Log in

Dietary Lactobacillus acidophilus and Mannan-Oligosaccharides Alter the Lipid Metabolism and Health Indices in Broiler Chickens

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The effects of dietary Lactobacillus acidophilus (LBA) and mannan-oligosaccharide (MOS) supplementation on lipid metabolism and consequent lipid profile and health indices in broiler chicken were investigated in this study. Supplementation of 0.2% MOS along with either 106 or 107 LBA/g feed in broiler chicken downregulated hepatic expression of genes involved in lipogenesis, and upregulated expression of lipolytic genes. It caused decline of lipogenesis and increase of lipid oxidation which resulted in lower carcass fat content. None of the genes studied influenced fatty acid profile of chicken meat except the expression of stearoyl CoA (Δ9) desaturase-1 (SCD-1) whose upregulation increased monounsaturated fatty acid (MUFA) content at the cost of saturated fatty acid (SFA) content. The lipid metabolism indices of chicken meat such as ∆9 desaturase index (DI) increased in birds supplemented with 0.2% MOS along with either 106 or 107 CFU LBA/g feed, whereas no effect was observed on ∆5 + ∆6 DI. The supplementation of 0.2% MOS along with either 106 or 107 CFU LBA/g feed in birds improved the health indices of chicken meat due to upregulation of SCD-1 expression. The supplementation of 0.2% MOS along with either 106 or 107 CFU LBA/g feed in broiler chicken produced hypocholesterolemic and hypolipidemic effects with improved serum cardio-protective indices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Smink W, Gerrits WJ, Hovenier R, Geelen MJ, Verstegen MW, Beynen AC (2010) Effect of dietary fat sources on fatty acid deposition and lipid metabolism in broiler chickens. Poult Sci 89(11):2432–2440. https://doi.org/10.3382/ps.2010-00665

    Article  CAS  PubMed  Google Scholar 

  2. Nelson DL, Cox MM (eds) (2011) Lehninger principles of biochemistry. Worth Publishers, New York, USA

    Google Scholar 

  3. Richards MP, Poch SM, Coon CN, Rosebrough RW, Ashwell CM, McMurtry JP (2003) Feed restriction significantly alters lipogenic gene expression in broiler breeder chickens. J Nutr 133:707–715. https://doi.org/10.1093/jn/133.3.707

    Article  CAS  PubMed  Google Scholar 

  4. Tu T, Su Y, Li G, Zhang X, Tong H (2016) Expression of lipid metabolism-associated genes in male and female white feather chicken. J Poult Sci 53:118–123. https://doi.org/10.2141/jpsa.0140071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Zhao S, MA H, Zou S, Chen W, Zhao R, (2007) Hepatic lipogenesis in broiler chickens with different fat deposition during embryonic development. J Vet Med A Physiol Pathol Clin Med 54(1):1–6. https://doi.org/10.1111/j.1439-0442.2007.00898.x

    Article  CAS  PubMed  Google Scholar 

  6. Guillou H, Martin PGP, Pineau T (2008) Transcriptional regulation of hepatic fatty acid metabolism. In: Quinn PJ, Wang X (eds) Lipids in health and disease. Subcellular Biochemistry, vol 49. Springer, Dordrecht, pp 3–47. https://doi.org/10.1007/978-1-4020-8831-5_1

    Chapter  Google Scholar 

  7. Jump DB (2011) Fatty acid regulation of hepatic lipid metabolism. Curr Opin Clin Nutr Metab Care 14(2):115–120. https://doi.org/10.1097/MCO.0b013e328342991c

  8. Li H, Li Z, Liu X (2017) An overall view of the regulation of hepatic lipid metabolism in chicken revealed by new-generation sequencing. In: Manafi M (ed) Poultry Science. IntechOpen, London, UK, pp 133–147. https://doi.org/10.5772/64970

    Chapter  Google Scholar 

  9. Huang JB, Zhang Y, Zhou YB, Wan XC, Zhang JS (2015) Effects of epigallocatechin gallate on lipid metabolism and its underlying molecular mechanism in broiler chickens. J Anim Physiol Anim Nutr 99:719–727. https://doi.org/10.1111/jpn.12276

    Article  CAS  Google Scholar 

  10. Rosa F, Osorio JS, Trevisi E, Yanqui-Rivera F, Estill CT, Bionaz M (2017) 2,4-Thiazolidinedione treatment improves the innate immune response in dairy goats with induced subclinical mastitis. PPAR Res 2017:7097450.https://doi.org/10.1155/2017/7097450

  11. Berg JM, Tymoczko JL, Stryer L (2012) Biochemistry, 7th edn. Basingstoke, WH Freeman, New York

    Google Scholar 

  12. de Souza Khatlab A, Del Vesco AP, Gasparino E, de Oliveira Neto AR (2018) Gender and age effects on the expression of genes related to lipid metabolism in broiler’s liver. Czech J Anim Sci 63:103–109.https://doi.org/10.17221/41/2017-CJAS

  13. Basiricò L, Morera P, Lacetera N, Ronchi B, Nardone A, Bernabucci U (2011) Down-regulation of hepatic ApoB100 expression during hot season in transition dairy cows. Livest Sci 137:49–57. https://doi.org/10.1016/j.livsci.2010.09.027

    Article  Google Scholar 

  14. Zhang W, Patil S, Chauhan B, Guo S, Powell DR, Le J, Klotsas A, Matika R, **ao X, Franks R, Heidenreich KA (2006) FoxO1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. J Biol Chem 281:10105–10117. https://doi.org/10.1074/jbc.M600272200

    Article  CAS  PubMed  Google Scholar 

  15. Yang X, Zhuang J, Rao K, Li X, Zhao R (2010) Effect of early feed restriction on hepatic lipid metabolism and expression of lipogenic genes in broiler chickens. Res Vet Sci 89:438–444. https://doi.org/10.1016/j.rvsc.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  16. Ooi LG, Liong MT (2010) Cholesterol-lowering effects of probiotics and prebiotics: a review of in vivo and in vitro findings. Int J Mol Sci 11:2499–2522. https://doi.org/10.3390/ijms11062499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Royan M, Meng GY, Othman F, Sazili AQ, Navidshad B (2011) Effects of conjugated linoleic acid, fish oil and soybean oil on PPARs (α & γ) mRNA expression in broiler chickens and their relation to body fat deposits. Int J Mol Sci 12:8581–8595. https://doi.org/10.3390/ijms12128581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu K, Tan F, Mu J, Yi R, Zhou X, Zhao X (2019) Anti-obesity effects of lactobacillus fermentum CQPC05 isolated from sichuan pickle in high-fat diet-induced obese mice through PPAR-α signaling pathway. Microorganisms 7:194. https://doi.org/10.3390/microorganisms7070194

    Article  CAS  PubMed Central  Google Scholar 

  19. Luo H, Wang X, Chen C, Wang J, Zou X, Li C, Xu Z, Yang X, Shi W, Zeng C (2015) Oxidative stress causes imbalance of renal renin angiotensin system (RAS) components and hypertension in obese Zucker rats. J Am Heart Assoc 4:e001559. https://doi.org/10.1161/JAHA.114.001559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rather SA, Pothuraju R, Sharma RK, De S, Mir NA, Jangra S (2014) Anti-obesity effect of feeding probiotic dahi containing Lactobacillus casei NCDC 19 in high fat diet-induced obese mice. Int J Dairy Technol 67(504):509. https://doi.org/10.1111/1471-030712154

    Article  Google Scholar 

  21. Zhang J, Zhou X, Chen B, Long X, Mu J, Pan Y, Song JL, Zhao X, Yang Z (2018) Preventive effect of Lactobacillus plantarum CQPC10 on activated carbon induced constipation in Institute of Cancer Research (ICR) mice. Appl Sci 8:1498. https://doi.org/10.3390/app8091498

    Article  CAS  Google Scholar 

  22. Liong MT, Dunshea FR, Shah NP (2007) Effects of a synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolemic pigs on high- and low-fat diets. Br J Nutr 98:736–744. https://doi.org/10.1017/S0007114507747803

    Article  CAS  PubMed  Google Scholar 

  23. Dev K, Mir NA, Biswas A, Kannoujia J, Begum J, Kant R, Mandal A (2020) Dietary synbiotic supplementation improves the growth performance, body antioxidant pool, serum biochemistry, meat quality, and lipid oxidative stability in broiler chickens. Anim Nutr 6:325–332. https://doi.org/10.1016/j.aninu.2020.03.002

    Article  PubMed  PubMed Central  Google Scholar 

  24. Mir NA, Tyagi PK, Biswas AK, Tyagi PK, Mandal AB, Kumar F, Sharma D, Biswas A, Verma AK (2018) Inclusion of flaxseed, broken rice, and distillers dried grains with solubles (DDGS) in broiler chicken ration alters the fatty acid profile, oxidative stability, and other functional properties of meat. Euro J Lipid Sci Technol 120:1700470. https://doi.org/10.1002/ejlt.201700470

    Article  CAS  Google Scholar 

  25. Bai J, Greene E, Li W, Kidd MT, Dridi S (2015) Branched-chain amino acids modulate the expression of hepatic fatty acid metabolism-related genes in female broiler chickens. Mol Nutr Food Res 59(1171):1181. https://doi.org/10.1002/mnfr.201400918

    Article  CAS  Google Scholar 

  26. Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30:e36. https://doi.org/10.1093/nar/30.9.e36

    Article  PubMed  PubMed Central  Google Scholar 

  27. O’Fallon JV, Busboom JR, Nelson ML, Gaskins CT (2007) A direct method for fatty acid methyl ester (FAME) synthesis: application to wet meat tissues, oils and feedstuffs. J Anim Sci 85:1511–1521. https://doi.org/10.2527/jas.2006-491

    Article  CAS  PubMed  Google Scholar 

  28. Association of Official Analytical Chemists (1995). Official methods of analysis of AOAC International.

  29. Okada T, Furuhashi N, Kuromori Y, Miyashita M, Iwata F, Harada K (2005) Plasma palmitoleic acid content and obesity in children. Am J Clin Nutr 82:747–750. https://doi.org/10.1093/ajcn/82.4.747

    Article  CAS  PubMed  Google Scholar 

  30. Sirri F, Castellini C, Roncarati A, Meluzzi A (2010) Effect of feeding and genotype on lipid profile of organic chicken meat. Eur J Lipid Sci Tech 112:994–1002. https://doi.org/10.1002/ejlt.200900204

    Article  CAS  Google Scholar 

  31. Kumar F, Tyagi PK, Mir NA et al (2019) Role of flaxseed meal feeding for different durations in the lipid deposition and meat quality in broiler chickens. J Am Oil Chem Soc 96(3):261–271. https://doi.org/10.1002/aocs.12190

    Article  CAS  Google Scholar 

  32. Pilarczyk R, Woojcik J, Sablik P, Czerniak P (2015) Fatty acid profile and health lipid indices in the raw milk of Simmental and Holstein-Friesian cows from an organic farm. S Afr J Anim Sci 45:30–38. https://doi.org/10.4314/sajas.v45i1.4

    Article  CAS  Google Scholar 

  33. Frohlich J, Dobiášová M (2003) Fractional esterification rate of cholesterol and ratio of triglycerides to HDL-cholesterol are powerful predictors of positive findings on coronary angiography. Clin Chem 49:1873–1880. https://doi.org/10.1373/clinchem.2003.02255835

    Article  CAS  PubMed  Google Scholar 

  34. Saggerson D (2008) Malonyl-CoA, a key signaling molecule in mammalian cells. Annu Rev Nutr 28:253–272. https://doi.org/10.1146/annurev.nutr.28.061807.155434

    Article  CAS  PubMed  Google Scholar 

  35. Khatun J, Loh TC, Akit H, Foo HL, Mohamad R (2017) Fatty acid composition, fat deposition, lipogenic gene expression and performance of broiler fed diet supplemented with different sources of oil. Anim Sci J 88(1406):1413. https://doi.org/10.1111/asj.12775

    Article  CAS  Google Scholar 

  36. Wang Y, Zhou M, Lam KSL, Xu A (2009) Protective roles of adiponectin in obesity-related fatty liver diseases: mechanisms and therapeutic implications. Arq Bras Endocrinol Metabol 53:201–212. https://doi.org/10.1590/S0004-27302009000200012

    Article  PubMed  Google Scholar 

  37. Proszkowiec-Weglarz M, Richards MP (2009) Expression and activity of the 5’-adenosine monophosphate-activated protein kinase pathway in selected tissues during chicken embryonic development. Poult Sci 88(159):178. https://doi.org/10.3382/ps.2008-00262

    Article  Google Scholar 

  38. Zerehdaran S, Vereijken AL, Arendonk JV, Van der Waaij EH (2005) Effect of age and housing system on genetic parameters for broiler carcass traits. Poult Sci 84(6):833–838. https://doi.org/10.1093/ps/84.6.833

    Article  CAS  PubMed  Google Scholar 

  39. Paton CM, Ntambi JM (2009) Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 297:E28–E37. https://doi.org/10.1152/ajpendo.90897.2008

    Article  CAS  PubMed  Google Scholar 

  40. Xu H, Li X, Adams H, Kubena K, Guo S (2019) Etiology of metabolic syndrome and dietary intervention. Int J Mol Sci 20(1):128. https://doi.org/10.3390/ijms20010128

    Article  CAS  Google Scholar 

  41. Begley M, Hill C, Gahan CGM (2006) Bile salt hydrolase activity in probiotics. Appl Environ Microbiol 72:1729–1738. https://doi.org/10.1128/AEM.72.3.1729-1738.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lye HS, Rusul G, Liong MT (2010) Removal of cholesterol by Lactobacilli via incorporation of and conversion to coprostanol. J Dairy Sci 93:1383–1392. https://doi.org/10.3168/jds.2009-2574

    Article  CAS  PubMed  Google Scholar 

  43. Dikeman CL, Murphy MR, Fahey GC (2006) Dietary fibers affect viscosity of solutions and simulated human gastric and small intestinal digesta. J Nutr 136:913–919. https://doi.org/10.1093/jn/136.4.913

    Article  CAS  PubMed  Google Scholar 

  44. Martarelli D, Verdenelli MC, Scuri S, Cocchioni M, Silvi S, Cecchini C, Pompei P (2011) Effect of a probiotic intake on oxidant and antioxidant parameters in plasma of athletes during intense exercise training. Curr Microbiol 62:1689–1696. https://doi.org/10.1007/s00284-011-9915-3

    Article  CAS  PubMed  Google Scholar 

  45. Mikelsaar M, Zilmer M (2009) Lactobacillus fermentum ME-3–an antimicrobial and antioxidative probiotic. Microb Ecol Health Dis 21:1–27. https://doi.org/10.1080/08910600902815561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study was funded by the Department of Biotechnology, Ministry of Science and Technology, Government of India (Grant No. BT/PR9724/AAQ/1/571/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Avishek Biswas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable institutional guidelines for the care and use of animals were followed. The experimental procedures carried out in this study were approved by the Institutional Animal Ethics Committee (IEAC) following the guidelines of “Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA) 2012” established under the “Prevention of Cruelty of Animals Act 1960” of Indian Penal Code (18 September 2017/Project No. 11).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dev, K., Begum, J., Biswas, A. et al. Dietary Lactobacillus acidophilus and Mannan-Oligosaccharides Alter the Lipid Metabolism and Health Indices in Broiler Chickens. Probiotics & Antimicro. Prot. 13, 633–646 (2021). https://doi.org/10.1007/s12602-020-09717-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09717-9

Keywords

Navigation