Scientific Publ. 1974.

    Google Scholar 

  491. Bonucci, E.: The locus of initial calcification in cartilage and bone. Clin. Orthop. Rel. Res. 78, 108–139 (1971).

    CAS  Google Scholar 

  492. Bonucci, E.: (Discussion). In: Hard tissue growth, repair and remineralization (eds. K. Elliott and D. W. Fitzsimons), pp. 202–211. Amsterdam-London-New York: Elsevier-Excerpta Medica-North-Holland 1973.

    Google Scholar 

  493. Matthews, J. L., Martin, J. H., and Collins, E. J.: Intracellular calcium in epithelial cartilage and bone cells. Calc. Tiss. Res. 4 (Suppl.), 37–38 (1970).

    Google Scholar 

  494. Shapiro, I. M., and Greenspan, J. S.: Are mitochondria directly involved in biological mineralisation? Calc. Tiss. Res. 3, 100–102 (1969).

    Article  CAS  Google Scholar 

  495. Halstead, L. B.: Are mitochondria directly involved in biological mineralisation? The mitochondrion and the origin of bone. Calc. Tiss. Res. 3, 103–104 (1969).

    CAS  Google Scholar 

  496. Elbrink, J., and Bihler, I.: Membrane transport: Its relation to cellular metabolic rates. Science 188, 1177–1184 (1975).

    CAS  Google Scholar 

  497. Urist, M. R.: Induced systemic hypersensitivity: Selye's theory. Science 137, 120–121 (1962).

    Google Scholar 

  498. Anderson, H. C.: Calcium-accumulating vesicles in the intercellular matrix of bone. In: Hard tissue growth, repair and remineralization (eds. K. Elliott and D. W. Fitzsimons), pp. 213–245. Amsterdam-London-New York: Elsevier-Excerpta Medica-North-Holland 1973.

    Google Scholar 

  499. Ali, S. Y., Sajdera, S. W., and Anderson, H. C.: Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc. Nat. Acad. Sci. USA 67, 1513–1520 (1970).

    CAS  Google Scholar 

  500. Wuthier, R. E., Bisaz, S., Russell, R. G. G., and Fleisch, H.: Relationship between pyrophosphate, amorphous calcium phosphate and other factors in the sequence of calcification in vivo. Calc. Tiss. Res. 10, 198–206 (1972).

    Article  CAS  Google Scholar 

  501. Cotmore, J. M., Nichols, G., and Wuthier, R. E.: Phospholipid-calcium phosphate complex. Enhanced calcium migration in the presence of phosphate. Science, 172, 1339–1341 (1971).

    CAS  Google Scholar 

  502. Lenaz, G., Sechi, A. M., Masotti, L., and Parenti-Castelli, G.: Lipid-protein interactions in mitochondria. II. On the nature and biochemical significance of the interaction between phospholipids and lipid-depleted mitochondria. Arch. Biochem. Biophys. 141, 89–97 (1970).

    CAS  Google Scholar 

  503. Wuthier, R. E.: Lipids of mineralizing epiphyseal tissues in the bovine fetus. J. Lipid Res. 9, 58–78 (1968).

    Google Scholar 

  504. Isemura, T.: Monomolecular layers. In: Colloidal surfactants (eds. K. Shinoda, T. Nakagawa, B.-I. Tamamushi and T. Isemura), pp. 251–290. New York and London: Academic Press 1963.

    Google Scholar 

  505. Francis, M. D., and Webb, N. C.: Hydroxyapatite formation from a hydrated calcium mono-hydrogen phosphate precursor. Calc. Tiss. Res. 6, 335–342 (1971).

    CAS  Google Scholar 

  506. Francis, M. D.: The inhibition of calcium hydroxyapatite crystal growth by polyphosphonates and polyphosphates. Calc. Tiss. Res. 3, 151–162 (1969).

    Article  CAS  Google Scholar 

  507. Fleisch, H., Russell, R. G. R., Bisaz, S., and Bonjour, J.-P.: The effects of pyrophosphate and diphosphonate on calcium metabolism. In: Hard tissue growth, repair and remineralization (eds. K. Elliott and D. W. Fitzsimons), pp. 331–358. Amsterdam-London-New York: Elsevier-Excerpta Medica-North-Holland 1973.

    Google Scholar 

  508. Russell, R., Graham, G., Robertson, W. G., and Fleisch, H.: Inhibitors of mineralization. In: Biological mineralization (ed. I. Zipkin), pp. 807–825. New York-London-Sydney-Toronto: John Wiley & Sons 1973.

    Google Scholar 

  509. Francis, M. D., Briner, W. W., and Gray, J. A.: Chemical agents in the control of calcification processes in biological systems. In: Hard tissue growth, repair and remineralization (eds. K. Elliott and D. W. Fitzsimons), pp. 57–90. Amsterdam-London-New York: Elsevier-Excerpta Medica-North-Holland 1973.

    Google Scholar 

  510. Blondin, G. A., Vail, W. J., and Green, D. E.: The mechanism of mitochondrial swelling. II. Pseudoenergized swelling in the presence of alkali metal salts. Arch. Biochem. Biophys. 129, 158–172 (1969).

    Article  CAS  Google Scholar 

  511. Petruska, J. A., and Hodge, A. J.: In: Abstracts of Biophysical Society, 7th Ann. Meeting, Proteins II, Section TA 12, The Biophysical Society, New York (1963).

    Google Scholar 

  512. Robinson, R. A., Doty, S. B., and Cooper, R. R.: Electron microscopy of mammalian bone. In: Biological mineralization (ed. I. Zipkin), pp. 257–296. New York-London-Sydney-Toronto: John Wiley & Sons 1973.

    Google Scholar 

  513. Höhling, H. J., Kreilos, R., Neubauer, G., and Boyde, A.: Electron microscopy and electron microscopical measurements of collagen mineralization in hard tissues. Ztschr. Zellforsch. Mikrosk. Anat. 122, 36–52 (1971).

    Google Scholar 

  514. Bassett, C. A. L., and Herrmann, L.: Influence of oxygen concentration and mechanical factors on differentiation of connective tissue in vitro. Nature 190, 460–461 (1961).

    CAS  Google Scholar 

  515. Bassett, C. A. L.: Current concepts of bone formation. J. Bone Jt. Surg. 44 A, 1217–1244 (1962).

    Google Scholar 

  516. Hall, B. K.: Cellular differentiation in skeletal tissues. Biol. Rev. 45, 455–484 (1970).

    CAS  Google Scholar 

  517. Storey, E.: The dental implications of bone growth. In: Biological mineralization (ed. I. Zipkin), pp. 729–754. New York-London-Sydney-Toronto: John Wiley & Sons 1973.

    Google Scholar 

  518. Felts, W. J. L.: In vivo implantation as a technique in skeletal biology. Int. Rev. Cytol 12, 243–302 (1961).

    CAS  Google Scholar 

  519. Hall, B. K.: Histochemical aspects of the differentiation of adventitious cartilage on the membrane bones of the embryo chick. Histochemie 16, 206–220 (1968).

    Article  CAS  Google Scholar 

  520. Johnson, L. C.: Morphological analysis in pathology: The kinetics of disease and general biology of bone. In: Bone biodynamics (ed. H. M. Frost), pp. 543–654). Boston: Little Brown and Comp. 1964.

    Google Scholar 

  521. Hofmann, H. J., and Jackson, G. D.: Precambrian (Aphebian) microfossils from Belcher Islands, Hudson Bay. Can. J. Earth Sci. 6, 1137–1144 (1969).

    Google Scholar 

  522. Pflug, H. D.: Einige Reste niederer Pflanzen aus dem Algonkium. Palaeontographica Abt. B 117, 59–74 (1966).

    Google Scholar 

  523. Margulis, L.: Origin of eukaryotic cells. Yale Univ. Press, New Haven (1970).

    Google Scholar 

  524. Cloud, P. E. Jr., Licari, G. R., Wright, L. A., and Troxel, B. W.: Proterozoic eucaryotes from eastern California. Proc. Nat. Acad. Sci. USA 62, 623–630 (1969).

    Google Scholar 

  525. Schopf, J. W., and Barghoorn, E. S.: Microorganisms from the late Precambrian of South Australia. J. Paleontol. 43, 111–118 (1969).

    Google Scholar 

  526. Schopf, J. W., and Blacic, J. M.: New microorganisms from the Bitter Springs Formation (late Precambrian of the north-central Amadeus Basin, Australia). J. Paleontol. 45, 925–960 (1971).

    Google Scholar 

  527. Schopf, W., Haugh, B. N., Molnar, R. E., and Satterthwait, D. F.: On the development of metaphytes and metazoans. J. Paleontol. 47, 1–9 (1973).

    Google Scholar 

  528. Knoll, A. H., and Barghoorn, E. S.: Precambrian eukaryotic organisms: A reassessment of the evidence. Science 190, 52–54 (1975).

    Google Scholar 

  529. Golubić, S., and Barghoorn, E. S.: Interpretation of microbial fossils, with special reference to the Precambrian. In: Fossil algae (ed. E. Flügel). Springer Verlag (in press).

    Google Scholar 

  530. Towe, K. M.: Oxygen-collagen priority and the early metazoan fossil record. Proc. Nat. Acad. Sci. USA 65, 781–788 (1970).

    CAS  Google Scholar 

  531. Lindström, M.: Conodonts. Amsterdam-London-New York: Elsevier Publ. Comp. 1964.

    Google Scholar 

  532. Halstead, L. B.: Calcified tissues in the earliest vertebrates. Calc. Res. Tiss. 3, 107–124 (1969).

    CAS  Google Scholar 

  533. Halstead, L. B.: The pattern of vertebrate evolution. Edinburgh: Oliver & Boyd, 1969.

    Google Scholar 

  534. Romer, A. S.: The “ancient history” of bone. In: Comparative biology of calcified tissue (ed. M. L. Moss) Ann. New York Acad. Sci. 109, 168–176 (1963).

    Google Scholar 

  535. Denison, R. H.: The early history of the vertebrate calcified skeleton. Clin. Orthop. 31, 141–152 (1963).

    CAS  Google Scholar 

  536. Gross, W.: Die Fische des mittleren Old Red Sub-Livlands. Geol. PalÄontol. Abh. N. F. 18, 121–156 (1930).

    Google Scholar 

  537. Denison, R. H.: Ordovician vertebrates from Western United States. Fieldiana, Geol. 16, 131–192 (1967).

    Google Scholar 

  538. Ørvig, T.: Phylogeny of tooth tissue: Evolution of some calcified tissues in early vertebrates. In: Structural and chemical organization of teeth (ed. A. W. Miles), Vol. I, pp. 45–110. London and New York: Acad. Press 1967.

    Google Scholar 

  539. Ørvig, T.: The dermal skeleton: General considerations. In: Current problems of lower vertebrate phylogeny (ed. T. Orvig), pp. 373–397). Stockholm: Amqvist Wiksell 1968.

    Google Scholar 

  540. Westoll, T. S.: Radotina and other tesserate fishes. J. Linn. Soc. (Zool.) 47, 341–357 (1967).

    Google Scholar 

  541. Iler, R. K.: Colloid chemistry of silica and silicates. Ithaca, N. Y.: Cornell University Press 1955.

    Google Scholar 

  542. Underwoods, E. J.: Trace elements in human and animal nutrition. New York: Academic Press ed. 3 1971.

    Google Scholar 

  543. Lowenstam, H. A.: Opal precipitation by marine gastropods (mollusca). Science 171, 487–490 (1971).

    CAS  Google Scholar 

  544. Paasche, E.: Silicon and the ecology of marine plankton diatoms. I. Thalassiosira pseudonana (Cyclotella nana) grown in a chemostat with silicate as limiting nutrient. Mar. Biol. 19, 117–126 (1973).

    CAS  Google Scholar 

  545. Paasche, E.: Silicon and the ecology of marine plankton diatoms. II. Silicate-uptake kinetics in five diatom species. Mar. Biol. 19, 262–269 (1973).

    CAS  Google Scholar 

  546. Guillard, R. R. L., Kilham, P., and Jackson, T. A.: Kinetics of silicon-limited growth in the marine diatom Thalassiosira pseudonana Hasle and Heimdal (= Cyclotella nana Hustedt). J. Phycol. 9, 233–237 (1973).

    CAS  Google Scholar 

  547. Kilham, P.: A hypothesis concerning silica and the freshwater planctonic diatoms. Limnol. Oceanogr. 16, 10–18 (1971).

    Google Scholar 

  548. Werner, D.: Silicoborate als erste nicht C-haltige Wachstumsfaktoren. Arch. Mikrobiol. 65, 258–274 (1969).

    Article  CAS  Google Scholar 

  549. Lewin, J. C., and Reimann, B. E. F.: Silicon and plant growth. Ann. Rev. Pl. Physiol. 20, 289–304 (1969).

    Article  CAS  Google Scholar 

  550. Werner, D., and Petersen, M.: Traceuntersuchungen mit 71Germanium im Silikatstoffwechsel von Diatomeen. Ztschr. Pflanzenphysiol. 70, 64–65 (1973).

    Google Scholar 

  551. Lewin, J., and Chen, C. H.: Silicon metabolism in diatoms. VI. Silicic acid uptake by a colorless marine diatom, Nitzschia alba Lewin and Lewin. J. Phycol. 4, 161–166 (1968).

    CAS  Google Scholar 

  552. Werner, D., and Stangier, E.: Silica and temperature dependent colony size of Bellerochea maleus f. biangulata. Phycologia (in press).

    Google Scholar 

  553. Werner, D., and Pirson, A.: über reversible Speicherung von KieselsÄure in Cyclotella cryptica. Arch. Mikrobiol. 56, 43–50 (1967).

    Google Scholar 

  554. Reimann, B. E. F., Lewin, J. C., and Volcani, B. E.: Studies on the biochemistry and fine structure of silica shell formation in diatoms. I. The structure of the cell wall of Cylindrotheca fusiformis Reimann and Lewin, J. Cell. Biol. 24, 39–55 (1965).

    Article  CAS  Google Scholar 

  555. Stoermer, E. F., Pankratz, H. S., and Bowen, C. C.: Fine structure of the diatom Amphipleura pellucida. II. Cytoplasmic fine structure and frustule formation. Amer. J. Bot. 52, 1067–1078 (1965).

    Google Scholar 

  556. Carlisle, E. M.: Silicon: An essential element for the chick. Science 178, 619–621 (1972).

    CAS  Google Scholar 

  557. Barnum, D. W.: Catechol complexes with silicon. Inorg. Chem. 9, 1942–1943 (1970).

    Article  CAS  Google Scholar 

  558. Coombs, J., and Volcani, B. E.: Studies on the biochemistry and fine structure of silicashell formation in diatoms. Chemical changes in the wall of Navicula pelliculosa during its formation. Planta (Berl.) 82, 280–292 (1968).

    CAS  Google Scholar 

  559. Allan, G. G., Lewin, J., and Johnson, P. G.: Marine polymers. IV. Diatom polysaccharides. Botanica Marina 15, 102–108 (1972).

    CAS  Google Scholar 

  560. Shore, R. E.: Axial filament of siliceous sponge spicules, its organic components and synthesis. Biol. Bull. 143, 689–698 (1972).

    CAS  Google Scholar 

  561. Schwab, D. W., and Shore, R. E.: Fine structure and composition of a siliceous sponge spicule. Biol. Bull. 140, 125–136 (1971).

    CAS  Google Scholar 

  562. Travis, D. F., Francois, C. J., Bonar, L. C., and Glimcher, M. J.: Comparative studies of the organic matrices of invertebrate mineralized tissues. J. Ultrastruct. Res. 18, 519–550 (1967).

    Article  CAS  Google Scholar 

  563. Hecky, R. E., Mopper, K., and Degens, E. T.: The amino acid and sugar composition of diatom cell-walls. Mar. Biol. 19, 323–331 (1973).

    Article  CAS  Google Scholar 

  564. Reimann, B. E. F., Lewin, J. C., and Volcani, B. E.: Studies on the biochemistry and fine structure of silica shell formation in diatoms. II. The structure of the cell wall of Navicula pelliculosa (Bréb) Hilse. J. Phycol. 2, 74–84 (1966).

    Google Scholar 

  565. Kamatani, A.: Physical and chemical characteristics of biogenous silica Mar. Biol. 8, 89–95 (1971).

    Google Scholar 

  566. Lewin, J. C.: The dissolution of silica from diatom cell walls. Geochim. Cosmochim. Acta 21, 182–189 (1961).

    CAS  Google Scholar 

  567. Calvert, S. E.: Silica balance in the ocean and diagenesis. Nature 219, 919–920 (1968).

    CAS  Google Scholar 

  568. Mackenzie, F. T., Garrels, R. M., Bricker, O. P., and Bickley, F.: Silica in sea water: Control by silica minerals. Science 155, 1404–1405 (1967).

    CAS  Google Scholar 

  569. Sillén, L. G.: Gibbs phase rule and marine sediments. In “Equilibrium concepts in natural water systems”. Amer. Chem. Soc., Adv. Chem. Ser. 67, 57–69 (1967).

    Google Scholar 

  570. Wise Jr., S. W., Buie, B. F., and Weaver, F. M.: Chemically precipitated sedimentary cristobalite and the origin of chert. Eclog. Geol. Helv. 65, 157–163 (1972).

    CAS  Google Scholar 

  571. Waiter, M. R., Bauld, J., and Brock, T. D.: Siliceous algal and bacterial stromatolites in hot spring and geyser effluents of Yellowstone National Park. Science 178, 402–405 (1972).

    Google Scholar 

  572. Cisne, J. L.: Trilobites and the origin of arthropods. Science 186, 13–18 (1974).

    Google Scholar 

  573. Towe, K. M.: Trilobite eyes: Calcified lenses in vivo. Science 179, 1007–1009 (1973).

    Google Scholar 

  574. Harper, H. E. Jr., and Knoll, A. H.: Silica, diatoms, and Cenozoic radiolarian evolution. Geology 3, 175–177 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

E. T. Degens W. A. P. Luck D. D. Perrin

Rights and permissions

Reprints and permissions

Copyright information

© 1976 Springer-Verlag

About this paper

Cite this paper

Degens, E.T. (1976). Molecular mechanisms on carbonate, phosphate, and silica deposition in the living cell. In: Degens, E.T., Luck, W.A.P., Perrin, D.D. (eds) Topics in Current Chemistry. Topics in Current Chemistry, vol 64. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0045698

Download citation

  • DOI: https://doi.org/10.1007/BFb0045698

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-07636-0

  • Online ISBN: 978-3-540-38186-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

Navigation