Log in

Precipitation of calcium phosphates from electrolyte solutions

I. A study of the precipitates in the physiological pH region

  • Original Papers
  • Published:
Calcified Tissue Research Aims and scope Submit manuscript

Abstract

Precipitation of slightly soluble calcium phosphates from aqueous solutions of calcium chloride (3×10−4M to 1×10−1M) and sodium phosphate (Ptot. 1×10−3M to 6×10−2M, [NaOH]/[H3PO4]∼1.75, pH 7.4) was studied at 25° and 37°. Precipitates isolated 24 hours after mixing were identified by means of light and electron microscopy, X-ray and electron diffraction, chemical analyses and refractive indices. Over the widest range of reactant concentrations at 25°, octacalcium phosphate was predominantly formed, while at 37°, calcium deficient apatites were obtained. At the latter temperature OCP separated at very low concentration products only, i.e. at the precipitation boundary. At relatively high concentration products (Catot.×Ptot.>10−4) and at both temperatures, mixtures of dicalcium phosphate dihydrate (DCPD) and apatites were obtained, the concentration region decreasing with increasing temperature.

Résumé

La précipitation de phosphates de calcium, peu solubles, à partir de solutions de chlorure de calcium (3×10−4M à 1×10−1M) et de phosphate de sodium (Ptot. 1×10−3M à 6×10−2M, [NaOH]/[H3PO4]∼1.75, pH 7.4), est étudiée à 25° et à 37°. Les précipités, obtenus 24 heures après mélange, sont identifiés par microscopie optique et électronique, par diffraction électronique et aux rayons X, par analyses chimiques et par leurs indices de réfraction. Dans un large éventail de concentrations des réactifs à 25°, c'est surtout du phosphate octocalcique qui se forme, alors qu'à 37°, on obtient des apatites déficients en calcium. A cette dernière température, l'OCP se différencie seulement à des concentrations faibles, à la limite de précipitation. A des concentrations relativement élevées (Catot.×Ptot.>10−4)et aux deux températures, des mélanges de dihydrate de phosphate dicalcique (DCPD) et d'apatites sont obtenus, la zone de concentration diminuant avec l'augmentation de la température.

Zusammenfassung

Die Ausfällung von schwer löslichen Calciumphosphaten aus wäßrigen Calciumchloridlösungen (3×10−4M bis 1×10−1M) und Natriumphosphatlösungen (Ptot. 1×10−3M bis 6×10−2M, [NaOH]/H3PO4]∼1,75, pH 7,4) wurde bei 25° und bei 37° untersucht. Niederschläge, welche 24 Stunden nach dem Mischen isoliert wurden, konnten mittels Licht- und Elektronenmikroskopie, Röntgenstrahlen und Elektronendiffraktion, chemischen Analysen und Refraktions-Indices identifiziert werden. Über den weitesten Konzentrationsbereich der Versuchssubstanzen wurde bei 25° hauptsächlich Octocalciumphosphat gebildet, während bei 37° calciumarme Apatite entstanden. Bei der letztgenannten Temperatur fiel das OCP nur bei niedrigen Konzentrationsprodukten aus, d.h. an der Ausfällungsgrenze. Bei relativ hohen Konzentrationsprodukten (Catot.×Ptot.>10−4) und bei beiden Versuchstemperaturen wurden Gemische von Dicalciumphosphatdihydrat (DCPD) und Apatiten erhalten, indem der Konzentrationsbereich bei zunehmender Temperatur abnimmt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arnold, P. W.: The nature of precipitated calcium phosphates. Trans. Faraday Soc.46, 1061–1072 (1950).

    Google Scholar 

  2. Bachra, B. N., Trautz, O., Simon, S. L.: Precipitation of calcium carbonates and phosphates. II. A precipitation diagram for the system calcium-carbonate-phosphate and the heterogeneous nucleation of solids in the metastability region. Adv. Arch. Fluorine Res. and Dental Caries Prevention3, 101–118 (1965a).

    Google Scholar 

  3. ———: Precipitation of calcium carbonates and phosphates III. The effect of magnesium and fluoride ions on the spontaneous precipitation of calcium carbonates and phosphates. Arch. oral. Biol.10, 731–738 (1965b).

    PubMed  Google Scholar 

  4. Bjerrum, N.: Calciumorthophosphate. I. Die festen Calciumorthophosphate. II. Komplexbildung in Lösungen von Calcium- und Phosphat-Ionen. Mat. fys. Medd. Dan. Vid. Selsk.31, 15–31 (1958).

    Google Scholar 

  5. Boulet, M., Marier, J. R.: Precipitation of calcium phosphates from solutions at near physiological concentrations. Arch. Biochem. Biophys.93, 157–165 (1961).

    Google Scholar 

  6. Brečević, Lj., Petres, J., Perović, G., Füredi-Milhofer, H.: The influence of foreign substances on the precipitation of calcium phosphates. I. citrate ions. Regional Meeting of Chemists, Zagreb, Croatia, Feb. 26–28, 1969.

  7. Brown, W. E., Smith, J. P., Lehr, J. R., Frazier, A. W.: Crystallographic and chemical relations between octacalcium phosphate and hydroxyapatite. Nature (Lond.)196, 1048–1055 (1962).

    Google Scholar 

  8. —: Crystal growth of bone mineral. Clin. Orthop.44, 205–220 (1966).

    PubMed  Google Scholar 

  9. Budy, Ann M.: editor, Biology of hard tissue. Proceedings of the first conference, Princeton, New Jersey, June 20–23, 1965, New York: The New York Academy of Sciences Interdisciplinary Communications Program, 1967.

    Google Scholar 

  10. Charlot, G., Bezier, D.: Quantitative inorganic analysis, p. 533. London: Methuen & Co Ltd.; New York: John Wiley & Sons, Inc. 1957.

    Google Scholar 

  11. Chugtai, A., Marshall, R., Nancollas, G. H.: Complexes in calcium phosphate solutions. J. Phys. Chem.72, 208–212 (1968).

    PubMed  Google Scholar 

  12. Devidé, Z., Brečević, Lj.: in preparation.

  13. Eanes, E. D., Posner, A. S.: Kinetics and mechanism of conversion of noncrystalline calcium phosphate to crystalline hydroxyapatite. Trans. N. Y. Acad. Sci., Ser. II,28, 233–241 (1965).

    Google Scholar 

  14. —, Gillessen, I. H., Posner, A. S.: Intermediate states in the precipitation of hydroxyapatite. Nature (Lond.)208, 365–367 (1965).

    Google Scholar 

  15. ———: Mechanism of conversion of non-crystalline calcium phosphate to crystalline hydroxyapatite, p. 373–376, Crystal Growth. Proc. Intern. Conf. Crystal Growth, Boston, 20–24 June, 1966, Oxford, New York: Pergamon Press 1967.

    Google Scholar 

  16. Füredi, H.: Application of microdiffusion methods for the determination of carbon dioxide in solid carbonates. Croat. Chem. Acta33, 201–207 (1961).

    Google Scholar 

  17. —: Complex precipitation systems, p. 188–215, in: A.G. Walton, The formation and properties of precipitates, New York-Sidney-London: Interscience Publishers 1969.

    Google Scholar 

  18. Füredi-Milhofer, H., Purgarić, B., Brečević, Lj., Pavković, N., Oljica, E.: Nucleation of calcium phosphate from solutions at physiological pH. Croat. Chem. Acta41, 37–42 (1969).

    Google Scholar 

  19. ————: Precipitation of calcium phosphates from electrolyte solutions I. A study of the precipitates in the physioloical pH region. Calcif. Tiss. Res.4 (Suppl.), 142–143 (1970).

    Google Scholar 

  20. Hayek, E., Stadlmann, W.: Preparation of pure hydroxyapatite for adsorption uses. Angew. Chem.67, 327 (1955).

    Google Scholar 

  21. —, Newesely, H., Hassenteufel, W., Krismer, B.: Zur Bildungsweise und Morphologie der schwerlöslichen Calciumphosphate. Mh. Chem.91, 249–262 (1960).

    Google Scholar 

  22. Hodge, H. C.: Some achievements and problems in studying the solubility of the mineral of the hard tissues. Ann. N.Y. Acad. Sci.60, 661–669 (1955).

    PubMed  Google Scholar 

  23. International Association for Dental Research (IADR), 47th General Meeting, March 20–23, 1969 Houston, Tex.

  24. Lerch, P., Vuilleumier, C.: Physico-chemical methods for the identification of microcrystalline basic calcium phosphates preparedin vitro. Proc. Third European Symposium on Calcified Tissues, p. 132–136. Berlin-Heidelberg-New York: Springer 1966.

    Google Scholar 

  25. Newesely, H.: Darstellung von “Oktacalciumphosphat” (Tetracalciumhydrogentriphosphat) durch homogene Kristallisation. Mh. Chem.91, 1020–1023 (1960).

    Google Scholar 

  26. —, Über die Löslichkeit schwerlöslicher Salze, insbesondere gefällter Calciumphosphate. Mh. Chem.97, 468–483 (1966).

    Google Scholar 

  27. Pautard, F. G. E.: The mineral phase of calcified cartilage, bone and baleen. Calcif. Tiss. Res.4, (Suppl.), 34–36 (1970).

    Google Scholar 

  28. Posner, A. S., Perloff, A.: Apatites deficient in divalent cations. J. Res. nat. Bur. Stand.58, 279–286 (1957).

    Google Scholar 

  29. Powder diffraction file, inorganic vol. No PDlS-10 i RB, Table No 9-77, 9-432, 13-391. Philadelphia: American Society for Testing and Materials (ASTM) 1967.

  30. Stack, M. V., Fearnhead, R. W.: editors, Tooth enamel. Its composition, properties and fundamental structure. Bristol: John Wright & Sons Ltd. 1965.

    Google Scholar 

  31. Težak, B., Matijević, E., Schulz, K.: Coagulation of hydrophobic sols in statu nascendi. II. Effect of the concentration of the sol and the stabilizing ion on the coagulation of silver chloride, silver bromide and silveriodide. J. Phys. Colloid Chem.55, 1567–1576 (1951).

    Google Scholar 

  32. Težak, B., Coulombic and stereochemical factors of colloid stability of precipitating systems. Disc. Faraday Soc.1966, 175–186.

  33. —, Methorics of the precipitation from electrolytic solutions. The precipitation bodies, PB, and their meaning for determination of characteristics of the dispersed phase, the dispersing medium and the methorical layer. Croat. Chem. Acta40, 63–78 (1968).

    Google Scholar 

  34. Walton, A. G., Bodin, W. J., Füredi, H., Schwartz, A.: Nucleation of calcium phosphate from solution. Can. J. Chem.45, 2695–2701 (1967).

    Google Scholar 

  35. Weber, J. C., Eanes, E. D., Gerdes, R. J.: Electron microscope study of noncrystalline calcium phosphate. Arch. Biochem. Biophys.120, 723–724 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Füredi-Milhofer, H., Purgarić, B., Brečević, L. et al. Precipitation of calcium phosphates from electrolyte solutions. Calc. Tis Res. 8, 142–153 (1971). https://doi.org/10.1007/BF02010131

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02010131

Key words

Navigation