Log in

Nano-Fibrous Tissue Engineering Scaffolds Capable of Growth Factor Delivery

  • Perspective
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Tissue engineering aims at constructing biological substitutes to repair damaged tissues. Three-dimensional (3D) porous scaffolds are commonly utilized to define the 3D geometry of tissue engineering constructs and provide adequate pore space and surface to support cell attachment, migration, proliferation, differentiation and neo tissue genesis. Biomimetic 3D scaffolds provide synthetic microenvironments that mimic the natural regeneration microenvironments and promote tissue regeneration process. While nano-fibrous (NF) scaffolds are constructed to mimic the architecture of NF extracellular matrix, controlled-release growth factors are incorporated to modulate the regeneration process. The present article summarizes current advances in methods to fabricate NF polymer scaffolds and the technologies to incorporate controlled growth factor delivery systems into 3D scaffolds, followed by examples of accelerated regeneration when the scaffolds with growth factor releasing capacity are applied in animal models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

3D:

three-dimensional

BMP-7:

bone morphogenetic protein-7

ECM:

extra-cellular matrix

MS:

microspheres

NF:

nano-fibrous

NS:

nanospheres

PCL:

poly(ε-caprolactone)

PDGF:

platelet-derived growth factor

PEO:

poly(ethylene oxide)

PGA:

poly(glycolic acid)

PLA:

poly(lactic acid)

PLGA:

poly(lactic acid-co-glycolic acid)

PLLA:

poly(L-lactic acid)

SW:

solid-walled

TIPS:

thermally induced phase separation

REFERENCES

  1. Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.

    Article  PubMed  CAS  Google Scholar 

  2. Ma PX. Biomimetic materials for tissue engineering. Adv Drug Deliv Rev. 2008;60:184–98.

    Article  PubMed  CAS  Google Scholar 

  3. Lutolf MP, Hubbell JA. Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol. 2005;23:47–55.

    Article  PubMed  CAS  Google Scholar 

  4. Fisher OZ, Khademhosseini A, Langer R, Peppas NA. Bioinspired materials for controlling stem cell fate. Acc Chem Res. 2010;43:419–28.

    Article  PubMed  CAS  Google Scholar 

  5. Peerani R, Zandstra PW. Enabling stem cell therapies through synthetic stem cell-niche engineering. J Clin Invest. 2010;120:60–70.

    Article  PubMed  CAS  Google Scholar 

  6. Vacanti JP, Morse MA, Saltzman WM, Domb AJ, Perez-Atayde A, Langer R. Selective cell transplantation using bioabsorbable artificial polymers as matrices. J Pediatr Surg. 1988;23:3–9.

    Article  PubMed  CAS  Google Scholar 

  7. Langer R. New methods of drug delivery. Science. 1990;249:1527–33.

    Article  PubMed  CAS  Google Scholar 

  8. Ma PX. Tissue Engineering. In: Kroschwitz JI, editor. Encyclopedia of polymer science and technology, vol. 12. Hoboken: Wiley; 2005. p. 261–91.

    Google Scholar 

  9. Elsdale T, Bard J. Collagen substrata for studies on cell behavior. J Cell Biol. 1972;54:626–37.

    Article  PubMed  CAS  Google Scholar 

  10. Cavallaro JF, Kemp PD, Kraus KH. Collagen fabrics as biomaterials. Biotechnol Bioeng. 1994;43:781–91.

    Article  PubMed  CAS  Google Scholar 

  11. Nathan A, Nugent MA, Edelman ER. Tissue engineered perivascular endothelial cell implants regulate vascular injury. Proc Natl Acad Sci USA. 1995;92:8130–4.

    Article  PubMed  CAS  Google Scholar 

  12. Zhang Y, Ouyang H, Lim CT, Ramakrishna S, Huang ZM. Electrospinning of gelatin fibers and gelatin/PCL composite fibrous scaffolds. J Biomed Mater Res B Appl Biomater. 2005;72:156–65.

    Article  PubMed  Google Scholar 

  13. Liu X, Ma PX. Phase separation, pore structure, and properties of nanofibrous gelatin scaffolds. Biomaterials. 2009;30:4094–103.

    Article  PubMed  CAS  Google Scholar 

  14. Matthews JA, Wnek GE, Simpson DG, Bowlin GL. Electrospinning of collagen nanofibers. Biomacromolecules. 2002;3:232–8.

    Article  PubMed  CAS  Google Scholar 

  15. Li WJ, Laurencin CT, Caterson EJ, Tuan RS, Ko FK. Electrospun nanofibrous structure: a novel scaffold for tissue engineering. J Biomed Mater Res. 2002;60:613–21.

    Article  PubMed  CAS  Google Scholar 

  16. Yoshimoto H, Shin YM, Terai H, Vacanti JP. A biodegradable nanofiber scaffold by electrospinning and its potential for bone tissue engineering. Biomaterials. 2003;24:2077–82.

    Article  PubMed  CAS  Google Scholar 

  17. Bhattarai N, Edmondson D, Veiseh O, Matsen FA, Zhang M. Electrospun chitosan-based nanofibers and their cellular compatibility. Biomaterials. 2005;26:6176–84.

    Article  PubMed  CAS  Google Scholar 

  18. ** HJ, Fridrikh SV, Rutledge GC, Kaplan DL. Electrospinning Bombyx mori silk with poly(ethylene oxide). Biomacromolecules. 2002;3:1233–9.

    Article  PubMed  CAS  Google Scholar 

  19. Min BM, Lee G, Kim SH, Nam YS, Lee TS, Park WH. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro. Biomaterials. 2004;25:1289–97.

    Article  PubMed  CAS  Google Scholar 

  20. Li WJ, Danielson KG, Alexander PG, Tuan RS. Biological response of chondrocytes cultured in three-dimensional nanofibrous poly(epsilon-caprolactone) scaffolds. J Biomed Mater Res A. 2003;67:1105–14.

    Article  PubMed  Google Scholar 

  21. Yang F, Murugan R, Wang S, Ramakrishna S. Electrospinning of nano/micro scale poly(L-lactic acid) aligned fibers and their potential in neural tissue engineering. Biomaterials. 2005;26:2603–10.

    Article  PubMed  CAS  Google Scholar 

  22. Li WJ, Cooper Jr JA, Mauck RL, Tuan RS. Fabrication and characterization of six electrospun poly(alpha-hydroxy ester)-based fibrous scaffolds for tissue engineering applications. Acta Biomater. 2006;2:377–85.

    Article  PubMed  Google Scholar 

  23. Mo XM, Xu CY, Kotaki M, Ramakrishna S. Electrospun P(LLA-CL) nanofiber: a biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation. Biomaterials. 2004;25:1883–90.

    Article  PubMed  CAS  Google Scholar 

  24. Park KE, Kang HK, Lee SJ, Min BM, Park WH. Biomimetic nanofibrous scaffolds: preparation and characterization of PGA/chitin blend nanofibers. Biomacromolecules. 2006;7:635–43.

    Article  PubMed  CAS  Google Scholar 

  25. Li M, Mondrinos MJ, Chen X, Gandhi MR, Ko FK, Lelkes PI. Co-electrospun poly(lactide-co-glycolide), gelatin, and elastin blends for tissue engineering scaffolds. J Biomed Mater Res A. 2006;79:963–73.

    PubMed  Google Scholar 

  26. Chen F, Li X, Mo X, He C, Wang H, Ikada Y. Electrospun chitosan-P(LLA-CL) nanofibers for biomimetic extracellular matrix. J Biomater Sci Polym Ed. 2008;19:677–91.

    Article  PubMed  CAS  Google Scholar 

  27. Shin M, Yoshimoto H, Vacanti JP. In vivo bone tissue engineering using mesenchymal stem cells on a novel electrospun nanofibrous scaffold. Tissue Eng. 2004;10:33–41.

    Article  PubMed  CAS  Google Scholar 

  28. Xu CY, Inai R, Kotaki M, Ramakrishna S. Aligned biodegradable nanofibrous structure: a potential scaffold for blood vessel engineering. Biomaterials. 2004;25:877–86.

    Article  PubMed  CAS  Google Scholar 

  29. Janjanin S, Li WJ, Morgan MT, Shanti RM, Tuan RS. Mold-shaped, nanofiber scaffold-based cartilage engineering using human mesenchymal stem cells and bioreactor. J Surg Res. 2008;149:47–56.

    Article  PubMed  CAS  Google Scholar 

  30. Nieponice A, Soletti L, Guan J, Hong Y, Gharaibeh B, Maul TM, et al. In vivo assessment of a tissue-engineered vascular graft combining a biodegradable elastomeric scaffold and muscle-derived stem cells in a rat model. Tissue Eng A. 2010;16:1215–23.

    Article  CAS  Google Scholar 

  31. Pritchard CD, Arner KM, Neal RA, Neeley WL, Bojo P, Bachelder E, et al. The use of surface modified poly(glycerol-co-sebacic acid) in retinal transplantation. Biomaterials. 2010;31:2153–62.

    Article  PubMed  CAS  Google Scholar 

  32. Telemeco TA, Ayres C, Bowlin GL, Wnek GE, Boland ED, Cohen N, et al. Regulation of cellular infiltration into tissue engineering scaffolds composed of submicron diameter fibrils produced by electrospinning. Acta Biomater. 2005;1:377–85.

    Article  PubMed  CAS  Google Scholar 

  33. Balguid A, Mol A, van Marion MH, Bank RA, Bouten CV, Baaijens FP. Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) scaffolds for optimal cellular infiltration in cardiovascular tissue engineering. Tissue Eng A. 2009;15:437–44.

    Article  CAS  Google Scholar 

  34. Guimaraes A, Martins A, Pinho ED, Faria S, Reis RL, Neves NM. Solving cell infiltration limitations of electrospun nanofiber meshes for tissue engineering applications. Nanomedicine (Lond). 2010;5:539–54.

    Article  CAS  Google Scholar 

  35. Ma PX, Zhang R. Synthetic nano-scale fibrous extracellular matrix. J Biomed Mater Res. 1999;46:60–72.

    Article  PubMed  CAS  Google Scholar 

  36. Chen VJ, Ma PX. Nano-fibrous poly(L-lactic acid) scaffolds with interconnected spherical macropores. Biomaterials. 2004;25:2065–73.

    Article  PubMed  CAS  Google Scholar 

  37. Wei G, Ma PX. Macroporous and nanofibrous polymer scaffolds and polymer/bone-like apatite composite scaffolds generated by sugar spheres. J Biomed Mater Res A. 2006;78:306–15.

    PubMed  Google Scholar 

  38. Wei G, Ma PX. Partially nanofibrous architecture of 3D tissue engineering scaffolds. Biomaterials. 2009;30:6426–34.

    Article  PubMed  CAS  Google Scholar 

  39. Chen VJ, Smith LA, Ma PX. Bone regeneration on computer-designed nano-fibrous scaffolds. Biomaterials. 2006;27:3973–9.

    Article  PubMed  CAS  Google Scholar 

  40. Wang P, Hu J, Ma PX. The engineering of patient-specific, anatomically shaped, digits. Biomaterials. 2009;30:2735–40.

    Article  PubMed  CAS  Google Scholar 

  41. Chen VJ, Ma PX. The effect of surface area on the degradation rate of nano-fibrous poly(L-lactic acid) foams. Biomaterials. 2006;27:3708–15.

    Article  PubMed  CAS  Google Scholar 

  42. Woo KM, Chen VJ, Ma PX. Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment. J Biomed Mater Res A. 2003;67:531–7.

    Article  PubMed  Google Scholar 

  43. Woo KM, Jun JH, Chen VJ, Seo J, Baek JH, Ryoo HM, et al. Nano-fibrous scaffolding promotes osteoblast differentiation and biomineralization. Biomaterials. 2007;28:335–43.

    Article  PubMed  CAS  Google Scholar 

  44. Woo KM, Chen VJ, Jung HM, Kim TI, Shin HI, Baek JH, et al. Comparative evaluation of nanofibrous scaffolding for bone regeneration in critical-size calvarial defects. Tissue Eng A. 2009;15:2155–62.

    Article  CAS  Google Scholar 

  45. Hu J, Feng K, Liu X, Ma PX. Chondrogenic and osteogenic differentiations of human bone marrow-derived mesenchymal stem cells on a nanofibrous scaffold with designed pore network. Biomaterials. 2009;30:5061–7.

    Article  PubMed  CAS  Google Scholar 

  46. Smith LA, Liu X, Hu J, Wang P, Ma PX. Enhancing osteogenic differentiation of mouse embryonic stem cells by nanofibers. Tissue Eng A. 2009;15:1855–64.

    Article  CAS  Google Scholar 

  47. Smith LA, Liu X, Hu J, Ma PX. The influence of three-dimensional nanofibrous scaffolds on the osteogenic differentiation of embryonic stem cells. Biomaterials. 2009;30:2516–22.

    Article  PubMed  CAS  Google Scholar 

  48. Sun H, Feng K, Hu J, Soker S, Atala A, Ma PX. Osteogenic differentiation of human amniotic fluid-derived stem cells induced by bone morphogenetic protein-7 and enhanced by nanofibrous scaffolds. Biomaterials. 2010;31:1133–9.

    Article  PubMed  CAS  Google Scholar 

  49. Whang K, Goldstick TK, Healy KE. A biodegradable polymer scaffold for delivery of osteotropic factors. Biomaterials. 2000;21:2545–51.

    Article  PubMed  CAS  Google Scholar 

  50. Richardson TP, Peters MC, Ennett AB, Mooney DJ. Polymeric system for dual growth factor delivery. Nat Biotechnol. 2001;19:1029–34.

    Article  PubMed  CAS  Google Scholar 

  51. Sohier J, Haan RE, de Groot K, Bezemer JM. A novel method to obtain protein release from porous polymer scaffolds: emulsion coating. J Control Release. 2003;87:57–68.

    Article  PubMed  CAS  Google Scholar 

  52. Wei G, ** Q, Giannobile WV, Ma PX. Nano-fibrous scaffold for controlled delivery of recombinant human PDGF-BB. J Control Release. 2006;112:103–10.

    Article  PubMed  CAS  Google Scholar 

  53. Wei G, ** Q, Giannobile WV, Ma PX. The enhancement of osteogenesis by nano-fibrous scaffolds incorporating rhBMP-7 nanospheres. Biomaterials. 2007;28:2087–96.

    Article  PubMed  CAS  Google Scholar 

  54. Ionescu LC, Lee GC, Sennett BJ, Burdick JA, Mauck RL. An anisotropic nanofiber/microsphere composite with controlled release of biomolecules for fibrous tissue engineering. Biomaterials. 2010;31:4113–20.

    Article  PubMed  CAS  Google Scholar 

  55. Whang K, Tsai DC, Nam EK, Aitken M, Sprague SM, Patel PK, et al. Ectopic bone formation via rhBMP-2 delivery from porous bioabsorbable polymer scaffolds. J Biomed Mater Res. 1998;42:491–9.

    Article  PubMed  CAS  Google Scholar 

  56. Valmikinathan CM, Defroda S, Yu X. Polycaprolactone and bovine serum albumin based nanofibers for controlled release of nerve growth factor. Biomacromolecules. 2009;10:1084–9.

    Article  PubMed  CAS  Google Scholar 

  57. Yan S, ** L, **umei M, Ramakrishna S. Controlled release of dual drugs from emulsion electrospun nanofibrous mats. Colloids Surf B Biointerfaces. 2009;73:376–81.

    Article  PubMed  Google Scholar 

  58. Li X, Su Y, Liu S, Tan L, Mo X, Ramakrishna S. Encapsulation of proteins in poly(L-lactide-co-caprolactone) fibers by emulsion electrospinning. Colloids Surf B Biointerfaces. 2010;75:418–24.

    Article  PubMed  CAS  Google Scholar 

  59. McCann JT, Li D, **a YN. Electrospinning of nanofibers with core-sheath, hollow, or porous structures. J Mater Chem. 2005;15:735–8.

    Article  CAS  Google Scholar 

  60. Jiang H, Hu Y, Li Y, Zhao P, Zhu K, Chen W. A facile technique to prepare biodegradable coaxial electrospun nanofibers for controlled release of bioactive agents. J Control Release. 2005;108:237–43.

    Article  PubMed  CAS  Google Scholar 

  61. Zhang YZ, Wang X, Feng Y, Li J, Lim CT, Ramakrishna S. Coaxial electrospinning of (fluorescein isothiocyanate-conjugated bovine serum albumin)-encapsulated poly(epsilon-caprolactone) nanofibers for sustained release. Biomacromolecules. 2006;7:1049–57.

    Article  PubMed  CAS  Google Scholar 

  62. Liao IC, Chew SY, Leong KW. Aligned core-shell nanofibers delivering bioactive proteins. Nanomedicine (Lond). 2006;1:465–71.

    Article  CAS  Google Scholar 

  63. Jiang H, Hu Y, Zhao P, Li Y, Zhu K. Modulation of protein release from biodegradable core-shell structured fibers prepared by coaxial electrospinning. J Biomed Mater Res B Appl Biomater. 2006;79:50–7.

    PubMed  Google Scholar 

  64. Ziegler J, Mayr-Wohlfart U, Kessler S, Breitig D, Gunther KP. Adsorption and release properties of growth factors from biodegradable implants. J Biomed Mater Res. 2002;59:422–8.

    Article  PubMed  CAS  Google Scholar 

  65. Sohier J, Vlugt TJ, Cabrol N, Van Blitterswijk C, de Groot K, Bezemer JM. Dual release of proteins from porous polymeric scaffolds. J Control Release. 2006;111:95–106.

    Article  PubMed  CAS  Google Scholar 

  66. Woodrow KA, Cu Y, Booth CJ, Saucier-Sawyer JK, Wood MJ, Saltzman WM. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat Mater. 2009;8:526–33.

    Article  PubMed  CAS  Google Scholar 

  67. Vauthier C, Bouchemal K. Methods for the preparation and manufacture of polymeric nanoparticles. Pharm Res. 2009;26:1025–58.

    Article  PubMed  CAS  Google Scholar 

  68. Sinha VR, Trehan A. Biodegradable microspheres for protein delivery. J Control Release. 2003;90:261–80.

    Article  PubMed  CAS  Google Scholar 

  69. Wei G, Pettway GJ, McCauley LK, Ma PX. The release profiles and bioactivity of parathyroid hormone from poly(lactic-co-glycolic acid) microspheres. Biomaterials. 2004;25:345–52.

    Article  PubMed  CAS  Google Scholar 

  70. Kalaji N, Deloge A, Sheibat-Othman N, Boyron O, About I, Fessi H. Controlled release carriers of growth factors FGF-2 and TGFbeta1: synthesis, characterization and kinetic modelling. J Biomed Nanotechnol. 2010;6:106–16.

    Article  PubMed  CAS  Google Scholar 

  71. Ripamonti U, Van Den Heever B, Sampath TK, Tucker MM, Rueger DC, Reddi AH. Complete regeneration of bone in the baboon by recombinant human osteogenic protein-1 (hOP-1, bone morphogenetic protein-7). Growth Factors. 1996;13:273–89. color plates III-VIII,pre bk.

    Article  PubMed  CAS  Google Scholar 

  72. Zegzula HD, Buck DC, Brekke J, Wozney JM, Hollinger JO. Bone formation with use of rhBMP-2 (recombinant human bone morphogenetic protein-2). J Bone Joint Surg Am. 1997;79:1778–90.

    PubMed  CAS  Google Scholar 

  73. Wozney JM, Rosen V. Bone morphogenetic protein and bone morphogenetic protein gene family in bone formation and repair. Clin Orthop Relat Res. 1998; 26–37.

  74. Welch RD, Jones AL, Bucholz RW, Reinert CM, Tjia JS, Pierce WA, et al. Effect of recombinant human bone morphogenetic protein-2 on fracture healing in a goat tibial fracture model. J Bone Miner Res. 1998;13:1483–90.

    Article  PubMed  CAS  Google Scholar 

  75. Cook SD. Preclinical and clinical evaluation of osteogenic protein-1 (BMP-7) in bony sites. Orthopedics. 1999;22:669–71.

    PubMed  CAS  Google Scholar 

  76. Robson MC, Mustoe TA, Hunt TK. The future of recombinant growth factors in wound healing. Am J Surg. 1998;176:80S–2.

    Article  PubMed  CAS  Google Scholar 

  77. ** Q, Wei G, Lin Z, Sugai JV, Lynch SE, Ma PX, et al. Nanofibrous scaffolds incorporating PDGF-BB microspheres induce chemokine expression and tissue neogenesis in vivo. PLoS ONE. 2008;3:e1729.

    Article  PubMed  Google Scholar 

  78. Wei G. Growth factor-delivering nano-fibrous scaffolds for tissue regeneration, PhD Dissertation, Department of Biomedical Engineering, The University of Michigan, Ann Arbor, MI, 2006.

  79. Wang F, Li Z, Tamama K, Sen CK, Guan J. Fabrication and characterization of prosurvival growth factor releasing, anisotropic scaffolds for enhanced mesenchymal stem cell survival/growth and orientation. Biomacromolecules. 2009;10:2609–18.

    Article  PubMed  CAS  Google Scholar 

  80. Chun KW, Cho KC, Kim SH, Jeong JH, Park TG. Controlled release of plasmid DNA from biodegradable scaffolds fabricated using a thermally-induced phase-separation method. J Biomater Sci Polym Ed. 2004;15:1341–53.

    Article  PubMed  CAS  Google Scholar 

  81. Jang JH, Shea LD. Controllable delivery of non-viral DNA from porous scaffolds. J Control Release. 2003;86:157–68.

    Article  PubMed  CAS  Google Scholar 

  82. Luu YK, Kim K, Hsiao BS, Chu B, Hadjiargyrou M. Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA-PEG block copolymers. J Control Release. 2003;89:341–53.

    Article  PubMed  CAS  Google Scholar 

  83. Liang D, Luu YK, Kim K, Hsiao BS, Hadjiargyrou M, Chu B. In vitro non-viral gene delivery with nanofibrous scaffolds. Nucleic Acids Res. 2005;33:e170.

    Article  PubMed  Google Scholar 

  84. Saraf A, Baggett LS, Raphael RM, Kasper FK, Mikos AG. Regulated non-viral gene delivery from coaxial electrospun fiber mesh scaffolds. J Control Release. 2010;143:95–103.

    Article  PubMed  CAS  Google Scholar 

  85. Kriegel C, Kit KM, McClements DJ, Weiss J. Nanofibers as carrier systems for antimicrobial microemulsions. Part I: fabrication and characterization. Langmuir. 2009;25:1154–61.

    Article  PubMed  CAS  Google Scholar 

  86. Feng K, Sun H, Bradley MA, Dupler EJ, Giannobile WV, Ma PX. Novel antibacterial nanofibrous PLLA scaffolds. J Control Release. 2010;146:363–9.

    Article  PubMed  CAS  Google Scholar 

  87. Xu X, Yang L, Wang X, Chen X, Liang Q, Zeng J, et al. Ultrafine medicated fibers electrospun from W/O emulsions. J Control Release. 2005;108:33–42.

    Article  PubMed  CAS  Google Scholar 

  88. Wolinsky JB, Liu R, Walpole J, Chirieac LR, Colson YL, Grinstaff MW. Prevention of in vivo lung tumor growth by prolonged local delivery of hydroxycamptothecin using poly(ester-carbonate)-collagen composites. J Control Release. 2010;144:280–7.

    Article  PubMed  CAS  Google Scholar 

  89. Mandell RL, Socransky SS. Microbiological and clinical effects of surgery plus doxycycline on juvenile periodontitis. J Periodontol. 1988;59:373–9.

    PubMed  CAS  Google Scholar 

  90. Heimdahl A, Nord CE. Antimicrobial agents in the treatment of periodontal diseases: special aspects on tetracycline and doxycycline. Scand J Infect Dis Suppl. 1988;53:35–45.

    PubMed  CAS  Google Scholar 

  91. Tessmar JK, Gopferich AM. Matrices and scaffolds for protein delivery in tissue engineering. Adv Drug Deliv Rev. 2007;59:274–91.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors gratefully acknowledge the past and present grant support to our research in biologic delivery and biomimetic tissue engineering scaffolds from the NIH (DE014755, DE015384, GM075840, DE017689).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter X. Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, J., Ma, P.X. Nano-Fibrous Tissue Engineering Scaffolds Capable of Growth Factor Delivery. Pharm Res 28, 1273–1281 (2011). https://doi.org/10.1007/s11095-011-0367-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-011-0367-z

KEY WORDS

Navigation