Cellular and Molecular Mechanisms Involving Synbiotics in Various Disease State

  • Reference work entry
  • First Online:
Synbiotics in Human Health: Biology to Drug Delivery

Abstract

Symbiont bacteria that colonize the body of human have recently been identified as major components of an individual health and a variety of infectious diseases. The intestinal microbiomes are one of the majorly investigated commensal bacteria, performing a variety of tasks such as biologically active compounds production, dietary component metabolism, and immunomodulation via reduction and immunostimulation. Dysbiosis is a process of imbalance in the microbiome communities that has been associated with numerous human disorders such as carcinoma and other neurological disorders. Activating intestinal microbiome as well as microbiome–host cells interactions leading to synbiotics comprising probiotics and prebiotics is a rising possibility for the effectual management of different disorders. The microbiome research area is advancing from simple detailed analyses of symbiont constituents to deeper bimolecular, biocellular, as well as functional study as more exploration is commenced. Comprehension and altering the effect of microbiome, synbiotics, and their products on host’s cell health necessitates understanding into these mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Yadav MK, Kumari I, Singh B, Sharma KK, Tiwari SK (2022) Probiotics, prebiotics and synbiotics: safe options for next-generation therapeutics. Appl Microbiol Biotechnol 106:1–17

    Article  Google Scholar 

  2. Bernardini S, Tiezzi A, Laghezza Masci V, Ovidi E (2018) Natural products for human health: an historical overview of the drug discovery approaches. Nat Prod Res 32(16):1926–1950

    Article  CAS  PubMed  Google Scholar 

  3. Markowiak P, Śliżewska K (2017) Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients 9(9):1021

    Article  PubMed  PubMed Central  Google Scholar 

  4. Gu Q, Yin Y, Yan X, Liu X, Liu F, McClements DJ (2022) Encapsulation of multiple probiotics, synbiotics, or nutrabiotics for improved health effects: a review. Adv Colloid Interf Sci 309:102781

    Article  CAS  Google Scholar 

  5. Simon E, Călinoiu LF, Mitrea L, Vodnar DC (2021) Probiotics, prebiotics, and synbiotics: Implications and beneficial effects against irritable bowel syndrome. Nutrients 13(6):2112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Barbuti RC, Schiavon LL, Oliveira CP, Alvares-DA-Silva MR, Sassaki LY, Passos MDCF, Farias AQ, Barros LL, Barreto BP, Albuquerque GBDMLD, Alves AM (2020) gut microbiota, prebiotics, probiotics, and synbiotics in gastrointestinal and liver diseases: proceedings of a joint meeting of the brazilian society of hepatology (sbh), brazilian nucleus for the study of helicobacter pylori and microbiota (nbehpm), and Brazilian Federation of Gastroenterology (FBG). Arq Gastroenterol 57:381–398

    Article  PubMed  Google Scholar 

  7. Chamberlain MN (2021) Characterization of lactobacillus strains for probiotic applications and plant polyphenols as potential prebiotics. North Carolina State University

    Google Scholar 

  8. Nguyen TT, Nguyen PT, Pham MN, Razafindralambo H, Hoang QK, Nguyen HT (2022) Synbiotics: a new route of self-production and applications to human and animal health. Probiotics Antimicrob Proteins 14:1–14

    Article  CAS  Google Scholar 

  9. Ale EC, Binetti AG (2021) Role of probiotics, prebiotics, and synbiotics in the elderly: insights into their applications. Front Microbiol 12:631254

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hardi EH, Nugroho RA, Rostika R, Mardliyaha CM, Sukarti K, Rahayu W, Supriansyah A, Saptiani G (2022) Synbiotic application to enhance growth, immune system, and disease resistance toward bacterial infection in catfish (Clarias gariepinus). Aquaculture 549:737794

    Article  CAS  Google Scholar 

  11. Casci T, Rastall RA, Gibson GR (2005) 24 human gut microflora in health and disease: focus on prebiotics. In: Food biotechnology. CRC Press, pp 1160–1193

    Google Scholar 

  12. Petrova P, Petrov K (2017) Prebiotic–probiotic relationship: the genetic fundamentals of polysaccharides conversion by Bifidobacterium and Lactobacillus genera. In: Food Bioconversion. Academic, pp 237–278

    Chapter  Google Scholar 

  13. Karimi R, Azizi MH, Ghasemlou M, Vaziri M (2015) Application of inulin in cheese as prebiotic, fat replacer and texturizer: A review. Carbohydr Polym 119:85–100

    Article  CAS  PubMed  Google Scholar 

  14. Ahlawat A, Basak S, Ananthanarayan L (2022) Optimization of spray-dried probiotic buttermilk powder using response surface methodology and evaluation of its shelf stability. J Food Process Preserv 46:e16928

    Article  CAS  Google Scholar 

  15. Plaza Díaz J, Gómez Llorente C, Fontana L, Gil Hernández Á (2014) Modulation of immunity and inflammatory gene expression in the gut, in inflammatory diseases of the gut and in the liver by probiotics. World J Gastroenterol 20:15632

    Article  PubMed  PubMed Central  Google Scholar 

  16. Minj J, Chandra P, Paul C, Sharma RK (2021) Bio-functional properties of probiotic Lactobacillus: current applications and research perspectives. Crit Rev Food Sci Nutr 61(13):2207–2224

    Article  CAS  PubMed  Google Scholar 

  17. Ashraf R, Shah NP (2011) Selective and differential enumerations of Lactobacillus delbrueckii subsp. bulgaricus, Streptococcus thermophilus, Lactobacillus acidophilus, Lactobacillus casei and Bifidobacterium spp. in yoghurt—A review. Int J Food Microbiol 149(3):194–208

    Article  PubMed  Google Scholar 

  18. Mohammadi AA, Jazayeri S, Khosravi-Darani K, Solati Z, Mohammadpour N, Asemi Z, Adab Z, Djalali M, Tehrani-Doost M, Hosseini M, Eghtesadi S (2015) Effects of probiotics on biomarkers of oxidative stress and inflammatory factors in petrochemical workers: a randomized, double-blind, placebo-controlled trial. Int J Prev Med 6:82

    Article  PubMed  PubMed Central  Google Scholar 

  19. Bhatia A, Kaur A (2018) Immunomodulatory potential of synbiotics and phytochemicals–A Review. Emergent Life Sci Res 4:22–30

    Article  CAS  Google Scholar 

  20. Iacono A, Raso GM, Canani RB, Calignano A, Meli R (2011) Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. J Nutr Biochem 22(8):699–711

    Article  CAS  PubMed  Google Scholar 

  21. Ahangari Maleki M, Malek Mahdavi A, Soltani-Zangbar MS, Yousefi M, Khabbazi A (2022) Randomized double-blinded controlled trial on the effect of synbiotic supplementation on IL-17/IL-23 pathway and disease activity in patients with axial spondyloarthritis. Immunopharmacol Immunotoxicol 45:1–9

    Google Scholar 

  22. Brägelmann J, Lorenz C, Borchmann S, Nishii K, Wegner J, Meder L, Ostendorp J, Ast DF, Heimsoeth A, Nakasuka T, Hirabae A (2021) MAPK-pathway inhibition mediates inflammatory reprogramming and sensitizes tumors to targeted activation of innate immunity sensor RIG-I. Nat Commun 12(1):1–15

    Article  Google Scholar 

  23. Zhang HJ, Liao HY, Bai DY, Wang ZQ, **e XW (2021) MAPK/ERK signaling pathway: A potential target for the treatment of intervertebral disc degeneration. Biomed Pharmacother 143:112170

    Article  CAS  PubMed  Google Scholar 

  24. Wasim R, Mahmood T, Siddiqui MH, Ahsan F, Shamim A, Singh A, Shariq M, Parveen S (2022) Aftermath of AGE-RAGE Cascade in the pathophysiology of cardiovascular ailments. Life Sci 307:120860

    Article  CAS  PubMed  Google Scholar 

  25. Kitazawa H, Villena J, Alvarez S (eds) (2013) Probiotics: immunobiotics and immunogenics. CRC Press

    Google Scholar 

  26. Virginia Rodriguez A, Griet M (2016) NF-κB in anti-Inflammatory activity of probiotics: an update. Curr Immunol Rev 12(2):74–82

    Article  Google Scholar 

  27. Hui WANG, Shuhua LI, Houzhong LI, Fengxia DU, Jie GUAN, Yanmin WU (2019) Mechanism of probiotic VSL# 3 inhibiting NF-κB and TNF-α on colitis through TLR4-NF-κB signal pathway. Iran J Public Health 48(7):1292

    Google Scholar 

  28. Plaza-Díaz J, Ruiz-Ojeda FJ, Vilchez-Padial LM, Gil A (2017) Evidence of the anti-inflammatory effects of probiotics and synbiotics in intestinal chronic diseases. Nutrients 9(6):555

    Article  PubMed  PubMed Central  Google Scholar 

  29. Moravejolahkami AR, Chitsaz A, Hassanzadeh A, Paknahad Z (2022) Effects of anti-Inflammatory-antioxidant-rich diet and co-supplemented synbiotics intervention in patients with progressive forms of multiple sclerosis: a single-center, single-blind randomized clinical trial. Nutr Neurosci 26:1–12

    Google Scholar 

  30. Plaza-Diaz J, Ruiz-Ojeda FJ, Vilchez-Padial LM, Gil A (2021) Evidence of the anti-inflammatory effects of probiotics and symbiotics in intestinal chronic diseases. Nutrients 9:555. (2017). Scientific Reports, 11, p.571

    Article  Google Scholar 

  31. Hussen BM, Azimi T, Hidayat HJ, Taheri M, Ghafouri-Fard S (2021) NF-KappaB interacting LncRNA: review of its roles in neoplastic and non-neoplastic conditions. Biomed Pharmacother 139:111604

    Article  CAS  PubMed  Google Scholar 

  32. Liu Y, Wang J, Zhang X (2022) An update on the multifaceted role of NF-kappaB in endometriosis. Int J Biol Sci 18(11):4400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sun T, Zhang Y (2022) MAP kinase cascades in plant development and immune signaling. EMBO Rep 23(2):e53817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang M, Zhang S (2022) Mitogen-activated protein kinase cascades in plant signaling. J Integr Plant Biol 64(2):301–341

    Article  PubMed  Google Scholar 

  35. Ponde NO, Lortal L, Tsavou A, Hepworth OW, Wickramasinghe DN, Ho J, Richardson JP, Moyes DL, Gaffen SL, Naglik JR (2022) Receptor-kinase EGFR-MAPK adaptor proteins mediate the epithelial response to Candida albicans via the cytolytic peptide toxin, candidalysin. J Biol Chem 298(10):102419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Magnelli L, Schiavone N, Staderini F, Biagioni A, Papucci L (2020) MAP kinases pathways in gastric cancer. Int J Mol Sci 21(8):2893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Li Y, Sun R, Zou J, Ying Y, Luo Z (2019) Dual roles of the AMP-activated protein kinase pathway in angiogenesis. Cell 8(7):752

    Article  CAS  Google Scholar 

  38. Ashraf R, Vasiljevic T, Smith SC, Donkor ON (2014) Effect of cell-surface components and metabolites of lactic acid bacteria and probiotic organisms on cytokine production and induction of CD25 expression in human peripheral mononuclear cells. J Dairy Sci 97(5):2542–2558

    Article  CAS  PubMed  Google Scholar 

  39. Uchinaka A, Azuma N, Mizumoto H, Nakano S, Minamiya M, Yoneda M, Aoyama K, Komatsu Y, Yamada Y, Murohara T, Nagata K (2018) Anti-inflammatory effects of heat-killed Lactobacillus plantarum L-137 on cardiac and adipose tissue in rats with metabolic syndrome. Sci Rep 8(1):1–20

    Article  CAS  Google Scholar 

  40. De Marco S, Sichetti M, Muradyan D, Piccioni M, Traina G, Pagiotti R, Pietrella D (2018) Probiotic cell-free supernatants exhibited anti-inflammatory and antioxidant activity on human gut epithelial cells and macrophages stimulated with LPS. Evid Based Complement Alternat Med 2018:1756308

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wong WY, Chan BD, Sham TT, Lee MML, Chan CO, Chau CT, Mok DKW, Kwan YW, Tai WCS (2022) Lactobacillus casei strain shirota ameliorates dextran sulfate sodium-induced colitis in mice by Increasing taurine-conjugated bile acids and inhibiting NF-κB signaling via stabilization of IκBα. Front Nutr 9:816836

    Article  PubMed  PubMed Central  Google Scholar 

  42. Kaci G, Lakhdari O, Doré J, Ehrlich SD, Renault P, Blottière HM, Delorme C (2011) Inhibition of the NF-κB pathway in human intestinal epithelial cells by commensal Streptococcus salivarius. Appl Environ Microbiol 77(13):4681–4684

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Petrof EO, Claud EC, Sun J, Abramova T, Guo Y, Waypa TS, He SM, Nakagawa Y, Chang EB (2009) Bacteria-free solution derived from Lactobacillus plantarum inhibits multiple NF-kappaB pathways and inhibits proteasome function. Inflamm Bowel Dis 15(10):1537–1547

    Article  PubMed  Google Scholar 

  44. Ismaeil H, Abdo W, Amer S, Tahoun A, Massoud D, Zanaty E, Bin-Jumah M, Mahmoud AM (2020) Ameliorative effect of heat-killed Lactobacillus plantarum L. 137 and/or Aloe vera against colitis in mice. Processes 8(2):225

    Article  CAS  Google Scholar 

  45. Pistol GC, Marin DE, Dragomir C, Taranu I (2019) Synbiotic combination of prebiotic grape pomace extract and probiotic Lactobacillus sp. reduced important intestinal inflammatory markers and in-depth signalling mediators in lipopolysaccharide-treated Caco-2 cells. Br J Nutr 121(3):291–305

    Article  CAS  PubMed  Google Scholar 

  46. Shi J, Li H, Liang S, Evivie SE, Huo G, Li B, Liu F (2022) Selected lactobacilli strains inhibit inflammation in LPS-induced RAW264. 7 macrophages by suppressing the TLR4-mediated NF-κB and MAPKs activation. Food Sci Technol 42, e107621

    Google Scholar 

  47. Alemi F, Raei Sadigh A, Malakoti F, Elhaei Y, Ghaffari SH, Maleki M, Asemi Z, Yousefi B, Targhazeh N, Majidinia M (2022) Molecular mechanisms involved in DNA repair in human cancers: an overview of PI3k/Akt signaling and PIKKs crosstalk. J Cell Physiol 237(1):313–328

    Article  CAS  PubMed  Google Scholar 

  48. Alshehade S, Alshawsh MA, Murugaiyah V, Asif M, Alshehade O, Almoustafa H, Al Zarzour RH (2022) The role of protein kinases as key drivers of metabolic dysfunction-associated fatty liver disease progression: new insights and future directions. Life Sci 305:120732

    Article  CAS  PubMed  Google Scholar 

  49. Mohseni AH, Casolaro V, Bermúdez-Humarán LG, Keyvani H, Taghinezhad-S S (2021) Modulation of the PI3K/Akt/mTOR signaling pathway by probiotics as a fruitful target for orchestrating the immune response. Gut Microbes 13(1):1886844

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang M, Wang C, Wang C, Zhao H, Zhao C, Chen Y, Wang Y, McClain C, Feng W (2015) Enhanced AMPK phosphorylation contributes to the beneficial effects of Lactobacillus rhamnosus GG supernatant on chronic-alcohol-induced fatty liver disease. J Nutr Biochem 26(4):337–344

    Article  CAS  PubMed  Google Scholar 

  51. Lew LC, Hor YY, Jaafar MH, Lau ASY, Ong JS, Chuah LO, Yap KP, Azzam G, Azlan A, Liong MT (2019) Lactobacilli modulated AMPK activity and prevented telomere shortening in ageing rats. Benefic Microbes 10(8):883–892

    Article  CAS  Google Scholar 

  52. Ammoscato F, Scirocco A, Altomare A, Matarrese P, Petitta C, Ascione B, Caronna R, Guarino M, Marignani M, Cicala M, Chirletti P (2013) L actobacillus rhamnosus protects human colonic muscle from pathogen lipopolysaccharide-induced damage. Neurogastroenterol Motil 25(12):984–e777

    Article  CAS  PubMed  Google Scholar 

  53. Gao J, Li Y, Wan Y, Hu T, Liu L, Yang S, Gong Z, Zeng Q, Wei Y, Yang W, Zeng Z (2019) A novel postbiotic from Lactobacillus rhamnosus GG with a beneficial effect on intestinal barrier function. Front Microbiol 10:477

    Article  PubMed  PubMed Central  Google Scholar 

  54. Izuddin WI, Humam AM, Loh TC, Foo HL, Samsudin AA (2020) Dietary postbiotic Lactobacillus plantarum improves serum and ruminal antioxidant activity and upregulates hepatic antioxidant enzymes and ruminal barrier function in post-weaning lambs. Antioxidants 9(3):250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Han N, Jia L, Su Y, Du J, Guo L, Luo Z, Liu Y (2019) Lactobacillus reuteri extracts promoted wound healing via PI3K/AKT/β-catenin/TGFβ1 pathway. Stem Cell Res Ther 10(1):1–11

    Article  Google Scholar 

  56. Kumar R, Sharma A, Gupta M, Padwad Y, Sharma R (2020) Cell-free culture supernatant of probiotic Lactobacillus fermentum protects against H2O2-induced premature senescence by suppressing ROS-Akt-mTOR axis in murine preadipocytes. Probiotics Antimicrob Proteins 12(2):563–576

    Article  CAS  PubMed  Google Scholar 

  57. Méndez-Albiñana P, Martínez-González Á, Camacho-Rodríguez L, Ferreira-Lazarte Á, Villamiel M, Rodrigues-Díez R, Balfagón G, García-Redondo AB, Prieto-Nieto MI, Blanco-Rivero J (2022) Supplementation with the symbiotic formulation Prodefen® increases neuronal nitric oxide synthase and decreases oxidative stress in superior mesenteric artery from spontaneously hypertensive rats. Antioxidants 11(4):680

    Article  PubMed  PubMed Central  Google Scholar 

  58. Takeuchi O, Akira S (2010) Pattern recognition receptors and inflammation. Cell 140(6):805–820

    Article  CAS  PubMed  Google Scholar 

  59. Lebeer S, Vanderleyden J, De Keersmaecker SC (2010) Host interactions of probiotic bacterial surface molecules: comparison with commensals and pathogens. Nat Rev Microbiol 8(3):171–184

    Article  CAS  PubMed  Google Scholar 

  60. Manik M, Singh RK (2022) Role of toll-like receptors in modulation of cytokine storm signaling in SARS-CoV-2-induced COVID-19. J Med Virol 94(3):869–877

    Article  CAS  PubMed  Google Scholar 

  61. Singh IK, Sharma P (eds) (2022) An interplay of cellular and molecular components of immunology. CRC Press

    Google Scholar 

  62. Wang H, Zhang L, Xu S, Pan J, Zhang Q, Lu R (2018) Surface-layer protein from Lactobacillus acidophilus NCFM inhibits lipopolysaccharide-induced inflammation through MAPK and NF-κB signaling pathways in RAW264. 7 cells. J Agric Food Chem 66(29):7655–7662

    Article  CAS  PubMed  Google Scholar 

  63. Liu Q, Yu Z, Tian F, Zhao J, Zhang H, Zhai Q, Chen W (2020) Surface components and metabolites of probiotics for regulation of intestinal epithelial barrier. Microb Cell Factories 19(1):1–11

    Article  Google Scholar 

  64. Matsuguchi T, Takagi A, Matsuzaki T, Nagaoka M, Ishikawa K, Yokokura T, Yoshikai Y (2003) Lipoteichoic acids from Lactobacillus strains elicit strong tumor necrosis factor alpha-inducing activities in macrophages through Toll-like receptor 2. Clin Vaccine Immunol 10(2):259–266

    Article  CAS  Google Scholar 

  65. Albarracin L, Raya Tonetti F, Fukuyama K, Suda Y, Zhou B, Baillo AA, Fadda S, Saavedra L, Kurata S, Hebert EM, Kitazawa H (2022) Genomic characterization of Lactiplantibacillus plantarum strains possessing differential antiviral immunomodulatory activities. Bacteria 1(3):136–160

    Article  Google Scholar 

  66. Lu Q, Guo Y, Yang G, Cui L, Wu Z, Zeng X, Pan D, Cai Z (2022) Structure and anti-inflammation potential of lipoteichoic acids isolated from lactobacillus strains. Foods 11(11):1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Clasen SJ, Bell ME, Lee D, Henseler Z, Borbon A, de la Cuesta-Zuluaga J, Parys K, Zou J, Youngblut ND, Gewirtz AT, Belkhadir Y (2023) Silent recognition of flagellins from human gut commensal bacteria by Toll-like receptor 5. Sci Immunol 8(79):eabq7001

    Google Scholar 

  68. Dang Y, Sun Y, Zhou Y, Men X, Wang B, Li B, Ren Y (2022) Effects of probiotics on growth, the toll-like receptor mediated immune response and susceptibility to Aeromonas salmonicida infection in rainbow trout Oncorhynchus mykiss. Aquaculture 561:738668

    Article  CAS  Google Scholar 

  69. Fulde M, Sommer F, Chassaing B, van Vorst K, Dupont A, Hensel M, Basic M, Klopfleisch R, Rosenstiel P, Bleich A, Bäckhed F (2018) Neonatal selection by Toll-like receptor 5 influences long-term gut microbiota composition. Nature 560(7719):489–493

    Article  CAS  PubMed  Google Scholar 

  70. Lopetuso LR, Jia R, Wang XM, Jia LG, Petito V, Goodman WA, Meddings JB, Cominelli F, Reuter BK, Pizarro TT (2017) Epithelial-specific Toll-like receptor (TLR) 5 activation mediates barrier dysfunction in experimental ileitis. Inflamm Bowel Dis 23(3):392–403

    Article  PubMed  Google Scholar 

  71. Lebeer S, Claes I, Tytgat HL, Verhoeven TL, Marien E, von Ossowski I, Reunanen J, Palva A, de Vos WM, De Keersmaecker SC, Vanderleyden J (2012) Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol 78(1):185–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kant R, de Vos WM, Palva A, Satokari R (2014) Immunostimulatory CpG motifs in the genomes of gut bacteria and their role in human health and disease. J Med Microbiol 63(2):293–308

    Article  CAS  PubMed  Google Scholar 

  73. Poluektova E, Yunes R, Danilenko V (2021) The putative antidepressant mechanisms of probiotic bacteria: relevant genes and proteins. Nutrients 13(5):1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nwe PK (2021) Decoding gut microbial metabolites through G-Protein Coupled Receptor (GPCR) Activation (Doctoral dissertation, Yale University)

    Google Scholar 

  75. Singh RP, Shadan A, Ma Y (2022) Biotechnological applications of probiotics: a multifarious weapon to disease and metabolic abnormality. Probiotics Antimicrob Proteins 14:1–27

    Article  CAS  Google Scholar 

  76. Scheenstra MR, Van Harten RM, Veldhuizen EJ, Haagsman HP, Coorens M (2020) Cathelicidins modulate TLR-activation and inflammation. Front Immunol 11:1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Bao T, He F, Zhang X, Zhu L, Wang Z, Lu H, Wang T, Li Y, Yang S, Wang H (2020) Inulin exerts beneficial effects on non-alcoholic fatty liver disease via modulating gut microbiome and suppressing the lipopolysaccharide-toll-like receptor 4-mψ-nuclear factor-κb-nod-like receptor protein 3 pathway via gut-liver axis in mice. Front Pharmacol 11:558525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang C, Yang M, Ericsson AC (2019) Antimicrobial peptides: potential application in liver cancer. Front Microbiol 10:1257

    Article  PubMed  PubMed Central  Google Scholar 

  79. Bellés A, Aguirre-Ramírez D, Abad I, Parras-Moltó M, Sánchez L, Grasa L (2022) Lactoferrin modulates gut microbiota and Toll-like receptors (TLRs) in mice with dysbiosis induced by antibiotics. Food Funct 13(10):5854–5869

    Article  PubMed  Google Scholar 

  80. Liwinski T, Zheng D, Elinav E (2020) The microbiome and cytosolic innate immune receptors. Immunol Rev 297(1):207–224

    Article  CAS  PubMed  Google Scholar 

  81. Christgen S, Kanneganti TD (2020) Inflammasomes and the fine line between defense and disease. Curr Opin Immunol 62:39–44

    Article  CAS  PubMed  Google Scholar 

  82. Swanson KV, Deng M, Ting JPY (2019) The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nat Rev Immunol 19(8):477–489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Latz E, **ao TS, Stutz A (2013) Activation and regulation of the inflammasomes. Nat Rev Immunol 13(6):397–411

    Article  CAS  PubMed  Google Scholar 

  84. McDaniel MM, Kottyan LC, Singh H, Pasare C (2020) Suppression of inflammasome activation by IRF8 and IRF4 in cDCs is critical for T cell priming. Cell Rep 31(5):107604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Al Nabhani Z, Lepage P, Mauny P, Montcuquet N, Roy M, Le Roux K, Dussaillant M, Berrebi D, Hugot JP, Barreau F (2016) Nod2 deficiency leads to a specific and transmissible mucosa-associated microbial dysbiosis which is independent of the mucosal barrier defect. J Crohn’s Colitis 10(12):1428–1436

    Article  Google Scholar 

  86. Ramanan D, San Tang M, Bowcutt R, Cadwell K (2014) Bacterial sensor Nod2 prevents inflammation of the small intestine by restricting the expansion of the commensal Bacteroides vulgatus. Immunity 41(2):311–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Chan KL, Tam TH, Boroumand P, Prescott D, Costford SR, Escalante NK, Fine N, Tu Y, Robertson SJ, Prabaharan D, Liu Z (2017) Circulating NOD1 activators and hematopoietic NOD1 contribute to metabolic inflammation and insulin resistance. Cell Rep 18(10):2415–2426

    Article  CAS  PubMed  Google Scholar 

  88. Cavallari JF, Fullerton MD, Duggan BM, Foley KP, Denou E, Smith BK, Desjardins EM, Henriksbo BD, Kim KJ, Tuinema BR, Stearns JC (2017) Muramyl dipeptide-based postbiotics mitigate obesity-induced insulin resistance via IRF4. Cell Metab 25(5):1063–1074

    Article  CAS  PubMed  Google Scholar 

  89. Cavallari JF, Barra NG, Foley KP, Lee A, Duggan BM, Henriksbo BD, Anhê FF, Ashkar AA, Schertzer JD (2020) Postbiotics for NOD2 require nonhematopoietic RIPK2 to improve blood glucose and metabolic inflammation in mice. Am J Physiol Endocrinol Metab 318(4):E579–E585

    Article  CAS  PubMed  Google Scholar 

  90. Shi H, Zhou ZM, Zhu L, Chen L, Jiang ZL, Wu XT (2022) Underlying Mechanisms and Related Diseases Behind the Complex Regulatory Role of NOD-Like Receptor X1. DNA Cell Biol 41(5):469–478

    Article  CAS  PubMed  Google Scholar 

  91. Blevins HM, Xu Y, Biby S, Zhang S (2022) The NLRP3 inflammasome pathway: a review of mechanisms and inhibitors for the treatment of inflammatory diseases. Front Aging Neurosci 14:879021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dutta D, Liu J, **ong H (2022) NLRP3 inflammasome activation and SARS-CoV-2-mediated hyperinflammation, cytokine storm and neurological syndromes. Int J Physiol Pathophysiol Pharmacol 14(3):138

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Dominic A, Le NT, Takahashi M (2022) Loop between NLRP3 inflammasome and reactive oxygen species. Antioxid Redox Signal 36(10):784–796

    Article  CAS  PubMed  Google Scholar 

  94. Lee-Rivera I, López E, López-Colomé AM (2022) Diversification of PAR signaling through receptor crosstalk. Cell Mol Biol Lett 27(1):1–22

    Article  Google Scholar 

  95. Zhou H, Coveney AP, Wu M, Huang J, Blankson S, Zhao H, O’Leary DP, Bai Z, Li Y, Redmond HP, Wang JH (2019) Activation of both TLR and NOD signaling confers host innate immunity-mediated protection against microbial infection. Front Immunol 9:3082

    Article  PubMed  PubMed Central  Google Scholar 

  96. Cheok YY, Tan GMY, Lee CYQ, Abdullah S, Looi CY, Wong WF (2022) Innate immunity crosstalk with Helicobacter pylori: pattern recognition receptors and cellular responses. Int J Mol Sci 23(14):7561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Chiffoleau E (2018) C-type lectin-like receptors as emerging orchestrators of sterile inflammation represent potential therapeutic targets. Front Immunol 9:227

    Article  PubMed  PubMed Central  Google Scholar 

  98. Guenther C, Nagae M, Yamasaki S (2022) Self-referential immune recognition through C-type lectin receptors. Adv Immunol 156:1–23

    CAS  PubMed  Google Scholar 

  99. Rego C, Francisco AF, Boeno CN, Paloschi MV, Lopes JA, Silva MD, Santana HM, Serrath SN, Rodrigues JE, Lemos CT, Dutra RS (2022) Inflammasome NLRP3 activation induced by Convulxin, a C-type lectin-like isolated from Crotalus durissus terrificus snake venom. Sci Rep 12(1):1–17

    Article  Google Scholar 

  100. Pereira LHS, do Carmo Alves A, Ferreira JMS, Dos Santos LL (2021) Soluble DC-SIGN isoforms: ligands with unknown functions-A mini-review. Microb Pathog 150:104731

    Article  Google Scholar 

  101. Cui H, Shen X, Zheng Y, Guo P, Gu Z, Gao Y, Zhao X, Cheng H, Xu J, Chen X, Ding Z (2022) Identification, expression patterns, evolutionary characteristics and recombinant protein activities analysis of CD209 gene from Megalobrama amblycephala. Fish Shellfish Immunol 126:47

    Article  CAS  PubMed  Google Scholar 

  102. Wang B, Wang L, Wang H, Dai H, Lu X, Lee YK, Gu Z, Zhao J, Zhang H, Chen W, Wang G (2021) Targeting the gut microbiota for remediating obesity and related metabolic disorders. J Nutr 151(7):1703–1716

    Article  PubMed  Google Scholar 

  103. Dong L, Qin C, Li Y, Wu Z, Liu L (2022) Oat phenolic compounds regulate metabolic syndrome in high fat diet-fed mice via gut microbiota. Food Biosci 50:101946

    Article  CAS  Google Scholar 

  104. Zhang Z, Tian T, Chen Z, Liu L, Luo T, Dai J (2021) Characteristics of the gut microbiome in patients with prediabetes and type 2 diabetes. PeerJ 9:e10952

    Article  PubMed  PubMed Central  Google Scholar 

  105. López-Montoya P, Cerqueda-García D, Rodríguez-Flores M, López-Contreras B, Villamil-Ramírez H, Morán-Ramos S, Molina-Cruz S, Rivera-Paredez B, Antuna-Puente B, Velázquez-Cruz R, Villarreal-Molina T (2022) Association of gut microbiota with atherogenic dyslipidemia, and its impact on serum lipid levels after bariatric surgery. Nutrients 14(17):3545

    Article  PubMed  PubMed Central  Google Scholar 

  106. Lu ZX, Walker KZ, Muir JG, O’Dea K (2004) Arabinoxylan fibre improves metabolic control in people with Type II diabetes. Eur J Clin Nutr 58(4):621–628

    Article  CAS  PubMed  Google Scholar 

  107. Ullah H, Esposito C, Piccinocchi R, De Lellis LF, Santarcangelo C, Minno AD, Baldi A, Buccato DG, Khan A, Piccinocchi G, Sacchi R (2022) Postprandial glycemic and insulinemic response by a brewer’s spent grain extract-based food supplement in subjects with slightly impaired glucose tolerance: a monocentric, randomized, cross-over, double-blind, placebo-controlled clinical trial. Nutrients 14(19):3916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Musso G, Gambino R, Cassader M (2011) Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annu Rev Med 62:361–380

    Article  CAS  PubMed  Google Scholar 

  109. Liu Y, Du X, Zhai S, Tang X, Liu C, Li W (2022) Gut microbiota and atopic dermatitis in children: a sco** review. BMC Pediatr 22(1):1–8

    Article  CAS  Google Scholar 

  110. Lumkul L, Chuamanochan M, Nochaiwong S, Sompornrattanaphan M, Kulalert P, Lao-Araya M, Wongyikul P, Phinyo P (2022) Genetic association of beta-lactams-induced hypersensitivity reactions: a protocol for systematic review and meta-analysis. Genes 13(4):681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Saeed NK, Al-Beltagi M, Bediwy AS, El-Sawaf Y, Toema O (2022) Gut microbiota in various childhood disorders: implication and indications. World J Gastroenterol 28(18):1875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Liu J, Xu Y, Jiang B (2021) Novel insights into pathogenesis and therapeutic strategies of hepatic encephalopathy, from the gut microbiota perspective. Front Cell Infect Microbiol 11:586427

    Article  PubMed  PubMed Central  Google Scholar 

  113. Dev K, Begum J, Biswas A, Kannoujia J, Mir NA, Sonowal J, Kant R, Narender T (2021) Dietary lactobacillus acidophilus and mannan-oligosaccharides alter the lipid metabolism and health indices in broiler chickens. Probiotics Antimicrob Proteins 13(3):633–646

    Article  CAS  PubMed  Google Scholar 

  114. Štšepetova J, Rätsep M, Gerulis O, Jõesaar A, Mikelsaar M, Songisepp E (2022) Impact of Lactiplantibacillus plantarum Inducia on metabolic and antioxidative response in cholesterol and BMI variable indices: randomised, double-blind, placebo-controlled trials. Benefic Microbes 14:1–16

    Article  Google Scholar 

  115. Min K, Kim HT, Lee EH, Park H, Ha YS (2022) Bacteria for treatment: microbiome in bladder cancer. Biomedicine 10(8):1783

    CAS  Google Scholar 

  116. Kijima S, Suzuki N, Hanioka T, Yoneda M, Tanabe K, Hirofuji T (2022) Application of Lactobaillus salivarius WB21 to the oral care of healthy older adults: a randomized, double-blind, placebo-controlled crossover comparative study. Life 12(9):1422

    Article  PubMed  PubMed Central  Google Scholar 

  117. Garbacz K (2022) Anticancer activity of lactic acid bacteria. In: Seminars in cancer biology. Academic press

    Google Scholar 

  118. Mafra D, Ribeiro M, Fonseca L, Regis B, Cardozo LF, Dos Santos HF, de Jesus HE, Schultz J, Shiels PG, Stenvinkel P, Rosado A (2022) Archaea from the gut microbiota of humans: could be linked to chronic diseases? Anaerobe 77:102629

    Article  CAS  PubMed  Google Scholar 

  119. Zhang X, Zhang X, Tong F, Cai Y, Zhang Y, Song H, Tian X, Yan C, Han Y (2022) Gut microbiota induces high platelet response in patients with ST segment elevation myocardial infarction after ticagrelor treatment. elife 11:e70240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Góralczyk-Bińkowska A, Szmajda-Krygier D, Kozłowska E (2022) The microbiota–gut–brain axis in psychiatric disorders. Int J Mol Sci 23(19):11245

    Article  PubMed  PubMed Central  Google Scholar 

  121. Aniwattanapong D, List JJ, Ramakrishnan N, Bhatti GS, Jorge R (2022) Effect of Vagus nerve stimulation on attention and working memory in neuropsychiatric disorders: a systematic review. Neuromodulation 25:343

    Article  PubMed  Google Scholar 

  122. Bolt S (2021) The role of the gut-brain axis on the development of Postoperative Cognitive Dysfunction (POCD), Doctoral dissertation

    Google Scholar 

  123. Lyte JM, Keane J, Eckenberger J, Anthony N, Shrestha S, Marasini D, Daniels KM, Caputi V, Donoghue AM, Lyte M (2021) Japanese quail (Coturnix japonica) as a novel model to study the relationship between the avian microbiome and microbial endocrinology-based host-microbe interactions. Microbiome 9(1):1–24

    Article  Google Scholar 

  124. Fan P, Nelson CD, Driver JD, Elzo MA, Peñagaricano F, Jeong KC (2021) Host genetics exerts lifelong effects upon hindgut microbiota and its association with bovine growth and immunity. ISME J 15(8):2306–2321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Duque ALRF, Demarqui FM, Santoni MM, Zanelli CF, Adorno MAT, Milenkovic D, Mesa V, Sivieri K (2021) Effect of probiotic, prebiotic, and synbiotic on the gut microbiota of autistic children using an in vitro gut microbiome model. Food Res Int 149:110657

    Article  CAS  PubMed  Google Scholar 

  126. Tan Q, Orsso CE, Deehan EC, Kung JY, Tun HM, Wine E, Madsen KL, Zwaigenbaum L, Haqq AM (2021) Probiotics, prebiotics, synbiotics, and fecal microbiota transplantation in the treatment of behavioral symptoms of autism spectrum disorder: a systematic review. Autism Res 14(9):1820–1836

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin Verma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Verma, N. et al. (2024). Cellular and Molecular Mechanisms Involving Synbiotics in Various Disease State. In: Dua, K. (eds) Synbiotics in Human Health: Biology to Drug Delivery. Springer, Singapore. https://doi.org/10.1007/978-981-99-5575-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5575-6_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5574-9

  • Online ISBN: 978-981-99-5575-6

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics

Navigation