Naturally-Derived Biomaterials for Tissue Engineering Applications

  • Chapter
  • First Online:
Novel Biomaterials for Regenerative Medicine

Abstract

Naturally-derived biomaterials have been used for decades in multiple regenerative medicine applications. From the simplest cell microcarriers made of collagen or alginate, to highly complex decellularized whole-organ scaffolds, these biomaterials represent a class of substances that is usually first in choice at the time of electing a functional and useful biomaterial. Hence, in this chapter we describe the several naturally-derived biomaterials used in tissue engineering applications and their classification, based on composition. We will also describe some of the present uses of the generated tissues like drug discovery, developmental biology, bioprinting and transplantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  2. Hendow EK, Guhmann P, Wright B, Sofokleous P, Parmar N, Day RM (2016) Biomaterials for hollow organ tissue engineering. Fibrogenesis Tissue Repair 9:3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Ikada Y (2006) Challenges in tissue engineering. J R Soc Interface 3:589–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mazza G, Rombouts K, Rennie Hall A, Urbani L, Vinh Luong T, Al-Akkad W, Longato L et al (2015) Decellularized human liver as a natural 3D-scaffold for liver bioengineering and transplantation. Sci Rep 5:13079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Azuma K, Izumi R, Osaki T, Ifuku S, Morimoto M, Saimoto H, Minami S et al (2015) Chitin, chitosan, and its derivatives for wound healing: old and new materials. J Funct Biomater 6:104–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bao Ha TL, Minh T, Nguyen D, Minh D (2013) Naturally derived biomaterials: preparation and application. In: Regenerative medicine and tissue engineering. http://dx.doi.org/10.5772/55668

    Google Scholar 

  7. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16 discussion 16

    Article  CAS  PubMed  Google Scholar 

  8. Willerth SM, Sakiyama-Elbert SE (2008) Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. In: Stem book. Harvard Stem Cell Institute, Cambridge, MA

    Google Scholar 

  9. Bhat S, Kumar A (2013) Biomaterials and bioengineering tomorrow’s healthcare. Biomatter 3:e24717

    Article  PubMed  PubMed Central  Google Scholar 

  10. Yannas IV, Lee E, Orgill DP, Skrabut EM, Murphy GF (1989) Synthesis and characterization of a model extracellular matrix that induces partial regeneration of adult mammalian skin. Proc Natl Acad Sci U S A 86:933–937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB (2006) Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 367:1241–1246

    Article  PubMed  Google Scholar 

  12. Warnke PH, Springer IN, Wiltfang J, Acil Y, Eufinger H, Wehmoller M, Russo PA et al (2004) Growth and transplantation of a custom vascularised bone graft in a man. Lancet 364:766–770

    Article  CAS  PubMed  Google Scholar 

  13. Zacchi V, Soranzo C, Cortivo R, Radice M, Brun P, Abatangelo G (1998) In vitro engineering of human skin-like tissue. J Biomed Mater Res 40:187–194

    Article  CAS  PubMed  Google Scholar 

  14. Kaushal S, Amiel GE, Guleserian KJ, Shapira OM, Perry T, Sutherland FW, Rabkin E et al (2001) Functional small-diameter neovessels created using endothelial progenitor cells expanded ex vivo. Nat Med 7:1035–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Griffith LG, Naughton G (2002) Tissue engineering – current challenges and expanding opportunities. Science 295:1009–1014

    Article  CAS  PubMed  Google Scholar 

  16. Sivaraman A, Leach JK, Townsend S, Iida T, Hogan BJ, Stolz DB, Fry R et al (2005) A microscale in vitro physiological model of the liver: predictive screens for drug metabolism and enzyme induction. Curr Drug Metab 6:569–591

    Article  CAS  PubMed  Google Scholar 

  17. Moran EC, Dhal A, Vyas D, Lanas A, Soker S, Baptista PM (2014) Whole-organ bioengineering: current tales of modern alchemy. Transl Res 163:259–267

    Article  CAS  PubMed  Google Scholar 

  18. Peloso A, Dhal A, Zambon JP, Li P, Orlando G, Atala A, Soker S (2015) Current achievements and future perspectives in whole-organ bioengineering. Stem Cell Res Ther 6:107

    Article  PubMed  PubMed Central  Google Scholar 

  19. Baptista PM, Siddiqui MM, Lozier G, Rodriguez SR, Atala A, Soker S (2011) The use of whole organ decellularization for the generation of a vascularized liver organoid. Hepatology 53:604–617

    Article  CAS  PubMed  Google Scholar 

  20. Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM, Netoff TI, Taylor DA (2008) Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nat Med 14:213–221

    Article  CAS  PubMed  Google Scholar 

  21. Katari R, Peloso A, Zambon JP, Soker S, Stratta RJ, Atala A, Orlando G (2014) Renal bioengineering with scaffolds generated from human kidneys. Nephron Exp Nephrol 126:119

    Article  CAS  PubMed  Google Scholar 

  22. Wagner DE, Bonvillain RW, Jensen T, Girard ED, Bunnell BA, Finck CM, Hoffman AM et al (2013) Can stem cells be used to generate new lungs? Ex vivo lung bioengineering with decellularized whole lung scaffolds. Respirology 18:895–911

    Article  PubMed  Google Scholar 

  23. Baptista PM, Orlando G, Mirmalek-Sani SH, Siddiqui M, Atala A, Soker S (2009) Whole organ decellularization – a tool for bioscaffold fabrication and organ bioengineering. Conf Proc IEEE Eng Med Biol Soc 2009:6526–6529

    Google Scholar 

  24. Bayrak A, Tyralla M, Ladhoff J, Schleicher M, Stock UA, Volk HD, Seifert M (2010) Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials 31:3793–3803

    Article  CAS  PubMed  Google Scholar 

  25. Bastian F, Stelzmuller ME, Kratochwill K, Kasimir MT, Simon P, Weigel G (2008) IgG deposition and activation of the classical complement pathway involvement in the activation of human granulocytes by decellularized porcine heart valve tissue. Biomaterials 29:1824–1832

    Article  CAS  PubMed  Google Scholar 

  26. A Brief History of Biomedical Materials (2009) [PDF] DSM, pp 1–2. Available at: https://www.dsm.com/content/dam/dsm/cworld/en_US/documents/brief-history-biomedical-materials-en.pdf

  27. Heness G, Ben-Nissan B (2004) Innovative bioceramics. Mat For 27:104–114

    Google Scholar 

  28. Pachence JM (1996) Collagen-based devices for soft tissue repair. J Biomed Mater Res 33:35–40

    Article  CAS  PubMed  Google Scholar 

  29. Sinha VR, Trehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90:261–280

    Article  CAS  PubMed  Google Scholar 

  30. Niknejad H, Peirovi H, Jorjani M, Ahmadiani A, Ghanavi J, Seifalian AM (2008) Properties of the amniotic membrane for potential use in tissue engineering. Eur Cell Mater 15:88–99

    Article  CAS  PubMed  Google Scholar 

  31. Loss M, Wedler V, Kunzi W, Meuli-Simmen C, Meyer VE (2000) Artificial skin, split-thickness autograft and cultured autologous keratinocytes combined to treat a severe burn injury of 93% of TBSA. Burns 26:644–652

    Article  CAS  PubMed  Google Scholar 

  32. Branski LK, Herndon DN, Celis MM, Norbury WB, Masters OE, Jeschke MG (2008) Amnion in the treatment of pediatric partial-thickness facial burns. Burns 34:393–399

    Article  PubMed  Google Scholar 

  33. Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221:1–22

    Article  CAS  PubMed  Google Scholar 

  34. Robb K, Shridhar A, Flynn L (2017) Decellularized matrices as cell-instructive scaffolds to guide tissue-specific regeneration. ACS Biomater Sci Eng. Article. https://doi.org/10.1021/acsbiomaterials.7b00619

  35. Stock P, Winkelmann C, Thonig A, Böttcher G, Wenske G, Christ B (2012) Application of collagen coated silicone scaffolds for the three-dimensional cell culture of primary rat hepatocytes. FASEB J 26:274.272–274.272

    Google Scholar 

  36. Wang Y, Gunasekara DB, Reed MI, DiSalvo M, Bultman SJ, Sims CE, Magness ST et al (2017) A microengineered collagen scaffold for generating a polarized crypt-villus architecture of human small intestinal epithelium. Biomaterials 128:44–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Echave MC, Saenz del Burgo L, Pedraz JL, Orive G (2017) Gelatin as biomaterial for tissue engineering. Curr Pharm Des 23:3567–3584

    Article  CAS  PubMed  Google Scholar 

  38. Tayebi L, Rasoulianboroujeni M, Moharamzadeh K, Almela TKD, Cui Z, Ye H (2018) 3D-printed membrane for guided tissue regeneration. Mater Sci Eng C Mater Biol Appl 84:148–158

    Article  CAS  PubMed  Google Scholar 

  39. Elamparithi A, Punnoose AM, Paul SFD, Kuruvilla S (2017) Gelatin electrospun nanofibrous matrices for cardiac tissue engineering applications. Int J Polym Mater Polym Biomater 66:20–27

    Article  CAS  Google Scholar 

  40. Gu Y, Bai Y, Zhang D (2018) Osteogenic stimulation of human dental pulp stem cells with a novel gelatin-hydroxyapatite-tricalcium phosphate scaffold. J Biomed Mater Res A 106:1851–1861

    Article  CAS  PubMed  Google Scholar 

  41. Gattazzo F, De Maria C, Rimessi A, Dona S, Braghetta P, Pinton P, Vozzi G et al (2018) Gelatin-genipin-based biomaterials for skeletal muscle tissue engineering. J Biomed Mater Res B Appl Biomater 00B:000–000

    Google Scholar 

  42. Lewis PL, Green RM, Shah RN (2018) 3D-printed gelatin scaffolds of differing pore geometry modulate hepatocyte function and gene expression. Acta Biomater 69:63–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kilic Bektas C, Hasirci V (2017) Mimicking corneal stroma using keratocyte-loaded photopolymerizable methacrylated gelatin hydrogels. J Tissue Eng Regen Med 12:e1899–e1910

    Article  CAS  Google Scholar 

  44. Amer MH, Rose F, Shakesheff KM, White LJ (2018) A biomaterials approach to influence stem cell fate in injectable cell-based therapies. Stem Cell Res Ther 9:39

    Article  PubMed  PubMed Central  Google Scholar 

  45. Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32:991–1007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sawatjui N, Limpaiboon T, Schrobback K, Klein T (2018) Biomimetic scaffolds and dynamic compression enhance the properties of chondrocyte- and MSC-based tissue-engineered cartilage. J Tissue Eng Regen Med 12:1220–1229

    Article  CAS  PubMed  Google Scholar 

  47. Kim DK, In Kim J, Sim BR, Khang G (2017) Bioengineered porous composite curcumin/silk scaffolds for cartilage regeneration. Mater Sci Eng C Mater Biol Appl 78:571–578

    Article  CAS  PubMed  Google Scholar 

  48. Warnecke D, Schild NB, Klose S, Joos H, Brenner RE, Kessler O, Skaer N et al (2017) Friction properties of a new silk fibroin scaffold for meniscal replacement. Tribol Int 109:586–592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hu Y, Ran J, Zheng Z, ** Z, Chen X, Yin Z, Tang C et al (2018) Exogenous stromal derived factor-1 releasing silk scaffold combined with intra-articular injection of progenitor cells promotes bone-ligament-bone regeneration. Acta Biomater 71:168–183

    Article  CAS  PubMed  Google Scholar 

  50. Sack BS, Mauney JR, Estrada CR Jr (2016) Silk fibroin scaffolds for urologic tissue engineering. Curr Urol Rep 17:16

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ye Q, Zund G, Benedikt P, Jockenhoevel S, Hoerstrup SP, Sakyama S, Hubbell JA et al (2000) Fibrin gel as a three dimensional matrix in cardiovascular tissue engineering. Eur J Cardiothorac Surg 17:587–591

    Article  CAS  PubMed  Google Scholar 

  52. Seyedi F, Farsinejad A, Nematollahi-Mahani SN (2017) Fibrin scaffold enhances function of insulin producing cells differentiated from human umbilical cord matrix-derived stem cells. Tissue Cell 49:227–232

    Article  CAS  PubMed  Google Scholar 

  53. Munirah S, Kim SH, Ruszymah BH, Khang G (2008) The use of fibrin and poly(lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis. Eur Cell Mater 15:41–52

    Article  CAS  PubMed  Google Scholar 

  54. Khodakaram-Tafti A, Mehrabani D, Shaterzadeh-Yazdi H (2017) An overview on autologous fibrin glue in bone tissue engineering of maxillofacial surgery. Dent Res J (Isfahan) 14:79–86

    Google Scholar 

  55. Eo MY, Fan H, Cho YJ, Kim SM, Lee SK (2016) Cellulose membrane as a biomaterial: from hydrolysis to depolymerization with electron beam. Biomater Res 20:16

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Entcheva E, Bien H, Yin L, Chung CY, Farrell M, Kostov Y (2004) Functional cardiac cell constructs on cellulose-based scaffolding. Biomaterials 25:5753–5762

    Article  CAS  PubMed  Google Scholar 

  57. Svensson A, Nicklasson E, Harrah T, Panilaitis B, Kaplan DL, Brittberg M, Gatenholm P (2005) Bacterial cellulose as a potential scaffold for tissue engineering of cartilage. Biomaterials 26:419–431

    Article  CAS  PubMed  Google Scholar 

  58. Wang B, Lv X, Chen S, Li Z, Yao J, Peng X, Feng C et al (2018) Use of heparinized bacterial cellulose based scaffold for improving angiogenesis in tissue regeneration. Carbohydr Polym 181:948–956

    Article  CAS  PubMed  Google Scholar 

  59. Park BK, Kim MM (2010) Applications of chitin and its derivatives in biological medicine. Int J Mol Sci 11:5152–5164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering – an overview. Mar Drugs 8:2252–2266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li Z, Ramay HR, Hauch KD, **ao D, Zhang M (2005) Chitosan-alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26:3919–3928

    Article  CAS  PubMed  Google Scholar 

  62. Kweon DK, Song SB, Park YY (2003) Preparation of water-soluble chitosan/heparin complex and its application as wound healing accelerator. Biomaterials 24:1595–1601

    Article  CAS  PubMed  Google Scholar 

  63. Ueno H, Yamada H, Tanaka I, Kaba N, Matsuura M, Okumura M, Kadosawa T et al (1999) Accelerating effects of chitosan for healing at early phase of experimental open wound in dogs. Biomaterials 20:1407–1414

    Article  CAS  PubMed  Google Scholar 

  64. Yu Y, Chen R, Sun Y, Pan Y, Tang W, Zhang S, Cao L et al (2018) Manipulation of VEGF-induced angiogenesis by 2-N, 6-O-sulfated chitosan. Acta Biomater 71:510–521

    Article  CAS  PubMed  Google Scholar 

  65. Boucard N, Viton C, Agay D, Mari E, Roger T, Chancerelle Y, Domard A (2007) The use of physical hydrogels of chitosan for skin regeneration following third-degree burns. Biomaterials 28:3478–3488

    Article  CAS  PubMed  Google Scholar 

  66. Thomas S (2000) Alginate dressings in surgery and wound management – part 1. J Wound Care 9:56–60

    Article  CAS  PubMed  Google Scholar 

  67. Giri TK, Thakur D, Alexander A, Ajazuddin BH, Tripathi DK (2012) Alginate based hydrogel as a potential biopolymeric carrier for drug delivery and cell delivery systems: present status and applications. Curr Drug Deliv 9:539–555

    Article  CAS  PubMed  Google Scholar 

  68. Wang Y, Miao Y, Zhang J, Wu JP, Kirk TB, Xu J, Ma D et al (2018) Three-dimensional printing of shape memory hydrogels with internal structure for drug delivery. Mater Sci Eng C Mater Biol Appl 84:44–51

    Article  CAS  PubMed  Google Scholar 

  69. Smidsrod O, Skjak-Braek G (1990) Alginate as immobilization matrix for cells. Trends Biotechnol 8:71–78

    Article  CAS  PubMed  Google Scholar 

  70. Gharravi AM, Orazizadeh M, Ansari-Asl K, Banoni S, Izadi S, Hashemitabar M (2012) Design and fabrication of anatomical bioreactor systems containing alginate scaffolds for cartilage tissue engineering. Avicenna J Med Biotechnol 4:65–74

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Beigi MH, Atefi A, Ghanaei HR, Labbaf S, Ejeian F, Nasr-Esfahani MH (2018) Activated platelet-rich plasma (PRP) improves cartilage regeneration using adipose stem cells encapsulated in a 3D alginate scaffold. J Tissue Eng Regen Med 12:1327–1338

    Article  CAS  PubMed  Google Scholar 

  72. Coward SM, Legallais C, David B, Thomas M, Foo Y, Mavri-Damelin D, Hodgson HJ et al (2009) Alginate-encapsulated HepG2 cells in a fluidized bed bioreactor maintain function in human liver failure plasma. Artif Organs 33:1117–1126

    Article  CAS  PubMed  Google Scholar 

  73. Yajima Y, Lee CN, Yamada M, Utoh R, Seki M (2018) Development of a perfusable 3D liver cell cultivation system via bundling-up assembly of cell-laden microfibers. J Biosci Bioeng 126:1111–1118

    Article  CAS  PubMed  Google Scholar 

  74. Pipeleers D, Keymeulen B (2016) Boost for alginate encapsulation in Beta cell transplantation. Trends Endocrinol Metab 27:247–248

    Article  CAS  PubMed  Google Scholar 

  75. Awad HA, Wickham MQ, Leddy HA, Gimble JM, Guilak F (2004) Chondrogenic differentiation of adipose-derived adult stem cells in agarose, alginate, and gelatin scaffolds. Biomaterials 25:3211–3222

    Article  CAS  PubMed  Google Scholar 

  76. Gao M, Lu P, Bednark B, Lynam D, Conner JM, Sakamoto J, Tuszynski MH (2013) Templated agarose scaffolds for the support of motor axon regeneration into sites of complete spinal cord transection. Biomaterials 34:1529–1536

    Article  CAS  PubMed  Google Scholar 

  77. Lynam DA, Shahriari D, Wolf KJ, Angart PA, Koffler J, Tuszynski MH, Chan C et al (2015) Brain derived neurotrophic factor release from layer-by-layer coated agarose nerve guidance scaffolds. Acta Biomater 18:128–131

    Article  CAS  PubMed  Google Scholar 

  78. Zarrintaj P, Bakhshandeh B, Rezaeian I, Heshmatian B, Ganjali MR (2017) A novel electroactive agarose-aniline pentamer platform as a potential candidate for neural tissue engineering. Sci Rep 7:17187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Han S, Lee JY, Heo EY, Kwon IK, Yune TY, Youn I (2018) Implantation of a matrigel-loaded agarose scaffold promotes functional regeneration of axons after spinal cord injury in rat. Biochem Biophys Res Commun 496:785–791

    Article  CAS  PubMed  Google Scholar 

  80. Dahlmann J, Kensah G, Kempf H, Skvorc D, Gawol A, Elliott DA, Drager G et al (2013) The use of agarose microwells for scalable embryoid body formation and cardiac differentiation of human and murine pluripotent stem cells. Biomaterials 34:2463–2471

    Article  CAS  PubMed  Google Scholar 

  81. Roosens A, Puype I, Cornelissen R (2017) Scaffold-free high throughput generation of quiescent valvular microtissues. J Mol Cell Cardiol 106:45–54

    Article  CAS  PubMed  Google Scholar 

  82. Kim SS, Kang MS, Lee KY, Lee MJ, Wang L, Kim HJ (2012) Therapeutic effects of mesenchymal stem cells and hyaluronic acid injection on osteochondral defects in rabbits’ knees. Knee Surg Relat Res 24:164–172

    Article  PubMed  PubMed Central  Google Scholar 

  83. Migliore A, Procopio S (2015) Effectiveness and utility of hyaluronic acid in osteoarthritis. Clin Cases Miner Bone Metab 12:31–33

    PubMed  PubMed Central  Google Scholar 

  84. Gold MH (2007) Use of hyaluronic acid fillers for the treatment of the aging face. Clin Interv Aging 2:369–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Yoo HS, Lee EA, Yoon JJ, Park TG (2005) Hyaluronic acid modified biodegradable scaffolds for cartilage tissue engineering. Biomaterials 26:1925–1933

    Article  CAS  PubMed  Google Scholar 

  86. Davidenko N, Campbell JJ, Thian ES, Watson CJ, Cameron RE (2010) Collagen-hyaluronic acid scaffolds for adipose tissue engineering. Acta Biomater 6:3957–3968

    Article  CAS  PubMed  Google Scholar 

  87. Kushchayev SV, Giers MB, Hom Eng D, Martirosyan NL, Eschbacher JM, Mortazavi MM, Theodore N et al (2016) Hyaluronic acid scaffold has a neuroprotective effect in hemisection spinal cord injury. J Neurosurg Spine 25:114–124

    Article  PubMed  Google Scholar 

  88. Mano JF, Silva GA, Azevedo HS, Malafaya PB, Sousa RA, Silva SS, Boesel LF et al (2007) Natural origin biodegradable systems in tissue engineering and regenerative medicine: present status and some moving trends. J R Soc Interface 4:999–1030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lee C-T, Kung P-H, Lee Y-D (2005) Preparation of poly(vinyl alcohol)-chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohydr Polym 61:348–354

    Article  CAS  Google Scholar 

  90. Bali JP, Cousse H, Neuzil E (2001) Biochemical basis of the pharmacologic action of chondroitin sulfates on the osteoarticular system. Semin Arthritis Rheum 31:58–68

    Article  CAS  PubMed  Google Scholar 

  91. Henson FM, Getgood AM, Caborn DM, McIlwraith CW, Rushton N (2012) Effect of a solution of hyaluronic acid-chondroitin sulfate-N-acetyl glucosamine on the repair response of cartilage to single-impact load damage. Am J Vet Res 73:306–312

    Article  CAS  PubMed  Google Scholar 

  92. Liang WH, Kienitz BL, Penick KJ, Welter JF, Zawodzinski TA, Baskaran H (2010) Concentrated collagen-chondroitin sulfate scaffolds for tissue engineering applications. J Biomed Mater Res A 94:1050–1060

    PubMed  PubMed Central  Google Scholar 

  93. Zhou F, Zhang X, Cai D, Li J, Mu Q, Zhang W, Zhu S et al (2017) Silk fibroin-chondroitin sulfate scaffold with immuno-inhibition property for articular cartilage repair. Acta Biomater 63:64–75

    Article  CAS  PubMed  Google Scholar 

  94. Phillips TJ (1998) New skin for old: developments in biological skin substitutes. Arch Dermatol 134:344–349

    Article  CAS  PubMed  Google Scholar 

  95. Macadam SA, Lennox PA (2012) Acellular dermal matrices: use in reconstructive and aesthetic breast surgery. Can J Plast Surg 20:75–89

    Article  PubMed  PubMed Central  Google Scholar 

  96. Chang J, DeLillo N Jr, Khan M, Nacinovich MR (2013) Review of small intestine submucosa extracellular matrix technology in multiple difficult-to-treat wound types. Wounds 25:113–120

    PubMed  Google Scholar 

  97. Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12:367–377

    Article  CAS  PubMed  Google Scholar 

  98. Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF (1997) Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 67:478–491

    Article  CAS  PubMed  Google Scholar 

  99. Chun SY, Lim GJ, Kwon TG, Kwak EK, Kim BW, Atala A, Yoo JJ (2007) Identification and characterization of bioactive factors in bladder submucosa matrix. Biomaterials 28:4251–4256

    Article  CAS  PubMed  Google Scholar 

  100. Hodde JP, Record RD, Liang HA, Badylak SF (2001) Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium 8:11–24

    Article  CAS  PubMed  Google Scholar 

  101. Voytik-Harbin S, Brightman AO, Waisner B, Robinson J, Lamar CH (1998) Small intestinal submucosa: a tissue-derived extracellular matrix that promotes tissue-specific growth and differentiation of cells in vitro. Tissue Eng 4:157–174

    Article  Google Scholar 

  102. Lantz GC, Blevins WE, Badylak SF, Coffey AC, Geddes LA (1990) Small intestinal submucosa as a small-diameter arterial graft in the dog. J Investig Surg 3:217–227

    Article  CAS  Google Scholar 

  103. Lantz GC, Badylak SF, Coffey AC, Geddes LA, Sandusky GE (1992) Small intestinal submucosa as a superior vena cava graft in the dog. J Surg Res 53:175–181

    Article  CAS  PubMed  Google Scholar 

  104. Kropp BP, Sawyer BD, Shannon HE, Rippy MK, Badylak SF, Adams MC, Keating MA et al (1996) Characterization of small intestinal submucosa regenerated canine detrusor: assessment of reinnervation, in vitro compliance and contractility. J Urol 156:599–607

    Article  CAS  PubMed  Google Scholar 

  105. Kropp BP, Rippy MK, Badylak SF, Adams MC, Keating MA, Rink RC, Thor KB (1996) Regenerative urinary bladder augmentation using small intestinal submucosa: urodynamic and histopathologic assessment in long-term canine bladder augmentations. J Urol 155:2098–2104

    Article  CAS  PubMed  Google Scholar 

  106. Gabouev AI, Schultheiss D, Mertsching H, Koppe M, Schlote N, Wefer J, Jonas U et al (2003) In vitro construction of urinary bladder wall using porcine primary cells reseeded on acellularized bladder matrix and small intestinal submucosa. Int J Artif Organs 26:935–942

    Article  CAS  PubMed  Google Scholar 

  107. Fiala R, Vidlar A, Vrtal R, Belej K, Student V (2007) Porcine small intestinal submucosa graft for repair of anterior urethral strictures. Eur Urol 51:1702–1708 discussion 1708

    Article  PubMed  Google Scholar 

  108. Albers P (2007) Tissue engineering and reconstructive surgery in urology. Eur Urol 52:1579

    Article  PubMed  Google Scholar 

  109. Hoeppner J, Crnogorac V, Marjanovic G, Juttner E, Karcz W, Weiser HF, Hopt UT (2009) Small intestinal submucosa as a bioscaffold for tissue regeneration in defects of the colonic wall. J Gastrointest Surg 13:113–119

    Article  PubMed  Google Scholar 

  110. Yi J-S, Lee H-J, Lee H-J, Lee I-W, Yang J-H (2013) Rat peripheral nerve regeneration using nerve guidance channel by porcine small intestinal submucosa. J Korean Neurosurg Soc 53:65–71

    Article  PubMed  PubMed Central  Google Scholar 

  111. Murphy F, Corbally MT (2007) The novel use of small intestinal submucosal matrix for chest wall reconstruction following Ewing’s tumour resection. Pediatr Surg Int 23:353–356

    Article  PubMed  Google Scholar 

  112. Kumar V, Ahlawat R, Gupta AK, Sharma RK, Minz M, Sakhuja V, Jha V (2014) Potential of organ donation from deceased donors: study from a public sector hospital in India. Transpl Int 27:1007–1014

    Article  PubMed  Google Scholar 

  113. Wainwright DJ (1995) Use of an acellular allograft dermal matrix (AlloDerm) in the management of full-thickness burns. Burns 21:243–248

    Article  CAS  PubMed  Google Scholar 

  114. Bozuk MI, Fearing NM, Leggett PL (2006) Use of decellularized human skin to repair esophageal anastomotic leak in humans. JSLS 10:83–85

    PubMed  PubMed Central  Google Scholar 

  115. Lin LM, Lin CC, Chen CL, Lin CC (2014) Effects of an education program on intensive care unit nurses’ attitudes and behavioral intentions to advocate deceased donor organ donation. Transplant Proc 46:1036–1040

    Article  CAS  PubMed  Google Scholar 

  116. Rieder E, Seebacher G, Kasimir MT, Eichmair E, Winter B, Dekan B, Wolner E et al (2005) Tissue engineering of heart valves: decellularized porcine and human valve scaffolds differ importantly in residual potential to attract monocytic cells. Circulation 111:2792–2797

    Article  PubMed  Google Scholar 

  117. Granados M, Morticelli L, Andriopoulou S, Kalozoumis P, Pflaum M, Iablonskii P, Glasmacher B et al (2017) Development and characterization of a porcine mitral valve scaffold for tissue engineering. J Cardiovasc Transl Res 10:374–390

    Article  CAS  PubMed  Google Scholar 

  118. Rana D, Zreiqat H, Benkirane-Jessel N, Ramakrishna S, Ramalingam M (2017) Development of decellularized scaffolds for stem cell-driven tissue engineering. J Tissue Eng Regen Med 11:942–965

    Article  CAS  PubMed  Google Scholar 

  119. Fang NT, **e SZ, Wang SM, Gao HY, Wu CG, Pan LF (2007) Construction of tissue-engineered heart valves by using decellularized scaffolds and endothelial progenitor cells. Chin Med J 120:696–702

    CAS  PubMed  Google Scholar 

  120. Jaramillo M, Yeh H, Yarmush ML, Uygun BE (2017) Decellularized human liver extracellular matrix (hDLM)-mediated hepatic differentiation of human induced pluripotent stem cells (hIPSCs). J Tissue Eng Regen Med 12:e1962–e1973

    Article  CAS  Google Scholar 

  121. Kakabadze Z, Kakabadze A, Chakhunashvili D, Karalashvili L, Berishvili E, Sharma Y, Gupta S (2017) Decellularized human placenta supports hepatic tissue and allows rescue in acute liver failure. Hepatology 67:1956–1969

    Article  CAS  Google Scholar 

  122. Kang YZ, Wang Y, Gao Y (2009) Decellularization technology application in whole liver reconstruct biological scaffold. Zhonghua Yi Xue Za Zhi 89:1135–1138

    PubMed  Google Scholar 

  123. Arenas-Herrera JE, Ko IK, Atala A, Yoo JJ (2013) Decellularization for whole organ bioengineering. Biomed Mater 8:014106

    Article  CAS  PubMed  Google Scholar 

  124. Baptista PM, Vyas D, Moran E, Wang Z, Soker S (2013) Human liver bioengineering using a whole liver decellularized bioscaffold. Methods Mol Biol 1001:289–298

    Article  CAS  PubMed  Google Scholar 

  125. Ko IK, Peng L, Peloso A, Smith CJ, Dhal A, Deegan DB, Zimmerman C et al (2015) Bioengineered transplantable porcine livers with re-endothelialized vasculature. Biomaterials 40:72–79

    Article  CAS  PubMed  Google Scholar 

  126. Mao SAGJ, Elgilani FM, De Lorenzo SB, Deeds MC et al (2017) Sustained in vivo perfusion of a re-endothelialized tissue engineered porcine liver. Int J nTransplant Res Med 3:031

    Google Scholar 

  127. Gilpin A, Yang Y (2017) Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int 2017:9831534

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Sohlenius-Sternbeck AK (2006) Determination of the hepatocellularity number for human, dog, rabbit, rat and mouse livers from protein concentration measurements. Toxicol In Vitro 20:1582–1586

    Article  CAS  PubMed  Google Scholar 

  129. Agmon G, Christman KL (2016) Controlling stem cell behavior with decellularized extracellular matrix scaffolds. Curr Opin Solid State Mater Sci 20:193–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kadota Y, Yagi H, Inomata K, Matsubara K, Hibi T, Abe Y, Kitago M et al (2014) Mesenchymal stem cells support hepatocyte function in engineered liver grafts. Organogenesis 10:268–277

    Article  PubMed  PubMed Central  Google Scholar 

  131. Hoshiba T, Chen G, Endo C, Maruyama H, Wakui M, Nemoto E, Kawazoe N et al (2016) Decellularized extracellular matrix as an in vitro model to study the comprehensive roles of the ECM in stem cell differentiation. Stem Cells Int 2016:6397820

    Article  PubMed  CAS  Google Scholar 

  132. Kim M, Choi B, Joo SY, Lee H, Lee JH, Lee KW, Lee S et al (2014) Generation of humanized liver mouse model by transplant of patient-derived fresh human hepatocytes. Transplant Proc 46:1186–1190

    Article  CAS  PubMed  Google Scholar 

  133. Lee SY, Kim HJ, Choi D (2015) Cell sources, liver support systems and liver tissue engineering: alternatives to liver transplantation. Int J Stem Cells 8:36–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nicolas C, Wang Y, Luebke-Wheeler J, Nyberg SL (2016) Stem cell therapies for treatment of liver disease. Biomedicine 4:E2

    Article  CAS  Google Scholar 

  135. AlZoubi AM, Khalifeh F (2013) The effectiveness of stem cell therapies on health-related quality of life and life expectancy in comparison with conventional supportive medical treatment in patients suffering from end-stage liver disease. Stem Cell Res Ther 4:16

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sauer V, Roy-Chowdhury N, Guha C, Roy-Chowdhury J (2014) Induced pluripotent stem cells as a source of hepatocytes. Curr Pathobiol Rep 2:11–20

    Article  PubMed  PubMed Central  Google Scholar 

  137. Moroni F, Mirabella T (2014) Decellularized matrices for cardiovascular tissue engineering. Am J Stem Cells 3:1–20

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Methe K, Backdahl H, Johansson BR, Nayakawde N, Dellgren G, Sumitran-Holgersson S (2014) An alternative approach to decellularize whole porcine heart. Biores Open Access 3:327–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Taylor DA, Sampaio LC, Gobin A (2014) Building new hearts: a review of trends in cardiac tissue engineering. Am J Transplant 14:2448–2459

    Article  CAS  PubMed  Google Scholar 

  140. Weymann A, Loganathan S, Takahashi H, Schies C, Claus B, Hirschberg K, Soos P et al (2011) Development and evaluation of a perfusion decellularization porcine heart model – generation of 3-dimensional myocardial neoscaffolds. Circ J 75:852–860

    Article  PubMed  Google Scholar 

  141. Manji RA, Menkis AH, Ekser B, Cooper DK (2012) Porcine bioprosthetic heart valves: the next generation. Am Heart J 164:177–185

    Article  PubMed  Google Scholar 

  142. Taylor DA, Parikh RB, Sampaio LC (2017) Bioengineering hearts: simple yet complex. Curr Stem Cell Rep 3:35–44

    Article  PubMed  PubMed Central  Google Scholar 

  143. Martins AM, Vunjak-Novakovic G, Reis RL (2014) The current status of iPS cells in cardiac research and their potential for tissue engineering and regenerative medicine. Stem Cell Rev 10:177–190

    Article  CAS  PubMed Central  Google Scholar 

  144. Al-Awqati Q, Oliver JA (2002) Stem cells in the kidney. Kidney Int 61:387–395

    Article  PubMed  Google Scholar 

  145. Bobulescu IA, Moe OW (2006) Na+/H+ exchangers in renal regulation of acid-base balance. Semin Nephrol 26:334–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Romagnani P, Remuzzi G, Glassock R, Levin A, Jager KJ, Tonelli M, Massy Z et al (2017) Chronic kidney disease. Nat Rev Dis Primers 3:17088

    Article  PubMed  Google Scholar 

  147. Peired AJ, Sisti A, Romagnani P (2016) Mesenchymal stem cell-based therapy for kidney disease: a review of clinical evidence. Stem Cells Int 2016:4798639

    PubMed  PubMed Central  Google Scholar 

  148. McKee RA, Wingert RA (2016) Repopulating decellularized kidney scaffolds: an avenue for ex vivo organ generation. Materials (Basel) 9:190

    Article  CAS  Google Scholar 

  149. Figliuzzi M, Bonandrini B, Remuzzi A (2017) Decellularized kidney matrix as functional material for whole organ tissue engineering. J Appl Biomater Funct Mater 15:0

    Google Scholar 

  150. Yu YL, Shao YK, Ding YQ, Lin KZ, Chen B, Zhang HZ, Zhao LN et al (2014) Decellularized kidney scaffold-mediated renal regeneration. Biomaterials 35:6822–6828

    Article  CAS  PubMed  Google Scholar 

  151. Du C, Narayanan K, Leong MF, Ibrahim MS, Chua YP, Khoo VM, Wan AC (2016) Functional kidney bioengineering with pluripotent stem-cell-derived renal progenitor cells and decellularized kidney scaffolds. Adv Healthc Mater 5:2080–2091

    Article  CAS  PubMed  Google Scholar 

  152. Yamanaka S, Yokoo T (2015) Current bioengineering methods for whole kidney regeneration. Stem Cells Int 2015:724047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Rawlins MD (2004) Cutting the cost of drug development? Nat Rev Drug Discov 3:360–364

    Article  CAS  PubMed  Google Scholar 

  154. Kola I, Landis J (2004) Can the pharmaceutical industry reduce attrition rates? Nat Rev Drug Discov 3:711–715

    Article  CAS  PubMed  Google Scholar 

  155. Kaplowitz N (2005) Idiosyncratic drug hepatotoxicity. Nat Rev Drug Discov 4:489–499

    Article  CAS  PubMed  Google Scholar 

  156. Rizzetto M, Ciancio A (2012) Epidemiology of hepatitis D. Semin Liver Dis 32:211–219

    Article  PubMed  Google Scholar 

  157. World Malaria Report (2015) [PDF] WHO. Available at: http://apps.who.int/iris/bitstream/handle/10665/200018/9789241565158_eng.pdf?sequence=1

  158. Smith BW, Adams LA (2011) Nonalcoholic fatty liver disease and diabetes mellitus: pathogenesis and treatment. Nat Rev Endocrinol 7:456–465

    Article  CAS  PubMed  Google Scholar 

  159. Cusi K (2009) Nonalcoholic fatty liver disease in type 2 diabetes mellitus. Curr Opin Endocrinol Diabetes Obes 16:141–149

    Article  PubMed  Google Scholar 

  160. Koppe SWP (2014) Obesity and the liver: nonalcoholic fatty liver disease. Transl Res: J Lab Clin Med 164:312–322

    Article  Google Scholar 

  161. McGuire S (2016) World cancer report 2014. Geneva, Switzerland: World Health Organization, International Agency for Research on Cancer, WHO press, 2015. Adv Nutr (Bethesda, MD) 7:418–419

    Article  Google Scholar 

  162. LeCluyse EL, Witek RP, Andersen ME, Powers MJ (2012) Organotypic liver culture models: meeting current challenges in toxicity testing. Crit Rev Toxicol 42:501–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gómez-Lechón MJ, Tolosa L, Conde I, Donato MT (2014) Competency of different cell models to predict human hepatotoxic drugs. Expert Opin Drug Metab Toxicol 10:1553–1568

    Article  PubMed  CAS  Google Scholar 

  164. Hewitt NJ, Lechón MJG, Houston JB, Hallifax D, Brown HS, Maurel P, Kenna JG et al (2007) Primary hepatocytes: current understanding of the regulation of metabolic enzymes and transporter proteins, and pharmaceutical practice for the use of hepatocytes in metabolism, enzyme induction, transporter, clearance, and hepatotoxicity studies. Drug Metab Rev 39:159–234

    Article  CAS  PubMed  Google Scholar 

  165. Rowe C, Goldring CEP, Kitteringham NR, Jenkins RE, Lane BS, Sanderson C, Elliott V et al (2010) Network analysis of primary hepatocyte dedifferentiation using a shotgun proteomics approach. J Proteome Res 9:2658–2668

    Article  CAS  PubMed  Google Scholar 

  166. Bale SS, Golberg I, **dal R, McCarty WJ, Luitje M, Hegde M, Bhushan A et al (2015) Long-term coculture strategies for primary hepatocytes and liver sinusoidal endothelial cells. Tissue Eng Part C Methods 21:413–422

    Article  CAS  PubMed  Google Scholar 

  167. Krause P, Saghatolislam F, Koenig S, Unthan-Fechner K, Probst I (2009) Maintaining hepatocyte differentiation in vitro through co-culture with hepatic stellate cells. In Vitro Cell Dev Biol Anim 45:205–212

    Article  CAS  PubMed  Google Scholar 

  168. Ohno M, Motojima K, Okano T, Taniguchi A (2008) Up-regulation of drug-metabolizing enzyme genes in layered co-culture of a human liver cell line and endothelial cells. Tissue Eng Part A 14:1861–1869

    Article  CAS  PubMed  Google Scholar 

  169. Tukov FF, Maddox JF, Amacher DE, Bobrowski WF, Roth RA, Ganey PE (2006) Modeling inflammation-drug interactions in vitro: a rat Kupffer cell-hepatocyte coculture system. Toxicol In Vitro: An Int J Publ Assoc BIBRA 20:1488–1499

    Article  CAS  Google Scholar 

  170. Luebke-Wheeler JL, Nedredal G, Yee L, Amiot BP, Nyberg SL (2009) E-cadherin protects primary hepatocyte spheroids from cell death by a caspase-independent mechanism. Cell Transpl 18:1281–1287

    Article  Google Scholar 

  171. Sakai Y, Yamagami S, Nakazawa K (2010) Comparative analysis of gene expression in rat liver tissue and monolayer- and spheroid-cultured hepatocytes. Cells Tissues Organs 191:281–288

    Article  CAS  PubMed  Google Scholar 

  172. Godoy P, Hewitt NJ, Albrecht U, Andersen ME, Ansari N, Bhattacharya S, Bode JG et al (2013) Recent advances in 2D and 3D in vitro systems using primary hepatocytes, alternative hepatocyte sources and non-parenchymal liver cells and their use in investigating mechanisms of hepatotoxicity, cell signaling and ADME. Arch Toxicol 87:1315–1530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Usta OB, McCarty WJ, Bale S, Hegde M, **dal R, Bhushan A, Golberg I et al (2015) Microengineered cell and tissue systems for drug screening and toxicology applications: evolution of in-vitro liver technologies. Technology 3:1–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Chan TS, Yu H, Moore A, Khetani SR, Kehtani SR, Tweedie D (2013) Meeting the challenge of predicting hepatic clearance of compounds slowly metabolized by cytochrome P450 using a novel hepatocyte model, HepatoPac. Drug Metab Dispos: The Biol Fate Chem 41:2024–2032

    Article  CAS  Google Scholar 

  175. Schütte J, Freudigmann C, Benz K, Böttger J, Gebhardt R, Stelzle M (2010) A method for patterned in situ biofunctionalization in injection-molded microfluidic devices. Lab Chip 10:2551–2558

    Article  PubMed  CAS  Google Scholar 

  176. Baxter GT (2009) Hurel – an in vivo-surrogate assay platform for cell-based studies. Altern Lab Anim: ATLA 37(Suppl 1):11–18

    CAS  PubMed  Google Scholar 

  177. Guillouzo A, Guguen-Guillouzo C (2008) Evolving concepts in liver tissue modeling and implications for in vitro toxicology. Expert Opin Drug Metab Toxicol 4:1279–1294

    Article  CAS  PubMed  Google Scholar 

  178. Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, et al (2016) Heart disease and stroke statistics-2016 update: a report from the American heart association. Circulation:133:e38–360

    Google Scholar 

  179. Duan SZ, Usher MG, Mortensen RM (2008) Peroxisome proliferator-activated receptor-gamma-mediated effects in the vasculature. Circ Res 102:283–294

    Article  CAS  PubMed  Google Scholar 

  180. Krentz A (2009) Thiazolidinediones: effects on the development and progression of type 2 diabetes and associated vascular complications. Diabetes Metab Res Rev 25:112–126

    Article  CAS  PubMed  Google Scholar 

  181. Hernandez AV, Usmani A, Rajamanickam A, Moheet A (2011) Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. Am J Cardiovasc Drugs 11:115–128

    Article  CAS  PubMed  Google Scholar 

  182. McNeish J (2004) Embryonic stem cells in drug discovery. Nat Rev Drug Discov 3:70–80

    Article  CAS  PubMed  Google Scholar 

  183. Lu HR, Vlaminckx E, Hermans AN, Rohrbacher J, Van Ammel K, Towart R, Pugsley M et al (2008) Predicting drug-induced changes in QT interval and arrhythmias: QT-shortening drugs point to gaps in the ICHS7B guidelines. Br J Pharmacol 154:1427–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Redfern WS, Carlsson L, Davis AS, Lynch WG, MacKenzie I, Palethorpe S, Siegl PK et al (2003) Relationships between preclinical cardiac electrophysiology, clinical QT interval prolongation and torsade de pointes for a broad range of drugs: evidence for a provisional safety margin in drug development. Cardiovasc Res 58:32–45

    Article  CAS  PubMed  Google Scholar 

  185. Hoffmann P, Warner B (2006) Are hERG channel inhibition and QT interval prolongation all there is in drug-induced torsadogenesis? A review of emerging trends. J Pharmacol Toxicol Methods 53:87–105

    Article  CAS  PubMed  Google Scholar 

  186. Lacerda AE, Kuryshev YA, Chen Y, Renganathan M, Eng H, Danthi SJ, Kramer JW et al (2008) Alfuzosin delays cardiac repolarization by a novel mechanism. J Pharmacol Exp Ther 324:427–433

    Article  CAS  PubMed  Google Scholar 

  187. Rodriguez-Menchaca AA, Navarro-Polanco RA, Ferrer-Villada T, Rupp J, Sachse FB, Tristani-Firouzi M, Sanchez-Chapula JA (2008) The molecular basis of chloroquine block of the inward rectifier Kir2.1 channel. Proc Natl Acad Sci U S A 105:1364–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Pouton CW, Haynes JM (2007) Embryonic stem cells as a source of models for drug discovery. Nat Rev Drug Discov 6:605–616

    Article  CAS  PubMed  Google Scholar 

  189. Braam SR, Tertoolen L, van de Stolpe A, Meyer T, Passier R, Mummery CL (2010) Prediction of drug-induced cardiotoxicity using human embryonic stem cell-derived cardiomyocytes. Stem Cell Res 4:107–116

    Article  CAS  PubMed  Google Scholar 

  190. Zwi L, Caspi O, Arbel G, Huber I, Gepstein A, Park IH, Gepstein L (2009) Cardiomyocyte differentiation of human induced pluripotent stem cells. Circulation 120:1513–1523

    Article  CAS  PubMed  Google Scholar 

  191. Otsuji TG, Minami I, Kurose Y, Yamauchi K, Tada M, Nakatsuji N (2010) Progressive maturation in contracting cardiomyocytes derived from human embryonic stem cells: qualitative effects on electrophysiological responses to drugs. Stem Cell Res 4:201–213

    Article  CAS  PubMed  Google Scholar 

  192. Yoshida Y, Yamanaka S (2010) Recent stem cell advances: induced pluripotent stem cells for disease modeling and stem cell-based regeneration. Circulation 122:80–87

    Article  PubMed  Google Scholar 

  193. Liang P, Lan F, Lee AS, Gong T, Sanchez-Freire V, Wang Y, Diecke S et al (2013) Drug screening using a library of human induced pluripotent stem cell-derived cardiomyocytes reveals disease-specific patterns of cardiotoxicity. Circulation 127:1677–1691

    Article  CAS  PubMed  Google Scholar 

  194. Chen L, El-Sherif N, Boutjdir M (1999) Unitary current analysis of L-type Ca2+ channels in human fetal ventricular myocytes. J Cardiovasc Electrophysiol 10:692–700

    Article  CAS  PubMed  Google Scholar 

  195. Eder A, Vollert I, Hansen A, Eschenhagen T (2016) Human engineered heart tissue as a model system for drug testing. Adv Drug Deliv Rev 96:214–224

    Article  CAS  PubMed  Google Scholar 

  196. Nunes SS, Miklas JW, Liu J, Aschar-Sobbi R, **ao Y, Zhang B, Jiang J et al (2013) Biowire: a platform for maturation of human pluripotent stem cell-derived cardiomyocytes. Nat Methods 10:781–787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hansen A, Eder A, Bonstrup M, Flato M, Mewe M, Schaaf S, Aksehirlioglu B et al (2010) Development of a drug screening platform based on engineered heart tissue. Circ Res 107:35–44

    Article  CAS  PubMed  Google Scholar 

  198. Campion S, Aubrecht J, Boekelheide K, Brewster DW, Vaidya VS, Anderson L, Burt D et al (2013) The current status of biomarkers for predicting toxicity. Expert Opin Drug Metab Toxicol 9:1391–1408

    Article  CAS  PubMed  Google Scholar 

  199. Formentini I, Bobadilla M, Haefliger C, Hartmann G, Loghman-Adham M, Mizrahi J, Pomposiello S et al (2012) Current drug development challenges in chronic kidney disease (CKD) – identification of individualized determinants of renal progression and premature cardiovascular disease (CVD). Nephrol Dial Transplant 27(Suppl 3):iii81–iii88

    Article  CAS  PubMed  Google Scholar 

  200. Miyata T, Kikuchi K, Kiyomoto H, van Ypersele de Strihou C (2011) New era for drug discovery and development in renal disease. Nat Rev Nephrol 7:469–477

    Article  CAS  PubMed  Google Scholar 

  201. Prunotto M, Gabbiani G, Pomposiello S, Ghiggeri G, Moll S (2011) The kidney as a target organ in pharmaceutical research. Drug Discov Today 16:244–259

    Article  CAS  PubMed  Google Scholar 

  202. Steimer A, Haltner E, Lehr CM (2005) Cell culture models of the respiratory tract relevant to pulmonary drug delivery. J Aerosol Med 18:137–182

    Article  CAS  PubMed  Google Scholar 

  203. Klein SG, Serchi T, Hoffmann L, Blomeke B, Gutleb AC (2013) An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part Fibre Toxicol 10:31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Barnes PJ, Bonini S, Seeger W, Belvisi MG, Ward B, Holmes A (2015) Barriers to new drug development in respiratory disease. Eur Respir J 45:1197–1207

    Article  PubMed  Google Scholar 

  206. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125

    Article  CAS  PubMed  Google Scholar 

  207. Medvinsky A, Livesey FJ (2015) On human development: lessons from stem cell systems. Development 142:17–20

    Article  CAS  PubMed  Google Scholar 

  208. Si-Tayeb K, Lemaigre FP, Duncan SA (2010) Organogenesis and development of the liver. Dev Cell 18:175–189

    Article  CAS  PubMed  Google Scholar 

  209. Navarro-Alvarez N, Soto-Gutierrez A, Kobayashi N (2010) Hepatic stem cells and liver development. Methods Mol Biol 640:181–236

    Article  CAS  PubMed  Google Scholar 

  210. Ader M, Tanaka EM (2014) Modeling human development in 3D culture. Curr Opin Cell Biol 31:23–28

    Article  CAS  PubMed  Google Scholar 

  211. Chistiakov DA (2012) Liver regenerative medicine: advances and challenges. Cells Tissues Organs 196:291–312

    Article  PubMed  Google Scholar 

  212. Wang Y, Cui CB, Yamauchi M, Miguez P, Roach M, Malavarca R, Costello MJ et al (2011) Lineage restriction of human hepatic stem cells to mature fates is made efficient by tissue-specific biomatrix scaffolds. Hepatology 53:293–305

    Article  CAS  PubMed  Google Scholar 

  213. Vyas D, Baptista PM, Brovold M, Moran E, Gaston B, Booth C, Samuel M et al (2017) Self-assembled liver organoids recapitulate hepatobiliary organogenesis in vitro. Hepatology 67:750–761

    Google Scholar 

  214. Maher JJ, Bissell DM (1993) Cell-matrix interactions in liver. Semin Cell Biol 4:189–201

    Article  CAS  PubMed  Google Scholar 

  215. Camp JG, Sekine K, Gerber T, Loeffler-Wirth H, Binder H, Gac M, Kanton S et al (2017) Multilineage communication regulates human liver bud development from pluripotency. Nature 546:533–538

    CAS  PubMed  Google Scholar 

  216. Ma Z, Wang J, Loskill P, Huebsch N, Koo S, Svedlund FL, Marks NC et al (2015) Self-organizing human cardiac microchambers mediated by geometric confinement. Nat Commun 6:7413

    Article  CAS  PubMed  Google Scholar 

  217. Rosenblum ND (2008) Developmental biology of the human kidney. Semin Fetal Neonatal Med 13:125–132

    Article  PubMed  Google Scholar 

  218. Reint G, Rak-Raszewska A, Vainio SJ (2017) Kidney development and perspectives for organ engineering. Cell Tissue Res 369:171–183

    Article  PubMed  Google Scholar 

  219. Destefani AC, Sirtoli GM, Nogueira BV (2017) Advances in the knowledge about kidney decellularization and repopulation. Front Bioeng Biotechnol 5:34

    Article  PubMed  PubMed Central  Google Scholar 

  220. Kaminski MM, Tosic J, Kresbach C, Engel H, Klockenbusch J, Muller AL, Pichler R et al (2016) Direct reprogramming of fibroblasts into renal tubular epithelial cells by defined transcription factors. Nat Cell Biol 18:1269–1280

    Article  CAS  PubMed  Google Scholar 

  221. Abolbashari M, Agcaoili SM, Lee MK, Ko IK, Aboushwareb T, Jackson JD, Yoo JJ et al (2016) Repopulation of porcine kidney scaffold using porcine primary renal cells. Acta Biomater 29:52–61

    Article  CAS  PubMed  Google Scholar 

  222. Song JJ, Guyette JP, Gilpin SE, Gonzalez G, Vacanti JP, Ott HC (2013) Regeneration and experimental orthotopic transplantation of a bioengineered kidney. Nat Med 19:646–651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Taguchi A, Kaku Y, Ohmori T, Sharmin S, Ogawa M, Sasaki H, Nishinakamura R (2014) Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells. Cell Stem Cell 14:53–67

    Article  CAS  PubMed  Google Scholar 

  224. Dye BR, Miller AJ, Spence JR (2016) How to grow a lung: applying principles of developmental biology to generate lung lineages from human pluripotent stem cells. Curr Pathobiol Rep 4:47–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  225. Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453:745–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  226. Herriges M, Morrisey EE (2014) Lung development: orchestrating the generation and regeneration of a complex organ. Development 141:502–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Miller AJ, Spence JR (2017) In vitro models to study human lung development, disease and homeostasis. Physiology (Bethesda) 32:246–260

    CAS  Google Scholar 

  228. Rock JR, Onaitis MW, Rawlins EL, Lu Y, Clark CP, Xue Y, Randell SH et al (2009) Basal cells as stem cells of the mouse trachea and human airway epithelium. Proc Natl Acad Sci U S A 106:12771–12775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Ghaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF et al (2013) Human iPS cell-derived alveolar epithelium repopulates lung extracellular matrix. J Clin Invest 123:4950–4962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Dye BR, Hill DR, Ferguson MA, Tsai YH, Nagy MS, Dyal R, Wells JM et al (2015) In vitro generation of human pluripotent stem cell derived lung organoids. elife 4:e05098

    Google Scholar 

  231. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  232. Klein GT, Lu Y, Wang MY (2013) 3D printing and neurosurgery – ready for prime time? World Neurosurg 80:233–235

    Article  PubMed  Google Scholar 

  233. Ozbolat IT, Yu Y (2013) Bioprinting toward organ fabrication: challenges and future trends. IEEE Trans Biomed Eng 60:691–699

    Article  PubMed  Google Scholar 

  234. Cui X, Boland T, D’Lima DD, Lotz MK (2012) Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul 6:149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Zhang YS, Yue K, Aleman J, Mollazadeh-Moghaddam K, Bakht SM, Yang J, Jia W et al (2017) 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng 45:148–163

    Article  PubMed  Google Scholar 

  236. Jana S, Tefft BJ, Spoon DB, Simari RD (2014) Scaffolds for tissue engineering of cardiac valves. Acta Biomater 10:2877–2893

    Article  CAS  PubMed  Google Scholar 

  237. Chambers J (2014) Prosthetic heart valves. Int J Clin Pract 68:1227–1230

    Article  CAS  PubMed  Google Scholar 

  238. Sodian R, Weber S, Markert M, Rassoulian D, Kaczmarek I, Lueth TC, Reichart B et al (2007) Stereolithographic models for surgical planning in congenital heart surgery. Ann Thorac Surg 83:1854–1857

    Article  PubMed  Google Scholar 

  239. Sodian R, Schmauss D, Markert M, Weber S, Nikolaou K, Haeberle S, Vogt F et al (2008) Three-dimensional printing creates models for surgical planning of aortic valve replacement after previous coronary bypass grafting. Ann Thorac Surg 85:2105–2108

    Article  PubMed  Google Scholar 

  240. Sodian R, Weber S, Markert M, Loeff M, Lueth T, Weis FC, Daebritz S et al (2008) Pediatric cardiac transplantation: three-dimensional printing of anatomic models for surgical planning of heart transplantation in patients with univentricular heart. J Thorac Cardiovasc Surg 136:1098–1099

    Article  PubMed  Google Scholar 

  241. Sodian R, Schmauss D, Schmitz C, Bigdeli A, Haeberle S, Schmoeckel M, Markert M et al (2009) 3-dimensional printing of models to create custom-made devices for coil embolization of an anastomotic leak after aortic arch replacement. Ann Thorac Surg 88:974–978

    Article  PubMed  Google Scholar 

  242. Schmauss D, Schmitz C, Bigdeli AK, Weber S, Gerber N, Beiras-Fernandez A, Schwarz F et al (2012) Three-dimensional printing of models for preoperative planning and simulation of transcatheter valve replacement. Ann Thorac Surg 93:e31–e33

    Article  PubMed  Google Scholar 

  243. Schmauss D, Gerber N, Sodian R (2013) Three-dimensional printing of models for surgical planning in patients with primary cardiac tumors. J Thorac Cardiovasc Surg 145:1407–1408

    Article  PubMed  Google Scholar 

  244. Sodian R, Loebe M, Hein A, Martin DP, Hoerstrup SP, Potapov EV, Hausmann H et al (2002) Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J 48:12–16

    Article  PubMed  Google Scholar 

  245. Schaefermeier PK, Szymanski D, Weiss F, Fu P, Lueth T, Schmitz C, Meiser BM et al (2009) Design and fabrication of three-dimensional scaffolds for tissue engineering of human heart valves. Eur Surg Res 42:49–53

    Article  CAS  PubMed  Google Scholar 

  246. Duan B, Hockaday LA, Kang KH, Butcher JT (2013) 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A 101:1255–1264

    Article  PubMed  CAS  Google Scholar 

  247. Duan B, Kapetanovic E, Hockaday LA, Butcher JT (2014) Three-dimensional printed trileaflet valve conduits using biological hydrogels and human valve interstitial cells. Acta Biomater 10:1836–1846

    Article  CAS  PubMed  Google Scholar 

  248. Cohen S, Leor J (2004) Rebuilding broken hearts. Biologists and engineers working together in the fledgling field of tissue engineering are within reach of one of their greatest goals: constructing a living human heart patch. Sci Am 291:44–51

    Article  PubMed  Google Scholar 

  249. Silvestri A, Boffito M, Sartori S, Ciardelli G (2013) Biomimetic materials and scaffolds for myocardial tissue regeneration. Macromol Biosci 13:984–1019

    Article  CAS  PubMed  Google Scholar 

  250. Cho GS, Fernandez L, Kwon C (2014) Regenerative medicine for the heart: perspectives on stem-cell therapy. Antioxid Redox Signal 21:2018–2031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Radisic M, Malda J, Ep** E, Geng W, Langer R, Vunjak-Novakovic G (2006) Oxygen gradients correlate with cell density and cell viability in engineered cardiac tissue. Biotechnol Bioeng 93:332–343

    Article  CAS  PubMed  Google Scholar 

  252. Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS, Boey YC et al (2010) Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater 6:2028–2034

    Article  CAS  PubMed  Google Scholar 

  253. Gaetani R, Doevendans PA, Metz CH, Alblas J, Messina E, Giacomello A, Sluijter JP (2012) Cardiac tissue engineering using tissue printing technology and human cardiac progenitor cells. Biomaterials 33:1782–1790

    Article  CAS  PubMed  Google Scholar 

  254. Pati F, Jang J, Ha DH, Won Kim S, Rhie JW, Shim JH, Kim DH et al (2014) Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun 5:3935

    Article  CAS  PubMed  Google Scholar 

  255. Homan KA, Kolesky DB, Skylar-Scott MA, Herrmann J, Obuobi H, Moisan A, Lewis JA (2016) Bioprinting of 3D convoluted renal proximal tubules on perfusable chips. Sci Rep 6:34845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  256. Horvath L, Umehara Y, Jud C, Blank F, Petri-Fink A, Rothen-Rutishauser B (2015) Engineering an in vitro air-blood barrier by 3D bioprinting. Sci Rep 5:7974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Badawy A, Hamaguchi Y, Satoru S, Kaido T, Okajima H, Uemoto S (2017) Evaluation of safety of concomitant splenectomy in living donor liver transplantation: a retrospective study. Transpl Int 30:914–923

    Article  PubMed  Google Scholar 

  258. Athanasiou A, Papalois A, Kontos M, Griniatsos J, Liakopoulos D, Spartalis E, Agrogiannis G et al (2017) The beneficial role of simultaneous splenectomy after extended hepatectomy: experimental study in pigs. J Surg Res 208:121–131

    Article  PubMed  Google Scholar 

  259. Troisi RI, Berardi G, Tomassini F, Sainz-Barriga M (2017) Graft inflow modulation in adult-to-adult living donor liver transplantation: a systematic review. Transplant Rev (Orlando) 31:127–135

    Article  Google Scholar 

  260. Okabe H, Yoshizumi T, Ikegami T, Uchiyama H, Harimoto N, Itoh S, Kimura K et al (2016) Salvage splenic artery embolization for saving falling living donor graft due to portal overflow: a case report. Transplant Proc 48:3171–3173

    Article  CAS  PubMed  Google Scholar 

  261. Scatton O, Cauchy F, Conti F, Perdigao F, Massault PP, Goumard C, Soubrane O (2016) Two-stage liver transplantation using auxiliary laparoscopically harvested grafts in adults: emphasizing the concept of “hypersmall graft nursing”. Clin Res Hepatol Gastroenterol 40:571–574

    Article  PubMed  Google Scholar 

  262. Committee for Advanced Therapies (CAT). http://www.ema.europa.eu/ema/index.jsp?curl=pages/about_us/general/general_content_000266.jsp&mid=WC0b01ac05800292a4

  263. Kinaci E, Kayaalp C (2017) Systematic review for small-for-size syndrome after liver transplantation-chamber of secrets: reply. World J Surg 41:343–344

    Article  PubMed  Google Scholar 

  264. Salman A, El-Garem N, Sholkamy A, Hosny K, Abdelaziz O (2016) Exploring portal vein hemodynamic velocities as a promising, attractive horizon for small-for-size syndrome prediction after living-donor liver transplantation: an egyptian center study. Transplant Proc 48:2135–2139

    Article  CAS  PubMed  Google Scholar 

  265. Ikegami T, Yoshizumi T, Sakata K, Uchiyama H, Harimoto N, Harada N, Itoh S et al (2016) Left lobe living donor liver transplantation in adults: what is the safety limit? Liver Transpl 22:1666–1675

    Article  PubMed  Google Scholar 

  266. Ito D, Akamatsu N, Togashi J, Kaneko J, Arita J, Hasegawa K, Sakamoto Y et al (2016) Behavior and clinical impact of ascites after living donor liver transplantation: risk factors associated with massive ascites. J Hepatobiliary Pancreat Sci 23:688–696

    Article  PubMed  Google Scholar 

  267. Halazun KJ, Przybyszewski EM, Griesemer AD, Cherqui D, Michelassi F, Guarrera JV, Kato T et al (2016) Leaning to the left: increasing the donor pool by using the left lobe, outcomes of the largest single-center north american experience of left lobe adult-to-adult living donor liver transplantation. Ann Surg 264:448–456

    Article  PubMed  Google Scholar 

  268. Pomposelli JJ, Goodrich NP, Emond JC, Humar A, Baker TB, Grant DR, Fisher RA et al (2016) Patterns of early allograft dysfunction in adult live donor liver transplantation: the a2all experience. Transplantation 100:1490–1499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by Gobierno de Aragón and Fondo Social Europeo through a predoctoral Fellowship DGA C066/2014 (P. S-A), Instituto de Salud Carlos III, through a predoctoral fellowship i-PFIS IFI15/00158 (I. P-P). N. S-R was supported by a POCTEFA/Refbio II research grant and FGJ Gobierno de Aragón. J.I.A was supported by Fundação para a Ciência e a Tecnologia (Portugal), through a predoctoral Fellowship SFRH/BD/116780/2016. PMB was supported with the project PI15/00563 from Instituto de Salud Carlos III, Spain.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shay Soker or Pedro M. Baptista .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Brovold, M. et al. (2018). Naturally-Derived Biomaterials for Tissue Engineering Applications. In: Chun, H., Park, K., Kim, CH., Khang, G. (eds) Novel Biomaterials for Regenerative Medicine. Advances in Experimental Medicine and Biology, vol 1077. Springer, Singapore. https://doi.org/10.1007/978-981-13-0947-2_23

Download citation

Publish with us

Policies and ethics

Navigation