Plant-Based Biomaterials in Tissue Engineering and Drug Delivery Systems

  • Chapter
  • First Online:
Engineered Biomaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 267 Accesses

Abstract

Nowadays, tissue engineering, regenerative medicine, and targeted drug delivery systems are considered three important topics in health sciences. However, the existence of a micro-environment for therapeutic cloning which can control cellular functions plays an important role in the control of cellular interactions, the differentiation into the target cells, or the treatment of diseases. In this field, biomaterials are known as one of the logical choices to design such micro-environments, as substrates or carriers of cells/drugs, and simulate damaged tissue functions. Hence, this chapter aims to review the types of biomaterials (protein-based, polysaccharide-based, plant-derived, and extracellular matrix-derived biomaterials), their therapeutic applications (advances and opportunities), and the study of methods for optimizing properties of some biomaterials (morphologically and mechanically), for individual applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Izadyari Aghmiuni, A., Heidari Keshel, S.: The Rol of the Extracellular Matrix (ECM) and ECM-Like Polymeric Substrates in Health and Disease. In: Advances in Medicine and Biology. pp. 145–175 (2021)

    Google Scholar 

  2. Aghmiuni, A.I., Ghadi, A., Azmoun. E., et al.: Electrospun Polymeric Substrates for Tissue Engineering: Viewpoints on Fabrication, Application, and Challenges. In: Electrospinning - Material Technology of the Future. InTech, pp. 1–26 (2022)

    Google Scholar 

  3. Yang, R., Hou, M., Gao, Y., et al.: Biomineralization-inspired Crystallization of Manganese Oxide on Silk Fibroin Nanoparticles for in vivo MR/fluorescence Imaging-assisted Tri-modal Therapy of Cancer. Theranostics 9, 6314–6333 (2019)

    Article  Google Scholar 

  4. Pilehvar-Soltanahmadi, Y., Dadashpour, M., Mohajeri, A., et al.: An Overview on Application of Natural Substances Incorporated with Electrospun Nanofibrous Scaffolds to Development of Innovative Wound Dressings. Mini Rev. Med. Chem. 18, 414–427 (2018)

    Article  Google Scholar 

  5. Cheng, Y., Deng, S., Chen, P., et al.: Polylactic acid (PLA) synthesis and modifications: a review. Front. Chem. China 4, 259–264 (2009)

    Article  Google Scholar 

  6. Shefa, A.A., Sultana, T., Park, M.K., et al.: Curcumin incorporation into an oxidized cellulose nanofiber-polyvinyl alcohol hydrogel system promotes wound healing. Mater. Des. 186, 108313 (2020)

    Article  Google Scholar 

  7. Huang, G., Li, F., Zhao, X., et al.: Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem. Rev. 117, 12764–12850 (2017)

    Article  Google Scholar 

  8. Aghmiuni, A.I., Keshel, S.H., Rezaei-tavirani, M., et al.: Effect of PEG Molecular Weight and Volume Ratio of Chitosan/PEG and Silk Fibroin on Physicomechanical Properties of Chitosan/PEG-SF Scaffold as a Bio-mimetic Substrate in Skin-tissue Engineering Applications. Fibers Polym 23, 3358–3368 (2022)

    Article  Google Scholar 

  9. Sengupta, P., Prasad, B.L.V.: Surface Modification of Polymeric Scaffolds for Tissue Engineering Applications. Regenerative Engineering and Translational Medicine 4, 75–91 (2018)

    Article  Google Scholar 

  10. Türkkan, S., Atila, D., Akdağ, A., et al.: Fabrication of functionalized citrus pectin/silk fibroin scaffolds for skin tissue engineering. J Biomed Mater Res Part B Appl Biomater 106, 2625–2635 (2018)

    Article  Google Scholar 

  11. Izadyari Aghmiuni A, Heidari Keshel S. The Role of the Extracellular Matrix (ECM) and ECM-Like Polymeric Substrates in Health and Disease. In: Berhardt L V. (ed) Advances in Medicine and Biology. NOVA Medicine and Health, 2022, pp. 145–175.

    Google Scholar 

  12. Izadyari Aghmiuni, A., Heidari Keshel, S., Sefat, F., et al.: Fabrication of 3D hybrid scaffold by combination technique of electrospinning-like and freeze-drying to create mechanotransduction signals and mimic extracellular matrix function of skin. Mater. Sci. Eng. C 120, 111752 (2021)

    Article  Google Scholar 

  13. Farhadihosseinabadi B, Farahani M, Tayebi T, et al. Amniotic membrane and its epithelial and mesenchymal stem cells as an appropriate source for skin tissue engineering and regenerative medicine. Artif Cells, Nanomedicine, Biotechnol 2018; 0: 1–10.

    Google Scholar 

  14. Ghiasi, M., Kalhor, N., Tabatabaei Qomi, R., et al.: The effects of synthetic and natural scaffolds on viability and proliferation of adipose-derived stem cells. Front Life Sci 9, 32–43 (2016)

    Article  Google Scholar 

  15. Aghmiuni, A.I., Baei, M.S., Keshel, S.H., et al.: Design of Novel 3D-Scaffold as a Potential Material to Induct Epidermal-Dermal Keratinocytes of Human-Adipose-Derived Stem Cells and Promote Fibroblast Cells Proliferation for Skin Regeneration. Fibers Polym 21, 33–44 (2020)

    Article  Google Scholar 

  16. Izadyari Aghmiuni A, Heidari Keshel S, Sefat F, et al. Quince seed mucilage-based scaffold as a smart biological substrate to mimic mechanobiological behavior of skin and promote fibroblasts proliferation and h-ASCs differentiation into keratinocytes. Int J Biol Macromol. Epub ahead of print October 2019. https://doi.org/10.1016/j.ijbiomac.2019.10.008.

  17. Lin K, Zhang D, Macedo MH, et al. Advanced Collagen-Based Biomaterials for Regenerative Biomedicine. Adv Funct Mater 2019; 29: 1804943 (1–16).

    Google Scholar 

  18. Kumar Giri, T., Thakur, D., Alexander, A., et al.: Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications. Curr. Drug Deliv. 9, 539–555 (2012)

    Article  Google Scholar 

  19. Brovold M, Almeida JI, Pla-Palacín I, et al. Naturally-Derived Biomaterials for Tissue Engineering Applications. 2020. Epub ahead of print 2020. https://doi.org/10.1007/978-981-13-0947-2_23.

  20. Manoukian OS, Ahmad A, Marin C, et al. Bioactive nanofiber dressings for wound healing. In: Wound healing biomaterials. Elsevier, 2016, pp. 451–481.

    Google Scholar 

  21. Debele, T.A., Mekuria, S.L., Tsai, H.-C.: Polysaccharide based nanogels in the drug delivery system: Application as the carrier of pharmaceutical agents. Mater. Sci. Eng. C 68, 964–981 (2016)

    Article  Google Scholar 

  22. Ye, G., Li, G., Wang, C., et al.: Extraction and characterization of dextran from Leuconostoc pseudomesenteroides YB-2 isolated from mango juice. Carbohydr. Polym. 207, 218–223 (2019)

    Article  Google Scholar 

  23. Kothari, D., Tingirikari, J.M.R., Goyal, A.: In vitro analysis of dextran from Leuconostoc mesenteroides NRRL B-1426 for functional food application. Bioact carbohydrates Diet fibre 6, 55–61 (2015)

    Article  Google Scholar 

  24. Baruah R, Maina NH, Katina K, et al. Functional food applications of dextran from Weissella cibaria RBA12 from pummelo (Citrus maxima). Int J Food Microbiol. Epub ahead of print 2016. https://doi.org/10.1016/j.ijfoodmicro.2016.11.012.

  25. Chen, F., Huang, G., Huang, H.: Preparation and application of dextran and its derivatives as carriers. Int. J. Biol. Macromol. 145, 827–834 (2020)

    Article  Google Scholar 

  26. Sood, A., Gupta, A., Agrawal, G.: Recent advances in polysaccharides based biomaterials for drug delivery and tissue engineering applications. Carbohydr Polym Technol Appl 2, 100067 (2021)

    Google Scholar 

  27. Ha TLB, Quan TM, Vu DN, et al. Naturally Derived Biomaterials: Preparation and Application. In: Regenerative Medicine and Tissue Engineering. 2013, pp. 247–274.

    Google Scholar 

  28. Park, B.K., Kim, M.-M.: Applications of chitin and its derivatives in biological medicine. Int. J. Mol. Sci. 11, 5152–5164 (2010)

    Article  Google Scholar 

  29. Li, Z., Ramay, H.R., Hauch, K.D., et al.: Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26, 3919–3928 (2005)

    Article  Google Scholar 

  30. Venkatesan, J., Kim, S.-K.: Chitosan composites for bone tissue engineering—an overview. Mar. Drugs 8, 2252–2266 (2010)

    Article  Google Scholar 

  31. Eo, M.Y., Fan, H., Cho, Y.J., et al.: Cellulose membrane as a biomaterial: from hydrolysis to depolymerization with electron beam. Biomater Res 20, 1–13 (2016)

    Article  Google Scholar 

  32. Sawatjui, N., Limpaiboon, T., Schrobback, K., et al.: Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte-and MSC-based tissue-engineered cartilage. J. Tissue Eng. Regen. Med. 12, 1220–1229 (2018)

    Article  Google Scholar 

  33. Kim, D.K., Kim, J.I., Sim, B.R., et al.: Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. Mater. Sci. Eng. C 78, 571–578 (2017)

    Article  Google Scholar 

  34. Fu, L., Zhang, J., Yang, G.: Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr. Polym. 92, 1432–1442 (2013)

    Article  Google Scholar 

  35. Mano, J.F., Silva, G.A., Azevedo, H.S., et al.: Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J. R. Soc. Interface. 4, 999–1030 (2007)

    Article  Google Scholar 

  36. Kowalska-Ludwicka, K., Cala, J., Grobelski, B., et al.: Special paper–new methods modified bacterial cellulose tubes for regeneration of damaged peripheral nerves. Arch. Med. Sci. 9, 527–534 (2013)

    Article  Google Scholar 

  37. Awad, H.A., Wickham, M.Q., Leddy, H.A., et al.: Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25, 3211–3222 (2004)

    Article  Google Scholar 

  38. Gao, M., Lu, P., Bednark, B., et al.: Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection. Biomaterials 34, 1529–1536 (2013)

    Article  Google Scholar 

  39. Lynam, D.A., Shahriari, D., Wolf, K.J., et al.: Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds. Acta Biomater. 18, 128–131 (2015)

    Article  Google Scholar 

  40. Zarrintaj, P., Bakhshandeh, B., Rezaeian, I., et al.: A novel electroactive agarose-aniline pentamer platform as a potential candidate for neural tissue engineering. Sci. Rep. 7, 17187 (2017)

    Article  Google Scholar 

  41. Han, S., Lee, J.Y., Heo, E.Y., et al.: Implantation of a Matrigel-loaded agarose scaffold promotes functional regeneration of axons after spinal cord injury in rat. Biochem. Biophys. Res. Commun. 496, 785–791 (2018)

    Article  Google Scholar 

  42. Park, S.-B., Lih, E., Park, K.-S., et al.: Biopolymer-based functional composites for medical applications. Prog. Polym. Sci. 68, 77–105 (2017)

    Article  Google Scholar 

  43. Stanisz, M., Klapiszewski, Ł, Jesionowski, T.: Recent advances in the fabrication and application of biopolymer-based micro-and nanostructures: A comprehensive review. Chem. Eng. J. 397, 125409 (2020)

    Article  Google Scholar 

  44. Pires PC, Mascarenhas-melo F, Pedrosa K, et al. Polymer-based biomaterials for pharamaceutical and biomedical applications : A focus on topical drug administration. Eur Polym J; 187. Epub ahead of print 2023. https://doi.org/10.1016/j.eurpolymj.2023.111868.

  45. Niknejad H, Peirovi H, Jorjani M, et al. PROPERTIES OF THE AMNIOTIC MEMBRANE FOR POTENTIAL USE IN TISSUE.

    Google Scholar 

  46. C Echave M, S Burgo L, L Pedraz J, et al. Gelatin as biomaterial for tissue engineering. Curr Pharm Des 2017; 23: 3567–3584.

    Google Scholar 

  47. Chen, J., Liu, W., Zhao, J., et al.: Gelatin microspheres containing calcitonin gene-related peptide or substance P repair bone defects in osteoporotic rabbits. Biotechnol. Lett. 39, 465–472 (2017)

    Article  Google Scholar 

  48. Gonzalez, D., Ragusa, J., Angeletti, P.C., et al.: Preparation and characterization of functionalized heparin-loaded poly-Ɛ-caprolactone fibrous mats to prevent infection with human papillomaviruses. PLoS ONE 13, e0199925 (2018)

    Article  Google Scholar 

  49. Park, J., Kim, J., Hwang, S.R., et al.: Chemical conjugate of low molecular weight heparin and suramin fragment inhibits tumor growth possibly by blocking VEGF165. Mol. Pharm. 12, 3935–3942 (2015)

    Article  Google Scholar 

  50. Wan, X., Li, P., **, X., et al.: Poly (ε-caprolactone)/keratin/heparin/VEGF biocomposite mats for vascular tissue engineering. J Biomed Mater Res Part A 108, 292–300 (2020)

    Article  Google Scholar 

  51. Wang, W., Liu, S., Huang, Y., et al.: Biodegradable dextran vesicles for effective haemoglobin encapsulation. J Mater Chem B 3, 5753–5759 (2015)

    Article  Google Scholar 

  52. Anak, D., Davis, S., Parish, C.R.: Heparan sulfate : a ubiquitous glycosaminoglycan with multiple roles in immunity. Front. Immunol. 4, 1–7 (2013)

    Google Scholar 

  53. Lee, C.-T., Kung, P.-H., Lee, Y.-D.: Preparation of poly (vinyl alcohol)-chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohydr. Polym. 61, 348–354 (2005)

    Article  Google Scholar 

  54. Henson, F.M.D., Getgood, A.M.J., Caborn, D.M., et al.: Effect of a solution of hyaluronic acid–chondroitin sulfate–N-acetyl glucosamine on the repair response of cartilage to single-impact load damage. Am. J. Vet. Res. 73, 306–312 (2012)

    Article  Google Scholar 

  55. Xu L, Tang L, Zhang L. Proteoglycans as miscommunication biomarkers for cancer diagnosis. 1st ed. Elsevier Inc. Epub ahead of print 2019. https://doi.org/10.1016/bs.pmbts.2018.12.003.

  56. Weyers, A., Linhardt, R.J.: Neoproteoglycans in tissue engineering. FEBS J. 280, 2511–2522 (2013)

    Article  Google Scholar 

  57. Yang, J., Shen, M., Wen, H., et al.: Recent advance in delivery system and tissue engineering applications of chondroitin sulfate. Carbohydr. Polym. 230, 115650 (2020)

    Article  Google Scholar 

  58. Muzzarelli, R.A.A., Greco, F., Busilacchi, A., et al.: Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: a review. Carbohydr. Polym. 89, 723–739 (2012)

    Article  Google Scholar 

  59. Lafuente-Merchan, M., Ruiz-Alonso, S., Zabala, A., et al.: Chondroitin and dermatan sulfate bioinks for 3D bioprinting and cartilage regeneration. Macromol. Biosci. 22, 2100435 (2022)

    Article  Google Scholar 

  60. Kim, S.S., Kang, M.S., Lee, K.Y., et al.: Therapeutic effects of mesenchymal stem cells and hyaluronic acid injection on osteochondral defects in rabbits’ knees. Knee Surg Relat Res 24, 164–172 (2012)

    Article  Google Scholar 

  61. Migliore, A., Procopio, S.: Effectiveness and utility of hyaluronic acid in osteoarthritis. Clin. Cases Miner. Bone Metab. 12, 31 (2015)

    Google Scholar 

  62. Park, S.H., Seo, J.Y., Park, J.Y., et al.: An injectable, click-crosslinked, cytomodulin-modified hyaluronic acid hydrogel for cartilage tissue engineering. NPG Asia Mater 11, 30 (2019)

    Article  Google Scholar 

  63. Macadam, S.A., Lennox, P.A.: Acellular dermal matrices: use in reconstructive and aesthetic breast surgery. Can. J. Plast. Surg. 20, 75–89 (2012)

    Article  Google Scholar 

  64. Entcheva, E., Bien, H., Yin, L., et al.: Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25, 5753–5762 (2004)

    Article  Google Scholar 

  65. Robb, K.P., Shridhar, A., Flynn, L.E.: Decellularized matrices as cell-instructive scaffolds to guide tissue-specific regeneration. ACS Biomater. Sci. Eng. 4, 3627–3643 (2017)

    Article  Google Scholar 

  66. Granados, M., Morticelli, L., Andriopoulou, S., et al.: Development and characterization of a porcine mitral valve scaffold for tissue engineering. J. Cardiovasc. Transl. Res. 10, 374–390 (2017)

    Article  Google Scholar 

  67. Rana, D., Zreiqat, H., Benkirane-Jessel, N., et al.: Development of decellularized scaffolds for stem cell-driven tissue engineering. J. Tissue Eng. Regen. Med. 11, 942–965 (2017)

    Article  Google Scholar 

  68. Bozuk, M.I., Fearing, N.M., Leggett, P.L.: Use of decellularized human skin to repair esophageal anastomotic leak in humans. JSLS J Soc Laparoendosc Surg 10, 83 (2006)

    Google Scholar 

  69. Lin LM, Lin CC, Chen CL, et al. Effects of an education program on intensive care unit nurses’ attitudes and behavioral intentions to advocate deceased donor organ donation. In: Transplantation proceedings. Elsevier, 2014, pp. 1036–1040.

    Google Scholar 

  70. Moroni, F., Mirabella, T.: Decellularized matrices for cardiovascular tissue engineering. Am J Stem Cells 3, 1 (2014)

    Google Scholar 

  71. Methe, K., Bäckdahl, H., Johansson, B.R., et al.: An alternative approach to decellularize whole porcine heart. Biores Open Access 3, 327–338 (2014)

    Article  Google Scholar 

  72. Taylor, D.A., Sampaio, L.C., Gobin, A.: Building new hearts: a review of trends in cardiac tissue engineering. Am. J. Transplant. 14, 2448–2459 (2014)

    Article  Google Scholar 

  73. Manji, R.A., Menkis, A.H., Ekser, B., et al.: Porcine bioprosthetic heart valves: The next generation. Am. Heart J. 164, 177–185 (2012)

    Article  Google Scholar 

  74. Baptista, P.M., Siddiqui, M.M., Lozier, G., et al.: The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53, 604–617 (2011)

    Article  Google Scholar 

  75. Jaramillo, M., Yeh, H., Yarmush, M.L., et al.: Decellularized human liver extracellular matrix (hDLM)-mediated hepatic differentiation of human induced pluripotent stem cells (hIPSCs). J. Tissue Eng. Regen. Med. 12, e1962–e1973 (2018)

    Article  Google Scholar 

  76. Kakabadze, Z., Kakabadze, A., Chakhunashvili, D., et al.: Decellularized human placenta supports hepatic tissue and allows rescue in acute liver failure. Hepatology 67, 1956–1969 (2018)

    Article  Google Scholar 

  77. Baptista PM, Vyas D, Moran E, et al. Human liver bioengineering using a whole liver decellularized bioscaffold. Organ Regen Methods Protoc 2013; 289–298.

    Google Scholar 

  78. Chang, J., DeLillo, N., Jr., Khan, M., et al.: Review of small intestine submucosa extracellular matrix technology in multiple difficult-to-treat wound types. Wounds 25, 113–120 (2013)

    Google Scholar 

  79. Chun, S.Y., Lim, G.J., Kwon, T.G., et al.: Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials 28, 4251–4256 (2007)

    Article  Google Scholar 

  80. **ao, H.H., Gao, Q.G., Zhang, Y., et al.: Vanillic acid exerts oestrogen-like activities in osteoblast-like UMR 106 cells through MAP kinase (MEK/ERK)-mediated ER signaling pathway. J. Steroid Biochem. Mol. Biol. 144, 382–391 (2014)

    Article  Google Scholar 

  81. Don, M.J., Lin, L.C., Chiou, W.F.: Neobavaisoflavone stimulates osteogenesis via p38-mediated up-regulation of transcription factors and osteoid genes expression in MC3T3-E1 cells. Phytomedicine 19, 551–561 (2012)

    Article  Google Scholar 

  82. Lee, C.H., Huang, Y.L., Liao, J.F., et al.: Ugonin K-stimulated osteogenesis involves estrogen receptor-dependent activation of non-classical Src signaling pathway and classical pathway. Eur. J. Pharmacol. 676, 26–33 (2012)

    Article  Google Scholar 

  83. Yoon HY, Yun S Il, Kim BY, et al. Poncirin promotes osteoblast differentiation but inhibits adipocyte differentiation in mesenchymal stem cells. Eur J Pharmacol 2011; 664: 54–59.

    Google Scholar 

  84. Pang, W.Y., Wang, X.L., Mok, S.K., et al.: Naringin improves bone properties in ovariectomized mice and exerts oestrogen-like activities in rat osteoblast-like (UMR-106) cells. Br. J. Pharmacol. 159, 1693–1703 (2010)

    Article  Google Scholar 

  85. Chen KY, Lin KC, Chen YS, et al. A novel porous gelatin composite containing naringin for bone repair. Evidence-based Complement Altern Med; 2013. Epub ahead of print 2013. https://doi.org/10.1155/2013/283941.

  86. Tsuchiya, S., Sugimoto, K., Kamio, H., et al.: Kaempferol-immobilized titanium dioxide promotes formation of new bone: Effects of loading methods on bone marrow stromal cell differentiation in vivo and in vitro. Int. J. Nanomedicine 13, 1665–1676 (2018)

    Article  Google Scholar 

  87. Carvalho, M.J.N., Ferreira, K.B., Augusti, R., et al.: LEISHMANICIDAL ACTIVITY OF FLAVONOIDS NATURAL AND SYNTHETIC: A MINIREVIEW. OPEN Sci Res II(2), 266–282 (2022)

    Google Scholar 

  88. Zhao, L., Yuan, X., Wang, J., et al.: A review on flavones targeting serine/threonine protein kinases for potential anticancer drugs. Bioorg. Med. Chem. 27, 677–685 (2019)

    Article  Google Scholar 

  89. Zhao, K., Yuan, Y., Lin, B., et al.: LW-215, a newly synthesized flavonoid, exhibits potent anti-angiogenic activity in vitro and in vivo. Gene 642, 533–541 (2018)

    Article  Google Scholar 

  90. Camero, C.M., Germanò, M.P., Rapisarda, A., et al.: Anti-angiogenic activity of iridoids from Galium tunetanum. Rev Bras Farmacogn 28, 374–377 (2018)

    Article  Google Scholar 

  91. Mazidi, M., Katsiki, N., Banach, M.: A higher flavonoid intake is associated with less likelihood of nonalcoholic fatty liver disease: results from a multiethnic study. J. Nutr. Biochem. 65, 66–71 (2019)

    Article  Google Scholar 

  92. Khalifa, I., Zhu, W., Li, K., et al.: Polyphenols of mulberry fruits as multifaceted compounds: Compositions, metabolism, health benefits, and stability—A structural review. J Funct Foods 40, 28–43 (2018)

    Article  Google Scholar 

  93. Liao, M.H., Tai, Y.T., Cherng, Y.G., et al.: Genistein induces oestrogen receptor-α gene expression in osteoblasts through the activation of mitogen-activated protein kinases/NF-κB/activator protein-1 and promotes cell mineralisation. Br. J. Nutr. 111, 55–63 (2014)

    Article  Google Scholar 

  94. Sirtori, C.R., Arnoldi, A., Johnson, S.K.: Phytoestrogens: end of a tale? Ann. Med. 37, 423–438 (2005)

    Article  Google Scholar 

  95. Sirotkin, A.V., Harrath, A.H.: Phytoestrogens and their effects. Eur. J. Pharmacol. 741, 230–236 (2014)

    Article  Google Scholar 

  96. Poluzzi, E., Piccinni, C., Raschi, E., et al.: Phytoestrogens in postmenopause: the state of the art from a chemical, pharmacological and regulatory perspective. Curr. Med. Chem. 21, 417–436 (2014)

    Article  Google Scholar 

  97. Sun, H., Li, L., Zhang, A., et al.: Protective effects of sweroside on human MG-63 cells and rat osteoblasts. Fitoterapia 84, 174–179 (2013)

    Article  Google Scholar 

  98. Kim, C., Choi, K.: Potential Roles of Iridoid Glycosides and Their Underlying Mechanisms against Diverse Cancer Growth and Metastasis : Do They Have an Inhibitory Effect on Cancer Progression ? Nutrients 13, 2–14 (2021)

    Article  Google Scholar 

  99. Kouda, R., Yakushiji, F.: Recent advances in Iridoid chemistry: biosynthesis and chemical synthesis. Chem. Asian J. 15, 3771–3783 (2020)

    Article  Google Scholar 

  100. Castejón ML, Montoya T, Alarcón-de-la-Lastra C, et al. Potential protective role exerted by secoiridoids from Olea europaea L. in cancer, cardiovascular, neurodegenerative, aging-related, and immunoinflammatory diseases. Antioxidants 2020; 9: 149.

    Google Scholar 

  101. Huang, Q., Shi, J., Gao, B., et al.: Gastrodin: An ancient Chinese herbal medicine as a source for anti-osteoporosis agents via reducing reactive oxygen species. Bone 73, 132–144 (2015)

    Article  Google Scholar 

  102. Yan R, Liu H, Zhang J, et al. Phenolic glycosides and other constituents from the bark of Magnolia officinalis. J Asian Nat Prod Res 2013; 37–41.

    Google Scholar 

  103. Huang, Q., Gao, B., Wang, L., et al.: Ophiopogonin D: A new herbal agent against osteoporosis. Bone 74, 18–28 (2015)

    Article  Google Scholar 

  104. Ivanchina, N.V., Malyarenko, T.V., Kicha, A.A., et al.: A New Steroidal Glycoside Granulatoside C from the Starfish Choriaster granulatus, Unexpectedly Combining Structural Features of Polar Steroids from Several Different Marine Invertebrate Phyla Natalia. Nat. Prod. Commun. 12, 1585–1588 (2017)

    Google Scholar 

  105. Liu, M., Kong, J.: The enzymatic biosynthesis of acylated steroidal glycosides and their cytotoxic activity. Acta Pharm Sin B 8, 981–994 (2018)

    Article  Google Scholar 

  106. Ito, Y., Nakashima, Y., Matsuoka, S.: Rice bran extract containing acylated steryl glucoside fraction decreases elevated blood LDL cholesterol level in obese Japanese men. J Med Investig 62, 80–84 (2015)

    Article  Google Scholar 

  107. Suh, K.S., Choi, E.M., Lee, Y.S., et al.: Protective effect of albiflorin against oxidative-stress-mediated toxicity in osteoblast-like MC3T3-E1 cells. Fitoterapia 89, 33–41 (2013)

    Article  Google Scholar 

  108. Zieli, M.: Monoterpenes and Their Derivatives—Recent Development in Biological and Medical Applications. Int. J. Mol. Sci. 21, 1–38 (2020)

    Google Scholar 

  109. Lei, D., Qiu, Z., Qiao, J., et al.: Biotechnology for Biofuels Plasticity engineering of plant monoterpene synthases and application for microbial production of monoterpenoids. Biotechnol. Biofuels 14, 1–15 (2021)

    Article  Google Scholar 

  110. Muthukumar, T., Aravinthan, A., Sharmila, J., et al.: Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K. Carbohydr. Polym. 152, 566–574 (2016)

    Article  Google Scholar 

  111. Wang Z, Jiang R, Wang L, et al. Ginsenoside Rg1 Improves Differentiation by Inhibiting Senescence of Human Bone Marrow Mesenchymal Stem Cell via GSK-3 β and β-Catenin. Stem Cells Int; 2020. Epub ahead of print 2020. https://doi.org/10.1155/2020/2365814.

  112. Chen, W., Balan, P.: Review of Ginseng Anti-Diabetic Studies. Molecules 24, 1–16 (2019)

    Article  Google Scholar 

  113. Borzym-kluczyk, J.N.M.: The role of triterpenes in the management of diabetes mellitus and its complications. Phytochem. Rev. 14, 675–690 (2015)

    Article  Google Scholar 

  114. Darshani P, Sen S, Amit S, et al. Anti-viral triterpenes : a review. Springer Netherlands. Epub ahead of print 2022. https://doi.org/10.1007/s11101-022-09808-1.

  115. Ríos, J.: Effects of triterpenes on the immune system. J Ethnopharmacol J 128, 1–14 (2010)

    Article  Google Scholar 

  116. Lee, S.U., Park, S.J., Kwak, H.B., et al.: Anabolic activity of ursolic acid in bone: Stimulating osteoblast differentiation in vitro and inducing new bone formation in vivo. Pharmacol. Res. 58, 290–296 (2008)

    Article  Google Scholar 

  117. Ge, Y.W., Lu, J.W., Sun, Z.Y., et al.: Ursolic acid loaded-mesoporous bioglass/chitosan porous scaffolds as drug delivery system for bone regeneration. Nanomedicine Nanotechnology, Biol Med 18, 336–346 (2019)

    Article  Google Scholar 

  118. Manuscript A. Triterpenoids as potential agents for the chemoprevention and therapy of breast cancer. NIH Public Access 2011; 980–996.

    Google Scholar 

  119. Schneider, C., Langer, R., Loveday, D., et al.: Applications of ethylene vinyl acetate copolymers (EVA) in drug delivery systems. J. Control. Release 262, 284–295 (2017)

    Article  Google Scholar 

  120. Park, K.: Controlled drug delivery systems: past forward and future back. J. Control. Release 190, 3–8 (2014)

    Article  Google Scholar 

  121. Yun, Y.H., Lee, B.K., Park, K.: Controlled Drug Delivery: Historical perspective for the next generation. J. Control. Release 219, 2–7 (2015)

    Article  Google Scholar 

  122. Aghmiuni, A.I., Keshel, S.H., Rahmani, A., et al.: Retinal Tissue Engineering: Regenerative and Drug Delivery Approaches. Curr. Stem Cell Res. Ther. 18, 608–640 (2023)

    Article  Google Scholar 

  123. Bertrand, N., Wu, J., Xu, X., et al.: Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv. Drug Deliv. Rev. 66, 2–25 (2014)

    Article  Google Scholar 

  124. Adeosun SO, Ilomuanya MO, Gbenebor OP, et al. Biomaterials for Drug Delivery: Sources, Classification, Synthesis, Processing, and Applications. In: Advanced Functional Materials have. 2020, pp. 1–25.

    Google Scholar 

  125. Kamaly, N., **ao, Z., Valencia, P.M., et al.: Targeted polymeric therapeutic nanoparticles: design, development and clinical translation. Chem. Soc. Rev. 41, 2971–3010 (2012)

    Article  Google Scholar 

  126. Kilicarslan, M., Ilhan, M., Inal, O., et al.: Preparation and evaluation of clindamycin phosphate loaded chitosan/alginate polyelectrolyte complex film as mucoadhesive drug delivery system for periodontal therapy. Eur. J. Pharm. Sci. 123, 441–451 (2018)

    Article  Google Scholar 

  127. Islan, G.A., Castro, G.R., Islan, G.A., et al.: Tailoring of alginate–gelatin microspheres properties for oral Ciprofloxacin-controlled release against Pseudomonas aeruginosa. Drug Deliv. 21, 615–625 (2014)

    Article  Google Scholar 

  128. Carriers, N., Chen, T., Li, S., et al.: Self-assembly pH-sensitive Chitosan/Alginate Coated Polyelectrolyte Complexes for Oral Delivery of Insulin. J Microencapsul Micro Nano Carriers 2048, 1–30 (2019)

    Google Scholar 

  129. Kumar S, Bhanjana G, Kumar R, et al. Metformin-loaded alginate nanoparticles as an effective antidiabetic agent for controlled drug release. J Pharm Pharmacol 2016; 1–8.

    Google Scholar 

  130. Varadharaj, V., Ramaswamy, A., Sakthivel, R., et al.: Antidiabetic and Antioxidant Activity of Green Synthesized Starch Nanoparticles : An In Vitro Study. J. Clust. Sci. 3, 1–10 (2019)

    Google Scholar 

  131. Rehman A, Mahdi S, Tong Q, et al. International Journal of Biological Macromolecules Role of peppermint oil in improving the oxidative stability and antioxidant capacity of borage seed oil-loaded nanoemulsions fabricated by modi fi ed starch. Int J Biol Macromol 2020; 153: 697–707.

    Google Scholar 

  132. Usman, M., Mahmood, K., Sajid, M., et al.: In-vivo anti-diabetic and wound healing potential of chitosan /alginate /maltodextrin /pluronic-based mixed polymeric micelles : Curcumin therapeutic potential. Int. J. Biol. Macromol. 120, 2418–2430 (2018)

    Article  Google Scholar 

  133. Gannon, S., Chu, A.F.: SUDDEN UNEXPECTED DEATH IN EPILEPSY AND LONG QT SYNDROME. J. Am. Coll. Cardiol. 69, 2137 (2017)

    Article  Google Scholar 

  134. Qi X, Yuan Y, Zhang J, et al. Oral administration of salecan-based hydrogels for controlled insulin delivery. J Agric Food Chem. Epub ahead of print 2018. https://doi.org/10.1021/acs.jafc.8b02879.

  135. Singla R, Soni S, Patial V, et al. In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int J Biol Macromol 2017; 1–40.

    Google Scholar 

  136. Abaee, A., Mohammadian, M., Mahdi, S.: Whey and soy protein-based hydrogels and nano-hydrogels as bioactive delivery systems. Trends Food Sci. Technol. 70, 69–81 (2017)

    Article  Google Scholar 

  137. Hou, K., Xu, Y., Cen, K., et al.: Nanoemulsion of cinnamon essential oil Co-emulsified with hydroxypropyl- β -cyclodextrin and Tween-80: Antibacterial activity, stability and slow release performance. Food Biosci. 43, 101232 (2021)

    Article  Google Scholar 

  138. Cai, S., Thati, S., Bagby, T.R., et al.: Localized doxorubicin chemotherapy with a biopolymeric nanocarrier improves survival and reduces toxicity in xenografts of human breast cancer. J. Control. Release 146, 212–218 (2010)

    Article  Google Scholar 

  139. Zheng AS, Han J, ** Z, et al. Dual tumor-targeted multifunctional magnetic hyaluronic acid micelles for enhanced MR imaging and combined photothermal-chemotherapy. Colloids Surfaces B Biointerfaces 2018; 1–29.

    Google Scholar 

  140. Zhang Y, Ma Y, **a Y, et al. Synthesis of Silk Fibroin-Insulin Bioconjugates and Their Characterization and Activities In Vivo. J Biomed Mater Res Part B Appl Biomater 2006; 275–283.

    Google Scholar 

  141. Gangrade, A., Mandal, B.B.: Injectable Carbon Nanotube Impregnated Silk Based Multifunctional Hydrogel for Localized Targeted and On-Demand Anticancer Drug Delivery. ACS Biomater. Sci. Eng. 5, 2365–2381 (2019)

    Article  Google Scholar 

  142. Zhang Y, **ong GM, Ali Y, et al. Layer-by-layer coated nanoliposomes for oral delivery of insulin. R cociety Chem 2020; 1–14.

    Google Scholar 

  143. Wang, S., Meng, S., Zhou, X., et al.: PH-Responsive and Mucoadhesive Nanoparticles for Enhanced Oral Insulin Delivery: The Effect of Hyaluronic Acid with Different Molecular Weights. Pharmaceutics 15, 820 (2023)

    Article  Google Scholar 

  144. Acevedo-Guevara, L., Nieto-Suaza, L., Sanchez, L.T., et al.: Development of native and modified banana starch nanoparticles as vehicles for curcumin. Int. J. Biol. Macromol. 111, 498–504 (2018)

    Article  Google Scholar 

  145. Mukhopadhyay, P., Maity, S., Mandal, S., et al.: Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment. Carbohydr. Polym. 182, 42–51 (2018)

    Article  Google Scholar 

  146. Lin YY, Lu SH, Gao R, et al. A Novel Biocompatible Herbal Extract-Loaded Hydrogel for Acne Treatment and Repair. Oxid Med Cell Longev; 2021. Epub ahead of print 2021. https://doi.org/10.1155/2021/5598291.

  147. Abbas, M.N., Khan, S.A., Sadozai, S.K., et al.: Nanoparticles Loaded Thermoresponsive In Situ Gel for Ocular Antibiotic Delivery against Bacterial Keratitis. Polymers (Basel) 14, 1–19 (2022)

    Article  Google Scholar 

  148. Cheng, Y.H., Ko, Y.C., Chang, Y.F., et al.: Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Exp. Eye Res. 179, 179–187 (2019)

    Article  Google Scholar 

  149. Osman, R., Fetih, G., Habib, F.: KETOROLAC TROMETHAMINE LOADED NANOPARTICLES FOR OCULAR DELIVERY: FORMULATION, IN-VITRO AND EX-VIVO EVALUATION. Bull Pharm Sci Assiut 43, 79–94 (2020)

    Article  Google Scholar 

  150. Luo, L.J., Lin, T.Y., Yao, C.H., et al.: Dual-functional gelatin-capped silver nanoparticles for antibacterial and antiangiogenic treatment of bacterial keratitis. J. Colloid Interface Sci. 536, 112–126 (2019)

    Article  Google Scholar 

  151. Natarajan, J.V., Ang, M., Darwitan, A., et al.: Nanomedicine for glaucoma: Liposomes provide sustained release of latanoprost in the eye. Int. J. Nanomedicine 7, 123–131 (2012)

    Google Scholar 

  152. Ahmad N, Khalid MS, Khan MF, et al. Beneficial effects of topical 6-gingerol loaded nanoemulsion gel for wound and inflammation management with their comparative dermatokinetic. J Drug Deliv Sci Technol; 80. Epub ahead of print 2023. https://doi.org/10.1016/j.jddst.2022.104094.

  153. Donsì, F., Ferrari, G.: Essential oil nanoemulsions as antimicrobial agents in food. J. Biotechnol. 233, 106–120 (2016)

    Article  Google Scholar 

  154. Abd-Elsalam KA, Khokhlov AR. Eugenol oil nanoemulsion: antifungal activity against Fusarium oxysporum f. sp. vasinfectum and phytotoxicity on cottonseeds. Appl Nanosci 2015; 5: 255–265.

    Google Scholar 

  155. Bhargava, K., Conti, D.S., da Rocha, S.R.P., et al.: Application of an oregano oil nanoemulsion to the control of foodborne bacteria on fresh lettuce. Food Microbiol. 47, 69–73 (2015)

    Article  Google Scholar 

  156. Wu, J.E., Lin, J., Zhong, Q.: Physical and antimicrobial characteristics of thyme oil emulsified with soluble soybean polysaccharide. Food Hydrocoll 39, 144–150 (2014)

    Article  Google Scholar 

  157. Li, B., Ge, Z.Q.: Nanostructured lipid carriers improve skin permeation and chemical stability of idebenone. AAPS PharmSciTech 13, 276–283 (2012)

    Article  Google Scholar 

  158. Wang, J., Wang, H., Zhou, X., et al.: Physicochemical characterization, photo-stability and cytotoxicity of coenzyme Q10-loading nanostructured lipid carrier. J. Nanosci. Nanotechnol. 12, 2136–2148 (2012)

    Article  Google Scholar 

  159. Gönüllü, Ü., Üner, M., Yener, G., et al.: Formulation and characterization of solid lipid nanoparticles, nanostructured lipid carriers and nanoemulsion of lornoxicam for transdermal delivery. Acta Pharm. 65, 1–13 (2015)

    Article  Google Scholar 

  160. Wang, J., Tang, J., Zhou, X., et al.: Physicochemical characterization, identification and improved photo-stability of alpha-lipoic acid-loaded nanostructured lipid carrier. Drug Dev. Ind. Pharm. 40, 201–210 (2014)

    Article  Google Scholar 

  161. Fan, H., Liu, G., Huang, Y., et al.: Development of a nanostructured lipid carrier formulation for increasing photo-stability and water solubility of Phenylethyl Resorcinol. Appl. Surf. Sci. 288, 193–200 (2014)

    Article  Google Scholar 

  162. Zhao J, Piao X, Shi X, et al. Podophyllotoxin-loaded nanostructured lipid carriers for skin targeting: In vitro and in vivo studies. Molecules; 21. Epub ahead of print 2016. https://doi.org/10.3390/molecules21111549.

  163. Yu, Q., Chang, J., Wu, C.: Silicate bioceramics: from soft tissue regeneration to tumor therapy. J Mater Chem B 7, 5449–5460 (2019)

    Article  Google Scholar 

  164. Chaudhari, A.A., Vig, K., Baganizi, D.R., et al.: Future Prospects for Scaffolding Methods and Biomaterials in Skin Tissue Engineering : A Review. Int. J. Mol. Sci. 17, 1974 (2016)

    Article  Google Scholar 

  165. Shafei, S., Foroughi, J., Stevens, L., et al.: Electroactive nanostructured scaffold produced by controlled deposition of PPy on electrospun PCL fibres. Res. Chem. Intermed. 43, 1235–1251 (2017)

    Article  Google Scholar 

  166. Ahmed, L.A.: Stem cells and cardiac repair: alternative and multifactorial approaches. J Regen Med Tissue Eng 2, 10–7243 (2013)

    Article  Google Scholar 

  167. Talebian, S., Mehrali, M., Taebnia, N., et al.: Self-healing hydrogels: the next paradigm shift in tissue engineering? Adv. Sci. 6, 1801664 (2019)

    Article  Google Scholar 

  168. Zhao, Z., Vizetto-Duarte, C., Moay, Z.K., et al.: Composite hydrogels in three-dimensional in vitro models. Front Bioeng Biotechnol 8, 611 (2020)

    Article  Google Scholar 

  169. Wang, Y., Adokoh, C.K., Narain, R.: Recent development and biomedical applications of self-healing hydrogels. Expert Opin. Drug Deliv. 15, 77–91 (2018)

    Article  Google Scholar 

  170. Ramalingam, V., Raja, S., Sundaramahalingam, S., et al.: Chemical fabrication of graphene oxide nanosheets attenuates biofilm formation of human clinical pathogens. Bioorg. Chem. 83, 326–335 (2019)

    Article  Google Scholar 

  171. Izadyari Aghmiuni, A., Heidari Keshel, S., Sefat, F., et al.: Quince seed mucilage-based scaffold as a smart biological substrate to mimic mechanobiological behavior of skin and promote fibroblasts proliferation and h-ASCs differentiation into keratinocytes. Int. J. Biol. Macromol. 142, 668–679 (2020)

    Article  Google Scholar 

  172. Dey, S.K., Banerjee, D., Chattapadhyay, S., et al.: Antimicrobial activities of some medicinal plants of West Bengal. Int J Pharma Bio Sci 1, 1–10 (2010)

    Google Scholar 

  173. Omenetto, F.G., Kaplan, D.L.: New opportunities for an ancient material. Science 329, 528–531 (2010)

    Article  Google Scholar 

  174. Kogan, G., Šoltés, L., Stern, R., et al.: Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett. 29, 17–25 (2006)

    Article  Google Scholar 

  175. Volpi, N., Schiller, J., Stern, R., et al.: Role, Metabolism, Chemical Modifications and Applications of Hyaluronan. Curr. Med. Chem. 16, 1718–1745 (2009)

    Article  Google Scholar 

  176. Petrey, A.C., de la Motte, C.A.: Hyaluronan, a crucial regulator of inflammation. Front. Immunol. 5, 1–14 (2014)

    Article  Google Scholar 

  177. Lam, J., Truong, N.F., Segura, T.: Design of cell-matrix interactions in hyaluronic acid hydrogel scaffolds. Acta Biomater. 10, 1571–1580 (2014)

    Article  Google Scholar 

  178. Dicker, K.T., Gurski, L.A., Pradhan-Bhatt, S., et al.: Hyaluronan: A simple polysaccharide with diverse biological functions. Acta Biomater. 10, 1558–1570 (2014)

    Article  Google Scholar 

  179. Darzi, S., Paul, K., Leitan, S., et al.: Immunobiology and application of aloe vera-based scaffolds in tissue engineering. Int. J. Mol. Sci. 22, 1–19 (2021)

    Article  Google Scholar 

  180. Rahman, S., Carter, P., Bhattarai, N.: Aloe vera for tissue engineering applications. J Funct Biomater 8, 6 (2017)

    Article  Google Scholar 

  181. Paul, K., Darzi, S., Del Borgo, M.P., et al.: Vaginal delivery of tissue engineered endometrial mesenchymal stem/stromal cells in an aloe vera-alginate hydrogel alleviates maternal simulated birth injury. Appl. Mater. Today 22, 100890 (2021)

    Article  Google Scholar 

  182. Suganya, S., Venugopal, J., Agnes Mary, S., et al.: Aloe vera incorporated biomimetic nanofibrous scaffold: a regenerative approach for skin tissue engineering. Iran. Polym. J. 23, 237–248 (2014)

    Article  Google Scholar 

  183. Tahmasebi, A., Shapouri Moghadam, A., Enderami, S.E., et al.: Aloe Vera-Derived Gel-Blended PHBV Nanofibrous Scaffold for Bone Tissue Engineering. ASAIO J. 66, 966–973 (2020)

    Article  Google Scholar 

  184. Ezhilarasu, H., Ramalingam, R., Dhand, C., et al.: Biocompatible Aloe vera and Tetracycline Hydrochloride Loaded Hybrid Nanofibrous Scaffolds for Skin Tissue Engineering. Int. J. Mol. Sci. 20, 5174 (2019)

    Article  Google Scholar 

  185. Zadegan S, Nourmohammadi J, Vahidi B, et al. An investigation into osteogenic differentiation effects of silk fibroin-nettle (Urtica dioica L.) nanofibers. Int J Biol Macromol 2019; 133: 795–803.

    Google Scholar 

  186. Ghiyasi, Y., Salahi, E., Esfahani, H.: Synergy effect of Urtica dioica and ZnO NPs on microstructure, antibacterial activity and cytotoxicity of electrospun PCL scaffold for wound dressing application. Mater Today Commun 26, 102163 (2021)

    Article  Google Scholar 

  187. Hajiali, H., Summa, M., Russo, D., et al.: Alginate–lavender nanofibers with antibacterial and anti-inflammatory activity to effectively promote burn healing. J Mater Chem B 4, 1686–1695 (2016)

    Article  Google Scholar 

  188. Pilehvar-Soltanahmadi, Y., Nouri, M., Martino, M.M., et al.: Cytoprotection, proliferation and epidermal differentiation of adipose tissue-derived stem cells on emu oil based electrospun nanofibrous mat. Exp. Cell Res. 357, 192–201 (2017)

    Article  Google Scholar 

  189. Fu, S.Z., Meng, X.H., Fan, J., et al.: Acceleration of dermal wound healing by using electrospun curcumin-loaded poly(ε-caprolactone)-poly(ethylene glycol)-poly(ε-caprolactone) fibrous mats. J Biomed Mater Res - Part B Appl Biomater 102, 533–542 (2014)

    Article  Google Scholar 

  190. Gong, C.Y., Wu, Q.J., Wang, Y.J., et al.: A biodegradable hydrogel system containing curcumin encapsulated in micelles for cutaneous wound healing. Biomaterials 34, 6377–6387 (2013)

    Article  Google Scholar 

  191. Merrell, J.G., Mclaughlin, S.W., Tie, L., et al.: Curcumin Loaded Poly(ε-Caprolactone) Nanofibers: Diabetic Wound Dressing with Antioxidant and Anti-inflammatory Properties NIH Public Access Author Manuscript. Clin. Exp. Pharmacol. Physiol. 36, 1149–1156 (2009)

    Article  Google Scholar 

  192. Nguyen VC, Nguyen VB, Hsieh MF. Curcumin-loaded chitosan/gelatin composite sponge for wound healing application. Int J Polym Sci; 2013. Epub ahead of print 2013. https://doi.org/10.1155/2013/106570.

  193. Mitra, T., Manna, P.J., Raja, S.T.K., et al.: Curcumin loaded nano graphene oxide reinforced fish scale collagen-a 3D scaffold biomaterial for wound healing applications. RSC Adv. 5, 98653–98665 (2015)

    Article  Google Scholar 

  194. Venkata V, Reddy S, Kuppusamy G, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen- alginate scaffolds for diabetic wound healing. Int J Biol Macromol. Epub ahead of print 2016. https://doi.org/10.1016/j.ijbiomac.2016.05.038.

  195. **, G., Prabhakaran, M.P., Kai, D., et al.: Tissue engineered plant extracts as nanofibrous wound dressing. Biomaterials 34, 724–734 (2013)

    Article  Google Scholar 

  196. Krishnan, R., Rajeswari, R., Venugopal, J., et al.: Polysaccharide nanofibrous scaffolds as a model for in vitro skin tissue regeneration. J. Mater. Sci. Mater. Med. 23, 1511–1519 (2012)

    Article  Google Scholar 

  197. Suganya S, Venugopal J, Ramakrishna S, et al. Herbally derived polymeric nanofibrous scaffolds for bone tissue regeneration. J Appl Polym Sci 2014; 131: n/a-n/a.

    Google Scholar 

  198. Sharmila, G., Muthukumaran, C., Kirthika, S., et al.: Fabrication and characterization of Spinacia oleracea extract incorporated alginate/carboxymethyl cellulose microporous scaffold for bone tissue engineering. Int. J. Biol. Macromol. 156, 430–437 (2020)

    Article  Google Scholar 

  199. Ranjbar-Mohammadi, M., Rabbani, S., Bahrami, S.H., et al.: Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater. Sci. Eng. C 69, 1183–1191 (2016)

    Article  Google Scholar 

  200. Asghari F, Rabiei Faradonbeh D, Malekshahi ZV, et al. Hybrid PCL/chitosan-PEO nanofibrous scaffolds incorporated with A. euchroma extract for skin tissue engineering application. Carbohydr Polym 2022; 278: 118926.

    Google Scholar 

  201. Karimi, T., Mottaghitalab, F., Keshvari, H., et al.: Carboxymethyl chitosan /sodium carboxymethyl cellulose /agarose hydrogel dressings containing silk fibroin /polydopamine nanoparticles for antibiotic delivery. J Drug Deliv Sci Technol 80, 1–14 (2023)

    Google Scholar 

  202. Yang, Y., Li, X., Cui, W., et al.: Structural stability and release profiles of proteins from core-shell poly (DL-lactide) ultrafine fibers prepared by emulsion electrospinning. J Biomed Mater Res Part A An Off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater 86, 374–385 (2008)

    Google Scholar 

  203. Yang, Y., Li, X., Qi, M., et al.: Release pattern and structural integrity of lysozyme encapsulated in core–sheath structured poly (dl-lactide) ultrafine fibers prepared by emulsion electrospinning. Eur. J. Pharm. Biopharm. 69, 106–116 (2008)

    Article  Google Scholar 

  204. Jiang, H., Hu, Y., Zhao, P., et al.: Modulation of protein release from biodegradable core–shell structured fibers prepared by coaxial electrospinning. J Biomed Mater Res Part B Appl Biomater An Off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater 79, 50–57 (2006)

    Article  Google Scholar 

  205. Zhang, Y.Z., Wang, X., Feng, Y., et al.: Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly (ε-caprolactone) nanofibers for sustained release. Biomacromol 7, 1049–1057 (2006)

    Article  Google Scholar 

  206. Cui, W., Zhou, Y., Chang, J.: Electrospun nanofibrous materials for tissue engineering and drug delivery. Sci. Technol. Adv. Mater. 11, 14108 (2010)

    Article  Google Scholar 

  207. Cui, W., Li, X., Zhou, S., et al.: In situ growth of hydroxyapatite within electrospun poly (DL-lactide) fibers. J Biomed Mater Res Part A An Off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater 82, 831–841 (2007)

    Google Scholar 

  208. Cui, W., Li, X., Chen, J., et al.: In situ growth kinetics of hydroxyapatite on electrospun poly (DL-lactide) fibers with gelatin grafted. Cryst. Growth Des. 8, 4576–4582 (2008)

    Article  Google Scholar 

  209. Li, X., **e, J., Yuan, X., et al.: Coating electrospun poly (ε-caprolactone) fibers with gelatin and calcium phosphate and their use as biomimetic scaffolds for bone tissue engineering. Langmuir 24, 14145–14150 (2008)

    Article  Google Scholar 

  210. Li, X., **e, J., Lipner, J., et al.: Nanofiber scaffolds with gradations in mineral content for mimicking the tendon-to-bone insertion site. Nano Lett. 9, 2763–2768 (2009)

    Article  Google Scholar 

  211. Coburn, J., Pandit, A.: Development of Naturally-Derived Biomaterials and Optimization of Their Biomechanical Properties. Top Tissue Eng 3, 1–33 (2007)

    Google Scholar 

  212. Martinez, A.W., Caves, J.M., Ravi, S., et al.: Effects of crosslinking on the mechanical properties, drug release and cytocompatibility of protein polymers. Acta Biomater. 10, 26–33 (2014)

    Article  Google Scholar 

  213. Jiang, Q., Reddy, N., Zhang, S., et al.: Water-stable electrospun collagen fibers from a non-toxic solvent and crosslinking system. J Biomed Mater Res Part A 101, 1237–1247 (2013)

    Article  Google Scholar 

  214. Hennink, W.E., van Nostrum, C.F.: Novel crosslinking methods to design hydrogels. Adv. Drug Deliv. Rev. 64, 223–236 (2012)

    Article  Google Scholar 

  215. Lai, J.-Y.: Interrelationship between cross-linking structure, molecular stability, and cytocompatibility of amniotic membranes cross-linked with glutaraldehyde of varying concentrations. RSC Adv. 4, 18871–18880 (2014)

    Article  Google Scholar 

  216. Meng, L., Arnoult, O., Smith, M., et al.: Electrospinning of in situ crosslinked collagen nanofibers. J. Mater. Chem. 22, 19412–19417 (2012)

    Article  Google Scholar 

  217. Gyawali, D., Nair, P., Zhang, Y., et al.: Citric acid-derived in situ crosslinkable biodegradable polymers for cell delivery. Biomaterials 31, 9092–9105 (2010)

    Article  Google Scholar 

  218. Reddy, N., Reddy, R., Jiang, Q.: Crosslinking biopolymers for biomedical applications. Trends Biotechnol. 33, 362–369 (2015)

    Article  Google Scholar 

  219. Reddy, N., Yang, Y.: Potential of plant proteins for medical applications. Trends Biotechnol. 29, 490–498 (2011)

    Article  Google Scholar 

  220. Cao, H., Xu, S.-Y.: EDC/NHS-crosslinked type II collagen-chondroitin sulfate scaffold: characterization and in vitro evaluation. J. Mater. Sci. Mater. Med. 19, 567–575 (2008)

    Article  Google Scholar 

  221. Mitra, T., Sailakshmi, G., Gnanamani, A., et al.: Cross-linking with acid chlorides improves thermal and mechanical properties of collagen based biopolymer material. Thermochim. Acta 525, 50–55 (2011)

    Article  Google Scholar 

  222. Grover, C.N., Cameron, R.E., Best, S.M.: Investigating the morphological, mechanical and degradation properties of scaffolds comprising collagen, gelatin and elastin for use in soft tissue engineering. J. Mech. Behav. Biomed. Mater. 10, 62–74 (2012)

    Article  Google Scholar 

  223. Sionkowska, A.: Current research on the blends of natural and synthetic polymers as new biomaterials. Prog. Polym. Sci. 36, 1254–1276 (2011)

    Article  Google Scholar 

  224. Bi, L., Cao, Z., Hu, Y., et al.: Effects of different cross-linking conditions on the properties of genipin-cross-linked chitosan/collagen scaffolds for cartilage tissue engineering. J. Mater. Sci. Mater. Med. 22, 51–62 (2011)

    Article  Google Scholar 

  225. David, G., Cristea, M., Balhui, C., et al.: Effect of cross-linking methods on structure and properties of poly (ε-caprolactone) stabilized hydrogels containing biopolymers. Biomacromol 13, 2263–2272 (2012)

    Article  Google Scholar 

  226. Kuo, C.K., Ma, P.X.: Maintaining dimensions and mechanical properties of ionically crosslinked alginate hydrogel scaffolds in vitro. J Biomed Mater Res Part A An Off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater 84, 899–907 (2008)

    Google Scholar 

  227. Duan, X., Sheardown, H.: Crosslinking of collagen with dendrimers. J Biomed Mater Res Part A An Off J Soc Biomater Japanese Soc Biomater Aust Soc Biomater Korean Soc Biomater 75, 510–518 (2005)

    Google Scholar 

  228. Saito, H., Murabayashi, S., Mitamura, Y., et al.: Characterization of alkali-treated collagen gels prepared by different crosslinkers. J. Mater. Sci. Mater. Med. 19, 1297–1305 (2008)

    Article  Google Scholar 

  229. Wang, L., Stegemann, J.P.: Glyoxal crosslinking of cell-seeded chitosan/collagen hydrogels for bone regeneration. Acta Biomater. 7, 2410–2417 (2011)

    Article  Google Scholar 

  230. Reddy, N., Li, Y., Yang, Y.: Alkali-catalyzed low temperature wet crosslinking of plant proteins using carboxylic acids. Biotechnol. Prog. 25, 139–146 (2009)

    Article  Google Scholar 

  231. Reddy, N., Li, Y., Yang, Y.: Wet cross-linking gliadin fibers with citric acid and a quantitative relationship between cross-linking conditions and mechanical properties. J. Agric. Food Chem. 57, 90–98 (2009)

    Article  Google Scholar 

  232. Li, Y., Reddy, N., Yang, Y.: A new crosslinked protein fiber from gliadin and the effect of crosslinking parameters on its mechanical properties and water stability. Polym. Int. 57, 1174–1181 (2008)

    Article  Google Scholar 

  233. Lu, W., Sun, J., Jiang, X.: Recent advances in electrospinning technology and biomedical applications of electrospun fibers. J Mater Chem B 2, 2369–2380 (2014)

    Article  Google Scholar 

  234. Mekhail, M., Wong, K.K.H., Padavan, D.T., et al.: Genipin-cross-linked electrospun collagen fibers. J. Biomater. Sci. Polym. Ed. 22, 2241–2259 (2011)

    Article  Google Scholar 

  235. Kiechel, M.A., Schauer, C.L.: Non-covalent crosslinkers for electrospun chitosan fibers. Carbohydr. Polym. 95, 123–133 (2013)

    Article  Google Scholar 

  236. Shi, L., Le Visage, C., Chew, S.Y.: Long-term stabilization of polysaccharide electrospun fibres by in situ cross-linking. J. Biomater. Sci. Polym. Ed. 22, 1459–1472 (2011)

    Article  Google Scholar 

  237. Jiang, Q., Xu, H., Cai, S., et al.: Ultrafine fibrous gelatin scaffolds with deep cell infiltration mimicking 3D ECMs for soft tissue repair. J. Mater. Sci. Mater. Med. 25, 1789–1800 (2014)

    Article  Google Scholar 

  238. Hauert, S., Bhatia, S.N.: Mechanisms of cooperation in cancer nanomedicine: towards systems nanotechnology. Trends Biotechnol. 32, 448–455 (2014)

    Article  Google Scholar 

  239. Reddy, N., Shi, Z., Xu, H., et al.: Development of wheat glutenin nanoparticles and their biodistribution in mice. J Biomed Mater Res Part A 103, 1653–1658 (2015)

    Article  Google Scholar 

  240. Avvakumova, S., Colombo, M., Tortora, P., et al.: Biotechnological approaches toward nanoparticle biofunctionalization. Trends Biotechnol. 32, 11–20 (2014)

    Article  Google Scholar 

  241. Al-Remawi, M.M.A.: Properties of chitosan nanoparticles formed using sulfate anions as crosslinking bridges. Am. J. Appl. Sci. 9, 1091 (2012)

    Article  Google Scholar 

  242. Pichayakorn, W., Boonme, P.: Evaluation of cross-linked chitosan microparticles containing metronidazole for periodontitis treatment. Mater. Sci. Eng. C 33, 1197–1202 (2013)

    Article  Google Scholar 

  243. Hu, J., Ma, P.X.: Nano-fibrous tissue engineering scaffolds capable of growth factor delivery. Pharm. Res. 28, 1273–1281 (2011)

    Article  Google Scholar 

  244. Yin, Y., Ye, F., Cui, J., et al.: Preparation and characterization of macroporous chitosan-gelatin/β -tricalcium phosphate composite scaffolds for bone tissue engineering. J Biomed Mater Res - Part A 67, 844–855 (2003)

    Article  Google Scholar 

  245. Chen, S., Zhu, L., Wen, W., et al.: Fabrication and Evaluation of 3D Printed Poly(l -lactide) Scaffold Functionalized with Quercetin-Polydopamine for Bone Tissue Engineering. ACS Biomater. Sci. Eng. 5, 2506–2518 (2019)

    Article  Google Scholar 

  246. Zhu, L, Chen S, Liu K, et al. 3D poly (L-lactide)/chitosan micro/nano fibrous scaffolds functionalized with quercetin-polydopamine for enhanced osteogenic and anti-inflammatory activities. Chem Eng J; 391. Epub ahead of print 2020. https://doi.org/10.1016/j.cej.2019.123524

  247. Khan, Y.M., Katti, D.S., Laurencin, C.T.: Novel polymer-synthesized ceramic composite-based system for bone repair: An in vitro evaluation. J Biomed Mater Res - Part A 69, 728–737 (2004)

    Article  Google Scholar 

  248. Kuo, Y.C., Ku, H.F., Rajesh, R.: Chitosan/γ-poly(glutamic acid) scaffolds with surface-modified albumin, elastin and poly-L-lysine for cartilage tissue engineering. Mater. Sci. Eng. C 78, 265–277 (2017)

    Article  Google Scholar 

  249. Wang, H., Li, Y., Zuo, Y., et al.: Biocompatibility and osteogenesis of biomimetic nano-hydroxyapatite/polyamide composite scaffolds for bone tissue engineering. Biomaterials 28, 3338–3348 (2007)

    Article  Google Scholar 

  250. Gautam, S., Sharma, C., Purohit, S.D., et al.: Gelatin-polycaprolactone-nanohydroxyapatite electrospun nanocomposite scaffold for bone tissue engineering. Mater. Sci. Eng. C 119, 111588 (2021)

    Article  Google Scholar 

  251. Li, M., Mondrinos, M.J., Chen, X., et al.: Elastin Blends for Tissue Engineering Scaffolds. J Biomed Mater Res Part A 79, 963–973 (2006)

    Article  Google Scholar 

  252. Shor, L., Güçeri, S., Wen, X., et al.: Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28, 5291–5297 (2007)

    Article  Google Scholar 

  253. Heydari, Z., Mohebbi-Kalhori, D., Afarani, M.S.: Engineered electrospun polycaprolactone (PCL)/octacalcium phosphate (OCP) scaffold for bone tissue engineering. Mater. Sci. Eng. C 81, 127–132 (2017)

    Article  Google Scholar 

  254. Remya, K.R., Joseph, J., Mani, S., et al.: Nanohydroxyapatite incorporated electrospun polycaprolactone/polycaprolactone-polyethyleneglycol-polycaprolactone blend scaffold for bone tissue engineering applications. J. Biomed. Nanotechnol. 9, 1483–1494 (2013)

    Article  Google Scholar 

  255. Thi Hiep, N., Chan Khon, H., Dai Hai, N., et al.: Biocompatibility of PCL/PLGA-BCP porous scaffold for bone tissue engineering applications. J. Biomater. Sci. Polym. Ed. 28, 864–878 (2017)

    Article  Google Scholar 

  256. Kim, B.S., Yang, S.S., Lee, J.: A polycaprolactone/cuttlefish bone-derived hydroxyapatite composite porous scaffold for bone tissue engineering. J Biomed Mater Res - Part B Appl Biomater 102, 943–951 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azadeh Izadyari Aghmiuni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Izadyari Aghmiuni, A., Ghadi, A., Azmoun, E. (2023). Plant-Based Biomaterials in Tissue Engineering and Drug Delivery Systems. In: Malviya, R., Sundram, S. (eds) Engineered Biomaterials. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-99-6698-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6698-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6697-4

  • Online ISBN: 978-981-99-6698-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics

Navigation