Environment-Friendly Management of Plant Diseases by Bacillus Through Molecular Pathways

  • Chapter
  • First Online:
Microbial Biocontrol: Molecular Perspective in Plant Disease Management

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 49))

  • 184 Accesses

Abstract

Numerous genetic and climatic factors constantly endanger the quality and quantity of crop products. Synthetic pesticides and fertilizers, which are dangerous to the environment, human health, and animals, are applied as part of conventional management procedures to lessen the effects of these elements. Additionally, excessive usage of these pesticides has had negative effects, including the deaths of animals and farmers from lethal diseases. These days, using microorganisms to support plant growth and provide biological defense against pathogens is given a lot of attention. It has been determined that many bacterial and fungal species are advantageous to the plant hosts. Bacillus has been given specific attention in this regard as they are capable of producing pathogen-inhibiting metabolites and indirectly enhancing plant growth. These metabolites include various cell wall degrading enzymes like protease, lipopeptides, chitosanase, hydrogen cyanide, glucanase, and cellulase, which inhibit different disease-causing bacteria, fungi, and viruses. Bacillus mimics the harmful effects of pathogens upon contact with the plant hosts activating the host defense mechanisms by triggering resistance genes, proteins, phytohormones, and metabolites. Additionally, the ability to produce spores resistant to harsh environments favors the Bacillus spp. as a biocontrol agent. However, the underlying mechanisms for such responses induced by Bacillus spp. are not well documented in the literature. This chapter gives the current knowledge available regarding the molecular mechanisms adapted by Bacillus spp. related to the biocontrol of different plant disease-causing agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas A, Khan SU, Khan WU, Saleh TA, Khan MHU, Ullah S, Ali A, Ikram M (2019) Antagonist effects of strains of bacillus spp. against rhizoctonia solani for their protection against several plant diseases: alternatives to chemical pesticides. Comp Ren Biol 342:124–135

    Article  Google Scholar 

  • Abriouel H, Franz CM, Omar NB, Gálvez A (2011) Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev 35(1):201–232

    Article  CAS  PubMed  Google Scholar 

  • Adimpong DB, Sørensen KI, Thorsen L, Stuer-Lauridsen B, Abdelgadir WS, Nielsen DS, Derkx PM, Jespersen L (2012) Antimicrobial susceptibility of Bacillus strains isolated from primary starters for African traditional bread production and characterization of the bacitracin operon and bacitracin biosynthesis. Appl Environ Microbiol 78(22):7903–7914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ahvenniemi P, Wolf M, Lehtonen MJ, Wilson P, German-Kinnari M, Valkonen J (2009) Evolutionary diversification indicated by compensatory base changes in ITS2 secondary structures in a complex fungal species, Rhizoctonia solani. J Mol Evol 69(2):150–163

    Article  CAS  PubMed  Google Scholar 

  • Aloo BN, Makumba BA, Mbega ER (2019) The potential of Bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219:26–39

    Article  CAS  PubMed  Google Scholar 

  • Ananda M, Rusmana I, Akhdiya A (2019) Quorum quenching of Bacillus cereus INT1c against pseudomonas syringae. The 2nd international conference on mathematics, science and computer science, Indonesia, October 2019. J. Phys. Conf. Ser. 1277 012010. IOP Publishing

    Google Scholar 

  • Anckaert A, Arias AA, Hoff G (2021) The use of Bacillus spp. as bacterial biocontrol agents to control plant. Burleigh Dodds Ser Agri Sci. https://doi.org/10.19103/AS.2021.0093.10

  • Andersson DI, Hughes D (2014) Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 12(7):465–478

    Article  CAS  PubMed  Google Scholar 

  • Andrić S, Meyer T, Ongena M (2020) Bacillus responses to plant-associated fungal and bacterial communities. Front Microbiol 11:1350

    Article  PubMed  PubMed Central  Google Scholar 

  • Aouadhi C, Rouissi Z, Kmiha S, Mejri S, Maaroufi A (2016) Effect of sporulation conditions on the resistance of Bacillus sporothermodurans spores to nisin and heat. Food Microbiol 54:6–10

    Article  CAS  Google Scholar 

  • Arroyave-Toro JJ, Mosquera S, Villegas-Escobar V (2017) Biocontrol activity of Bacillus subtilis EA-CB0015 cells and lipopeptides against postharvest fungal pathogens. Biol Control 114:195–200

    Article  CAS  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of rhizoctonia solani dam**-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62(11):4081–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baez-Rogelio A, Morales-García YE, Quintero-Hernández V, Muñoz-Rojas J (2017) Next generation of microbial inoculants for agriculture and bioremediation. Microb Biotechnol 10(1):19–21

    Article  PubMed  Google Scholar 

  • Bais HP, Fall R, Vivanco JM (2004) Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol 134(1):307–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barák I (2017) Spores and spore formers. Front Microbiol 8:1046

    Article  PubMed  PubMed Central  Google Scholar 

  • Batool M, Khalid MH, Hassan MN, Yusuf HF (2011) Homology modeling of an antifungal metabolite plipastatin synthase from the Bacillus subtilis 168. Bioinformation 7(8):384

    Article  PubMed  PubMed Central  Google Scholar 

  • Belimov AA, Dodd IC, Safronova VI, Dumova VA, Shaposhnikov AI, Ladatko AG, Davies WJ (2014) Abscisic acid metabolizing rhizobacteria decrease ABA concentrations in planta and alter plant growth. Plant Physiol Biochem 74:84–91

    Article  CAS  PubMed  Google Scholar 

  • Beneduzi A, Ambrosini A, Passaglia LM (2012) Plant growth-promoting rhizobacteria (PGPR): their potential as antagonists and biocontrol agents. Genet Mol Biol 35:1044–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Benitez LB, Velho RV, Lisboa MP, da Costa Medina LF, Brandelli A (2010) Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J Microbiol 48(6):791–797

    Article  CAS  PubMed  Google Scholar 

  • Bloemberg GV, Lugtenberg BJ (2001) Molecular basis of plant growth promotion and biocontrol by rhizobacteria. Curr Opin Plant Biol 4(4):343–350

    Article  CAS  PubMed  Google Scholar 

  • Borisova SA, Circello BT, Zhang JK, van der Donk WA, Metcalf WW (2010) Biosynthesis of rhizocticins, antifungal phosphonate oligopeptides produced by Bacillus subtilis ATCC6633. Chem Biol 17(1):28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bozhüyük KA, Micklefield J, Wilkinson B (2019) Engineering enzymatic assembly lines to produce new antibiotics. Curr Opin Plant Biol 51:88–96

    Google Scholar 

  • Butt H, Bastas KK (2022) Biochemical and molecular effectiveness of Bacillus spp. in disease suppression of horticultural crops. In: Seymen M (ed) Sustainable horticulture- microbial inoculants and stress interaction. Elsevier, Academic Press, pp 461–494

    Google Scholar 

  • Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, **ong H, Helmann JD, Cai Y (2018) Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci Rep 8(1):1–4

    Google Scholar 

  • Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J (2019) Overview of the antimicrobial compounds produced by members of the Bacillus subtilis group. Front Microbiol 10:302

    Article  PubMed  PubMed Central  Google Scholar 

  • Cawoy H, Debois D, Franzil L, De Pauw E, Thonart P, Ongena M (2015) Lipopeptides as main ingredients for inhibition of fungal phytopathogens by Bacillus subtilis/amyloliquefaciens. Microb Biotechnol 8(2):281–295

    Article  CAS  PubMed  Google Scholar 

  • Cazorla FM, Romero D, Pérez-García A, Lugtenberg BJ, Vicente AD, Bloemberg G (2007) Isolation and characterization of antagonistic Bacillus subtilis strains from the avocado rhizoplane displaying biocontrol activity. J Appl Microbiol 103(5):1950–1959

    Article  CAS  PubMed  Google Scholar 

  • Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Süssmuth R, Piel J, Borriss R (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140(1–2):27–37

    Article  CAS  PubMed  Google Scholar 

  • Choi HK, Song GC, Yi HS, Ryu CM (2014) Field evaluation of the bacterial volatile derivative 3-pentanol in priming for induced resistance in pepper. J Chem Ecol 40(8):882–892

    Article  CAS  PubMed  Google Scholar 

  • Chowdappa P, Kumar SM, Lakshmi MJ, Upreti KK (2013) Growth stimulation and induction of systemic resistance in tomato against early and late blight by Bacillus subtilis OTPB1 or Trichoderma harzianum OTPB3. Biol Control 65(1):109–117

    Article  Google Scholar 

  • Chowdhury SP, Hartmann A, Gao X, Borriss R (2015a) Biocontrol mechanism by root-associated bacillus amyloliquefaciens FZB42–a review. Front Microbiol 6:780

    Article  PubMed  PubMed Central  Google Scholar 

  • Chowdhury SP, Uhl J, Grosch R, Alquéres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A (2015b) Cyclic lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant-Microbe Interact 28(9):984–995

    Article  CAS  PubMed  Google Scholar 

  • Choudhary DK, Johri BN (2009) Interactions of Bacillus spp. and plants-with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    Article  CAS  PubMed  Google Scholar 

  • Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim SD, Roberts DP (2008) Isolation and partial characterization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl Microbiol Biotechnol 80(1):115–123

    Article  CAS  PubMed  Google Scholar 

  • Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botany 87(5):455–462

    Article  CAS  Google Scholar 

  • Connor N, Sikorski J, Rooney AP, Kopac S, Koeppel AF, Burger A, Cole SG, Perry EB, Krizanc D, Field NC, Slaton M (2010) Ecology of speciation in the genus Bacillus. Appl Environ Microbiol 76(5):1349–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Conrath U, Beckers GJ, Langenbach CJ, Jaskiewicz MR (2015) Priming for enhanced defense. Annu Rev Phytopathol 53(1):97–119

    Article  CAS  PubMed  Google Scholar 

  • De Cal A, Sztejnberg A, Sabuquillo P, Melgarejo P (2009) Management Fusarium wilt on melon and watermelon by Penicillium oxalicum. Biol Control 51(3):480–486

    Article  Google Scholar 

  • De Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281

    Article  Google Scholar 

  • Debois D, Jourdan E, Smargiasso N, Thonart P, De Pauw E, Ongena M (2014) Spatiotemporal monitoring of the antibiome secreted by Bacillus biofilms on plant roots using MALDI mass spectrometry imaging. Anal Chem 86(9):4431–4438

    Article  CAS  PubMed  Google Scholar 

  • DeFilippi S, Groulx E, Megalla M, Mohamed R, Avis TJ (2018) Fungal competitors affect production of antimicrobial lipopeptides in Bacillus subtilis strain B9–5. J Chem Ecol 44(4):374–383

    Article  CAS  PubMed  Google Scholar 

  • Denner WH, Gillanders T (1996) The legislative aspects of the use of industrial enzymes in the manufacture of food and food ingredients. Stockton Press, New York, pp 397–412

    Google Scholar 

  • Dimkpa CO, Merten D, Svatoš A, Büchel G, Kothe E (2009) Siderophores mediate reduced and increased uptake of cadmium by Streptomyces tendae F4 and sunflower (Helianthus annuus), respectively. J Appl Microbiol 107(5):1687–1696

    Article  CAS  PubMed  Google Scholar 

  • Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22(2):107–149

    Article  CAS  Google Scholar 

  • Dodd IC, Zinovkina NY, Safronova VI, Belimov AA (2010) Rhizobacterial mediation of plant hormone status. Ann Appl Biol 157(3):361–379

    Article  CAS  Google Scholar 

  • Dong YH, Xu JL, Li XZ, Zhang LH (2000) AiiA, an enzyme that inactivates the acylhomoserine lactone quorum-sensing signal and attenuates the virulence of Erwinia carotovora. PNAS 97(7):3526–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Droby S, Chalutz E, Wilson CL, Wisniewski ME (1992) Biological control of postharvest diseases: a promising alternative to the use of synthetic fungicides. Phytoparasitica 20(1):149–153

    Article  Google Scholar 

  • Du Y, Ma J, Yin Z, Liu K, Yao G, Xu W, Fan L, Du B, Ding Y, Wang C (2019) Comparative genomic analysis of Bacillus paralicheniformis MDJK30 with its closely related species reveals an evolutionary relationship between B. paralicheniformis and B licheniformis. BMC Genom 20(1):1–6

    Article  CAS  Google Scholar 

  • Duffy B, Schouten A, Raaijmakers JM (2003) Pathogen self-defense: mechanisms to counteract microbial antagonism. Annu Rev Phytopathol 41(1):501–538

    Article  CAS  PubMed  Google Scholar 

  • Dunlap CA (2019) Taxonomy of registered Bacillus spp. strains used as plant pathogen antagonists. Biol Control 134:82–86

    Article  Google Scholar 

  • Dunlap CA, Schisler DA, Price NP, Vaughn SF (2011) Cyclic lipopeptide profile of three Bacillus subtilis strains; antagonists of Fusarium head blight. J Microbiol 49(4):603–609

    Article  CAS  PubMed  Google Scholar 

  • Dunlap CA, Kim SJ, Kwon SW, Rooney AP (2016) Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and ‘Bacillus oryzicola’ are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int J Syst Evol Microbiol 66(3):1212–1217

    Article  CAS  PubMed  Google Scholar 

  • Durrant WE, Dong X (2004) Systemic acquired resistance. Annu Rev Phytopathol 42(1):185–209

    Article  CAS  PubMed  Google Scholar 

  • Dutta S, Whicher JR, Hansen DA, Hale WA, Chemler JA, Congdon GR, Narayan AR, Håkansson K, Sherman DH, Smith JL, Skiniotis G (2014) Structure of a modular polyketide synthase. Nature 510(7506):512–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Egamberdieva D, Wirth SJ, Shurigin VV, Hashem A, Abd-Allah EF (2017) Endophytic bacteria improve plant growth, symbiotic performance of chickpea (Cicer arietinum L.) and induce suppression of root rot caused by Fusarium solani under salt stress. Front Microbiol 8:1887

    Article  PubMed  PubMed Central  Google Scholar 

  • Eilenberg J, Hajek A, Lomer C (2001) Suggestions for unifying the terminology in biological control. BioControl 46(4):387–400

    Article  Google Scholar 

  • Elanchezhiyan K, Keerthana U, Nagendran K, Prabhukarthikeyan SR, Prabakar K, Raguchander T, Karthikeyan G (2018) Multifaceted benefits of Bacillus amyloliquefaciens strain FBZ24 in the management of wilt disease in tomato caused by Fusarium oxysporum f. sp. lycopersici. Physiol Mol Plant Pathol 103:92–101

    Article  Google Scholar 

  • Falardeau J, Wise C, Novitsky L, Avis TJ (2013) Ecological and mechanistic insights into the direct and indirect antimicrobial properties of Bacillus subtilis lipopeptides on plant pathogens. J Chem Ecol 39(7):869–878

    Article  CAS  PubMed  Google Scholar 

  • Fan B, Chen XH, Budiharjo A, Bleiss W, Vater J, Borriss R (2011) Efficient colonization of plant roots by the plant growth promoting bacterium Bacillus amyloliquefaciens FZB42, engineered to express green fluorescent protein. J Biotechnol 151(4):303–311

    Article  CAS  PubMed  Google Scholar 

  • Fan B, Borriss R, Bleiss W, Wu X (2012) Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J Microbiol 50(1):38–44

    Article  PubMed  Google Scholar 

  • Fan H, Ru J, Zhang Y, Wang Q, Li Y (2017a) Fengycin produced by Bacillus subtilis 9407 plays a major role in the biocontrol of apple ring rot disease. Microbiol Res 199:89–97

    Article  CAS  PubMed  Google Scholar 

  • Fan H, Zhang Z, Li Y, Zhang X, Duan Y, Wang Q (2017b) Biocontrol of bacterial fruit blotch by Bacillus subtilis 9407 via surfactin-mediated antibacterial activity and colonization. Front Microbiol 8:1973

    Article  PubMed  PubMed Central  Google Scholar 

  • Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R (2018) Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol. Front Microbiol 9:2491

    Article  PubMed  PubMed Central  Google Scholar 

  • Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, Clément C, Barka EA, Jacquard C, Dorey S (2015) Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16(2):177–187

    Article  CAS  PubMed  Google Scholar 

  • Felske AD (2004) Ecology of Bacillus species in soil. In: Ricca E (ed) Bacterial spore formers: probiotics and emerging applications, horizon bioscience, pp 35–44

    Google Scholar 

  • Field D, Cotter P, Hill C, Ross RP (2007) Bacteriocin biosynthesis, structure, and function. In: Riley MA (ed) Research and applications in bacteriocins, vol 28. Horizon Bioscience, pp 5–41

    Google Scholar 

  • Fira D, Dimkić I, Berić T, Lozo J, Stanković S (2018) Biological control of plant pathogens by bacillus species. J Biotechnol 285:44–55

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Xu X, Dai Y, He H (2016) Isolation, identification and characterization of Bacillus subtilis CF-3, a bacterium from fermented bean curd for controlling postharvest diseases of peach fruit. Food Sci Technol 22(3):377–385

    CAS  Google Scholar 

  • García-Fraile P, Menéndez E, Rivas R (2015) Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioeng 2(3):183–205

    Article  Google Scholar 

  • García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Pérez-García A (2013) The antagonistic strain Bacillus subtilis UMAF 6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate-and salicylic acid-dependent defence responses. Microb Biotechnol 6(3):264–274

    Article  PubMed  PubMed Central  Google Scholar 

  • Gautam S, Chauhan A, Sharma R, Sehgal R, Shirkot CK (2019) Potential of Bacillus amyloliquefaciens for biocontrol of bacterial canker of tomato incited by Clavibacter michiganensis ssp. michiganensis. Microb Pathog 130:196–203

    Article  CAS  PubMed  Google Scholar 

  • Gélis-Jeanvoine S, Canette A, Gohar M, Caradec T, Lemy C, Gominet M, Jacques P, Lereclus D, Slamti L (2017) Genetic and functional analyses of krs, a locus encoding kurstakin, a lipopeptide produced by Bacillus thuringiensis. Res Microbiol 168(4):356–368

    Article  PubMed  Google Scholar 

  • Ghorbanpour M, Omidvari M, Abbaszadeh-Dahaji P, Omidvar R, Kariman K (2018) Mechanisms underlying the protective effects of beneficial fungi against plant diseases. Biol Control 117:147–157

    Article  Google Scholar 

  • Glare T, Caradus J, Gelernter W, Jackson T, Keyhani N, Köhl J, Marrone P, Morin L, Stewart A (2012) Have biopesticides come of age? Trends Biotechnol 30(5):250–258

    Article  CAS  PubMed  Google Scholar 

  • Gueldner RC, Reilly CC, Pusey PL, Costello CE, Arrendale RF, Cox RH, Himmelsbach DS, Crumley FG, Cutler HG (1988) Isolation and identification of iturins as antifungal peptides in biological control of peach brown rot with Bacillus subtilis. J Agric Food Chem 36(2):366–370

    Article  CAS  Google Scholar 

  • Guo Q, Li Y, Lou Y, Shi M, Jiang Y, Zhou J, Sun Y, Xue Q, Lai H (2019) Bacillus amyloliquefaciens Ba13 induces plant systemic resistance and improves rhizosphere microecology against tomato yellow leaf curl virus disease. Appl Soil Ecol 137:154–166

    Article  Google Scholar 

  • Han Q, Wu F, Wang X, Qi H, Shi L, Ren A, Liu Q, Zhao M, Tang C (2015) The bacterial lipopeptide iturins induce Verticillium dahliae cell death by affecting fungal signalling pathways and mediate plant defence responses involved in pathogen-associated molecular pattern-triggered immunity. Environ Microbiol 17(4):1166–1188

    Article  CAS  PubMed  Google Scholar 

  • Harwood CR, Mouillon JM, Pohl S, Arnau J (2018) Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiol Rev 42(6):721–738

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heimpel GE, Mills NJ (2017) Biological control. Cambridge University Press

    Book  Google Scholar 

  • Helman Y, Chernin L (2015) Silencing the mob: disrupting quorum sensing as a means to fight plant disease. Mol Plant Pathol 16(3):316–329

    Article  PubMed  Google Scholar 

  • Hinarejos E, Castellano M, Rodrigo I, Bellés JM, Conejero V, López-Gresa MP, Lisón P (2016) Bacillus subtilis IAB/BS03 as a potential biological control agent. Eur J Plant Pathol 146(3):597–608

    Article  CAS  Google Scholar 

  • Hu LB, Shi ZQ, Zhang T, Yang ZM (2007) Fengycin antibiotics isolated from B-FS01 culture inhibit the growth of Fusarium moniliforme Sheldon ATCC 38932. FEMS Microbiol Lett 272(1):91–98

    Article  CAS  PubMed  Google Scholar 

  • Jiang CH, Liao MJ, Wang HK, Zheng MZ, Xu JJ, Guo JH (2018) Bacillus velezensis, a potential and efficient biocontrol agent in control of pepper gray mold caused by Botrytis cinerea. Biol Control 126:147–157

    Article  Google Scholar 

  • Jose PA, Krishnamoorthy R, Kwon SW, Janahiraman V, Senthilkumar M, Gopal NO, Kumutha K, Anandham R (2019) Interference in quorum sensing and virulence of the phytopathogen Pseudomonas syringae pv. passiflorae by Bacillus and Variovorax species. BioControl 64(4):423–433

    Article  CAS  Google Scholar 

  • Jourdan E, Henry G, Duby F, Dommes J, Barthelemy JP, Thonart P, Ongena MA (2009) Insights into the defense-related events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22(4):456–468

    Article  CAS  PubMed  Google Scholar 

  • Juturu V, Wu JC (2018) Microbial production of bacteriocins: latest research development and applications. Biotechnol Adv 36(8):2187–2200

    Article  CAS  PubMed  Google Scholar 

  • Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and-lactonase. Open Microbiol J 5:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SM, Radhakrishnan R, Lee IJ (2015a) Bacillus amyloliquefaciens subsp. plantarum GR53, a potent biocontrol agent resists Rhizoctonia disease on Chinese cabbage through hormonal and antioxidants regulation. World J Microbiol Biotechnol 31(10):1517–1527

    Article  CAS  PubMed  Google Scholar 

  • Kang SM, Radhakrishnan R, Lee KE, You YH, Ko JH, Kim JH, Lee IJ (2015b) Mechanism of plant growth promotion elicited by Bacillus sp. LKE15 in oriental melon. Acta Agric Scand B Soil Plant Sci 65(7):637–647

    CAS  Google Scholar 

  • Kildea S, Ransbotyn V, Khan MR, Fagan B, Leonard G, Mullins E, Doohan FM (2008) Bacillus megaterium shows potential for the biocontrol of Septoria tritici blotch of wheat. Biol Control 47(1):37–45

    Article  Google Scholar 

  • Knox OG, Killham K, Leifert C (2000) Effects of increased nitrate availability on the control of plant pathogenic fungi by the soil bacterium Bacillus subtilis. Appl Soil Ecol 15(2):227–231

    Article  Google Scholar 

  • Köhl J, Postma J, Nicot P, Ruocco M, Blum B (2011) Stepwise screening of microorganisms for commercial use in biological control of plant-pathogenic fungi and bacteria. Biol Control 57(1):1–2

    Article  Google Scholar 

  • Köhl J, Kolnaar R, Ravensberg WJ (2019) Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Front Plant Sci:845

    Google Scholar 

  • Kong HG, Kim JC, Choi GJ, Lee KY, Kim HJ, Hwang EC, Moon BJ, Lee SW (2010) Production of surfactin and iturin by Bacillus licheniformis N1 responsible for plant disease control activity. Plant Pathol J 26(2):170–177

    Article  CAS  Google Scholar 

  • Koumoutsi A, Chen XH, Henne A, Liesegang H, Hitzeroth G, Franke P, Vater J, Borriss R (2004) Structural and functional characterization of gene clusters directing nonribosomal synthesis of bioactive cyclic lipopeptides in Bacillus amyloliquefaciens strain FZB42. J Bacteriol 186(4):1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krebs B, Ockhardt A, Hoeding B, Bendzko P, Maximov J, Etzel W (1996) Cyclic peptides from Bacillus amyloliquefaciens useful antimycotics, antivirals, fungicides, nematicides etc. DE19641213, p 26

    Google Scholar 

  • Krid S, Triki MA, Gargouri A, Rhouma A (2012) Biocontrol of olive knot disease by Bacillus subtilis isolated from olive leaves. Ann Microbiol 62(1):149–154

    Article  Google Scholar 

  • Kudoyarova GR, Melentiev AI, Martynenko EV, Timergalina LN, Arkhipova TN, Shendel GV, Kuz'mina LY, Dodd IC, Veselov SY (2014) Cytokinin producing bacteria stimulate amino acid deposition by wheat roots. Plant Physiol Biochem 83:285–291

    Article  CAS  PubMed  Google Scholar 

  • Kumar P, Dubey RC, Maheshwari DK (2012) Bacillus strains isolated from rhizosphere showed plant growth promoting and antagonistic activity against phytopathogens. Microbiol Res 167(8):493–499

    Article  CAS  PubMed  Google Scholar 

  • Lastochkina O, Pusenkova L, Yuldashev R, Babaev M, Garipova S, Blagova DY, Khairullin R, Aliniaeifard S (2017) Effects of Bacillus subtilis on some physiological and biochemical parameters of Triticum aestivum L.(wheat) under salinity. Plant Physiol Biochem 121:80–88

    Article  CAS  PubMed  Google Scholar 

  • Latz E, Eisenhauer N, Rall BC, Scheu S, Jousset A (2016) Unravelling linkages between plant community composition and the pathogen-suppressive potential of soils. Sci Rep 6(1):1–0

    Google Scholar 

  • Lee GH, Ryu CM (2016) Spraying of leaf-colonizing Bacillus amyloliquefaciens protects pepper from cucumber mosaic virus. Plant Dis 100(10):2099–2105

    Article  CAS  PubMed  Google Scholar 

  • Leelasuphakul W, Sivanunsakul P, Phongpaichit S (2006) Purification, characterization and synergistic activity of β-1, 3-glucanase and antibiotic extract from an antagonistic Bacillus subtilis NSRS 89-24 against rice blast and sheath blight. Enzym Microb Technol 38(7):990–997

    Article  CAS  Google Scholar 

  • Li B, Li Q, Xu Z, Zhang N, Shen Q, Zhang R (2014) Responses of beneficial Bacillus amyloliquefaciens SQR9 to different soilborne fungal pathogens through the alteration of antifungal compounds production. Front Microbiol 5:636

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin C, Tsai CH, Chen PY, Wu CY, Chang YL, Yang YL, Chen YL (2018) Biological control of potato common scab by Bacillus amyloliquefaciens Ba01. PLoS One 13(4):e0196520. https://doi.org/10.1371/journal.pone.0196520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Chen Z, Ng TB, Zhang J, Zhou M, Song F, Lu F, Liu Y (2007) Bacisubin, an antifungal protein with ribonuclease and hemagglutinating activities from Bacillus subtilis strain B-916. Peptides 28(3):553–559

    Article  PubMed  Google Scholar 

  • Liu J, Hagberg I, Novitsky L, Hadj-Moussa H, Avis TJ (2014) Interaction of antimicrobial cyclic lipopeptides from Bacillus subtilis influences their effect on spore germination and membrane permeability in fungal plant pathogens. Fungal Biol 118(11):855–861

    Article  CAS  PubMed  Google Scholar 

  • Liu Q, Lin J, Wang W, Huang H, Li S (2015) Production of surfactin isoforms by Bacillus subtilis BS-37 and its applicability to enhanced oil recovery under laboratory conditions. Biochem Eng J 93:31–37

    Article  CAS  Google Scholar 

  • Liu G, Kong Y, Fan Y, Geng C, Peng D, Sun M (2017) Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J Biotechnol 249:20–24

    Article  CAS  PubMed  Google Scholar 

  • Loiseau C, Schlusselhuber M, Bigot R, Bertaux J, Berjeaud JM, Verdon J (2015) Surfactin from Bacillus subtilis displays an unexpected anti-legionella activity. Appl Microbiol Biotechnol 99(12):5083–5093

    Article  CAS  PubMed  Google Scholar 

  • Luo C, Liu X, Zhou X, Guo J, Truong J, Wang X, Zhou H, Li X, Chen Z (2015) Unusual biosynthesis and structure of locillomycins from Bacillus subtilis 916. Appl Environ Microbiol 81(19):6601–6609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maget-Dana R, Peypoux F (1994) Iturins, a special class of pore-forming lipopeptides: biological and physicochemical properties. Toxicology 87(1–3):151–174

    Article  CAS  PubMed  Google Scholar 

  • Maksimov IV, Veselova SV, Nuzhnaya TV, Sarvarova ER, Khairullin RM (2015) Plant growth-promoting bacteria in regulation of plant resistance to stress factors. Russ J Plant Physiol 62(6):715–726

    Article  CAS  Google Scholar 

  • Mannanov RN, Sattarova RK (2001) Antibiotics produced by Bacillus bacteria. Chem Nat Compd 37(2):117–123

    Article  CAS  Google Scholar 

  • Matzen N, Heick TM, Jørgensen LN (2019) Control of powdery mildew (Blumeria graminis spp.) in cereals by Serenade® ASO (Bacillus amyloliquefaciens (former subtilis) strain QST 713). Biol Control 139:104067

    Article  CAS  Google Scholar 

  • Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int 2015:473050. https://doi.org/10.1155/2015/473050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mihalache G, Balaes T, Gostin I, Stefan M, Coutte F, Krier F (2018) Lipopeptides produced by Bacillus subtilis as new biocontrol products against fusariosis in ornamental plants. Environ Sci Pollut Res 25(30):29784–29793

    Article  CAS  Google Scholar 

  • Miljaković D, Marinković J, Balešević-Tubić S (2020) The significance of Bacillus spp. in disease suppression and growth promotion of field and vegetable crops. Microorganisms 8(7):1037

    Article  PubMed  PubMed Central  Google Scholar 

  • Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. J Pept Sci 104(3):129–147

    Article  CAS  Google Scholar 

  • Molinatto G, Puopolo G, Sonego P, Moretto M, Engelen K, Viti C, Ongena M, Pertot I (2016) Complete genome sequence of Bacillus amyloliquefaciens subsp. plantarum S499, a rhizobacterium that triggers plant defences and inhibits fungal phytopathogens. J Biotechnol 238:56–59

    Article  CAS  PubMed  Google Scholar 

  • Muslim A, Horinouchi H, Hyakumachi M (2003) Biological control of Fusarium wilt of tomato with hypovirulent binucleate Rhizoctonia in greenhouse conditions. Mycoscience 44(2):77–84

    Article  Google Scholar 

  • Nagórska K, Bikowski M, Obuchowski M (2007) Multicellular behaviour and production of a wide variety of toxic substances support usage of Bacillus subtilis as a powerful biocontrol agent. Acta Biochim Pol 54(3):495–508

    Article  PubMed  Google Scholar 

  • Nair D, Vanuopadath M, Nair BG, Pai JG, Nair SS (2016) Identification and characterization of a library of surfactins and fengycins from a marine endophytic Bacillus sp. J Basic Microbiol 56(11):1159–1172

    Article  CAS  PubMed  Google Scholar 

  • Naruse N, Tenmyo O, Kobaru S, Kamei H, Miyaki T, Konishi M, Oki T (1990) Pumilacidin, a complex of new antiviral antibiotics production, isolation, chemical properties, structure and biological activity. J Antibiot 43(3):267–280

    Article  CAS  Google Scholar 

  • Ntushelo K, Ledwaba LK, Rauwane ME, Adebo OA, Njobeh PB (2019) The mode of action of Bacillus species against Fusarium graminearum, tools for investigation, and future prospects. Toxins 11(10):606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olishevska S, Nickzad A, Déziel E (2019) Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl Microbiol Biotechnol 103(3):1189–1215

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Jacques P, Touré Y, Destain J, Jabrane A, Thonart P (2005) Involvement of fengycin-type lipopeptides in the multifaceted biocontrol potential of Bacillus subtilis. Appl Microbiol Biotechnol 69(1):29–38

    Article  CAS  PubMed  Google Scholar 

  • Ongena M, Henry G, Thonart P (2010) The roles of cyclic lipopeptides in the biocontrol activity of Bacillus subtilis. In: Recent developments in management of plant diseases. Springer, Dordrecht, pp 59–69

    Chapter  Google Scholar 

  • Pan J, Huang T, Yao F, Huang Z, Powell CA, Qiu S, Guan X (2008) Expression and characterization of aiiA gene from Bacillus subtilis BS-1. Microbiol Res 163(6):711–716

    Article  CAS  PubMed  Google Scholar 

  • Pandin C, Le Coq D, Canette A, Aymerich S, Briandet R (2017) Should the biofilm mode of life be taken into consideration for microbial biocontrol agents? Microb Biotechnol 10(4):719–734

    Article  PubMed  PubMed Central  Google Scholar 

  • Pandin C, Darsonval M, Mayeur C, Le Coq D, Aymerich S, Briandet R (2019) Biofilm formation and synthesis of antimicrobial compounds by the biocontrol agent Bacillus velezensis QST713 in an Agaricus bisporus compost micromodel. Appl Environ Microbiol 85(12):e00327–e00319. https://doi.org/10.1128/AEM.00327-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perry JD, Asir K, Halimi D, Orenga S, Dale J, Payne M, Carlton R, Evans J, Gould FK (2010) Evaluation of a chromogenic culture medium for isolation of Clostridium difficile within 24 hours. J Clin Microbiol 48(11):3852–3858

    Article  PubMed  PubMed Central  Google Scholar 

  • Pertry I, Václavíková K, Depuydt S, Galuszka P, Spíchal L, Temmerman W, Stes E, Schmülling T, Kakimoto T, Van Montagu MC, Strnad M (2009) Identification of Rhodococcus fascians cytokinins and their modus operandi to reshape the plant. Proc Natl Acad Sci 106(3):929–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28:489–521

    Article  CAS  PubMed  Google Scholar 

  • Pieterse CM, Zamioudis C, Berendsen RL, Weller DM, Van Wees SC, Bakker PA (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375

    Article  CAS  PubMed  Google Scholar 

  • Pignatelli M, Moya A, Tamames J (2009) EnvDB, a database for describing the environmental distribution of prokaryotic taxa. Environ Microbiol Rep 1(3):191–197

    Article  CAS  PubMed  Google Scholar 

  • Raafat MM, Ali-Tammam M, Ali AE (2019) Quorum quenching activity of Bacillus cereus isolate 30b confers antipathogenic effects in Pseudomonas aeruginosa. Infect Drug Resist 12:1583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raaijmakers JM, De Bruijn I, Nybroe O, Ongena M (2010) Natural functions of lipopeptides from Bacillus and Pseudomonas: more than surfactants and antibiotics. FEMS Microbiol Rev 34(6):1037–1062

    Article  CAS  PubMed  Google Scholar 

  • Rabbee MF, Ali MS, Choi J, Hwang BS, Jeong SC, Baek KH (2019) Bacillus velezensis: a valuable member of bioactive molecules within plant microbiomes. Molecules 24(6):1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rahman A, Uddin W, Wenner NG (2015) Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol Plant Pathol 16(6):546–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Romanazzi G, Sanzani SM, Bi Y, Tian S, Martínez PG, Alkan N (2016) Induced resistance to control postharvest decay of fruit and vegetables. Postharvest Biol Technol 122:82–94

    Article  CAS  Google Scholar 

  • Romero D, De Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Pérez-García A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol Plant-Microbe Interact 20(4):430–440

    Article  CAS  PubMed  Google Scholar 

  • Sabaté DC, Audisio MC (2013) Inhibitory activity of surfactin, produced by different Bacillus subtilis subsp. subtilis strains, against Listeria monocytogenes sensitive and bacteriocin-resistant strains. Microbiol Res 168(3):125–129

    Article  PubMed  Google Scholar 

  • Sabaté DC, Petroselli G, Erra-Balsells R, Audisio MC, Brandan CP (2020) Beneficial effect of Bacillus sp. P12 on soil biological activities and pathogen control in common bean. Biol Control 141:104131

    Article  Google Scholar 

  • Sarosh BR, Danielsson J, Meijer J (2009) Transcript profiling of oilseed rape (Brassica napus) primed for biocontrol differentiate genes involved in microbial interactions with beneficial Bacillus amyloliquefaciens from pathogenic Botrytis cinerea. Plant Mol Biol 70(1):31–45

    Article  CAS  PubMed  Google Scholar 

  • Sarwar A, Hassan MN, Imran M, Iqbal M, Majeed S, Brader G, Sessitsch A, Hafeez FY (2018) Biocontrol activity of surfactin A purified from Bacillus NH-100 and NH-217 against rice bakanae disease. Microbiol Res 209:1–13

    Article  CAS  PubMed  Google Scholar 

  • Savary S, Ficke A, Aubertot JN, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Secur 4(4):519–537

    Article  Google Scholar 

  • Saxena AK, Kumar M, Chakdar H, Anuroopa N, Bagyaraj DJ (2020) Bacillus species in soil as a natural resource for plant health and nutrition. J Appl Microbiol 128(6):1583–1594

    Article  CAS  PubMed  Google Scholar 

  • Scholz R, Molohon KJ, Nachtigall J, Vater J, Markley AL, Süssmuth RD, Mitchell DA, Borriss R (2011) Plantazolicin, a novel microcin B17/streptolysin S-like natural product from Bacillus amyloliquefaciens FZB42. J Bacteriol 193(1):215–224

    Article  CAS  PubMed  Google Scholar 

  • Seifi Kalhor M, Aliniaeifard S, Seif M, Javadi E, Bernard F, Li T, Lastochkina O (2017) Rhizobacterium Bacillus subtilis reduces toxic effects of high electrical conductivity in soilless culture of lettuce. In: International symposium on new technologies for environment control, energy-saving and crop production in greenhouse and plant, vol. 1227, pp 471–478

    Google Scholar 

  • Seong Y, Yong J, Hak J, Yong K (2017) Isolation and identification of Nâ butylâ tetrahydroâ 5â oxofuranâ 2â carboxamide produced by Bacillus sp. L60 and its antifungal activity. J Basic Microbiol 57(3):283–288

    Google Scholar 

  • Shafi J, Tian H, Ji M (2017) Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol Biotechnol Equip 31(3):446–459

    Article  CAS  Google Scholar 

  • Shu HY, Lin GH, Wu YC, Tschen JS, Liu ST (2002) Amino acids activated by fengycin synthetase FenE. Biochem Biophys Res Commun 292(4):789–793

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Sharma RR (2007) Sustainable pest management

    Google Scholar 

  • Sivasakthi S, Kanchana D, Usharani G, Saranraj P (2013) Production of plant growth promoting substance by Pseudomonas fluorescens and Bacillus subtilis isolates from paddy rhizosphere soil of Cuddalore District, Tamil Nadu, India. Int J Microbiol Res 4(3):227–233

    CAS  Google Scholar 

  • Spadaro D, Droby S (2016) Development of biocontrol products for postharvest diseases of fruit: the importance of elucidating the mechanisms of action of yeast antagonists. Trends Food Sci Technol 47:39–49

    Article  CAS  Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857

    Article  CAS  PubMed  Google Scholar 

  • Tanaka K, Amaki Y, Ishihara A, Nakajima H (2015) Synergistic effects of [Ile7] surfactin homologues with bacillomycin D in suppression of gray mold disease by Bacillus amyloliquefaciens biocontrol strain SD-32. J Agric Food Chem 63(22):5344–5353

    Article  CAS  PubMed  Google Scholar 

  • Thoms D, Liang Y, Haney CH (2021) Maintaining symbiotic homeostasis: how do plants engage with beneficial microorganisms while at the same time restricting pathogens? Mol Plant-Microbe Interact 34(5):462–469

    Article  CAS  PubMed  Google Scholar 

  • Torres Manno MA, Pizarro MD, Prunello M, Magni C, Daurelio LD, Espariz M (2019) GeM-Pro: a tool for genome functional mining and microbial profiling. Appl Microbiol Biotechnol 103(7):3123–3134

    Article  CAS  PubMed  Google Scholar 

  • Toure Y, Ongena MA, Jacques P, Guiro A, Thonart P (2004) Role of lipopeptides produced by Bacillus subtilis GA1 in the reduction of grey mould disease caused by Botrytis cinerea on apple. J Appl Microbiol 96(5):1151–1160

    Article  CAS  PubMed  Google Scholar 

  • Turan M, Ekinci M, Yildirim E, Güneş A, Karagöz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agric For 38(3):327–333

    Article  CAS  Google Scholar 

  • van Lenteren JC, Bolckmans K, Köhl J, Ravensberg WJ, Urbaneja A (2018) Biological control using invertebrates and microorganisms: plenty of new opportunities. BioControl 63(1):39–59

    Article  Google Scholar 

  • Van Loon LC (2007) Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119:243–254. https://doi.org/10.1007/s10658-007-9165-1

    Article  CAS  Google Scholar 

  • Villegas-Escobar V, Ceballos I, Mira JJ, Argel LE, Orduz Peralta S, Romero-Tabarez M (2013) Fengycin C produced by Bacillus subtilis EA-CB0015. J Nat Prod 76(4):503–509

    Article  CAS  PubMed  Google Scholar 

  • Waewthongrak W, Pisuchpen S, Leelasuphakul W (2015) Effect of Bacillus subtilis and chitosan applications on green mold (Penicilium digitatum Sacc.) decay in citrus fruit. Postharvest Biol Technol 99:44–49

    Article  CAS  Google Scholar 

  • Wan Y, Stanovych A, Gori D, Zirah S, Kouklovsky C, Alezra V (2018) β, γ-diamino acids as building blocks for new analogues of Gramicidin S: synthesis and biological activity. Eur J Med Chem 149:122–128

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Liang Y, Wu M, Chen Z, Lin J, Yang L (2015) Natural products from Bacillus subtilis with antimicrobial properties. Chin J Chem Eng 23(4):744–754

    Article  CAS  Google Scholar 

  • Wang XQ, Zhao DL, Shen LL, **g CL, Zhang CS (2018) Application and mechanisms of Bacillus subtilis in biological control of plant disease. In: Role of rhizospheric microbes in soil. Springer, Singapore, pp 225–250

    Chapter  Google Scholar 

  • Wang X, Yuan Z, Shi Y, Cai F, Zhao J, Wang J, Wang Y (2020a) Bacillus amyloliquefaciens HG01 induces resistance in loquats against anthracnose rot caused by Colletotrichum acutatum. Postharvest Biol Technol 160:111034

    Article  CAS  Google Scholar 

  • Wang Y, Zhang C, Liang J, Wang L, Gao W, Jiang J, Chang R (2020b) Surfactin and fengycin B extracted from Bacillus pumilus W-7 provide protection against potato late blight via distinct and synergistic mechanisms. Appl Microbiol Biotechnol 104(17):7467–7481

    Article  CAS  PubMed  Google Scholar 

  • Winn M, Fyans JK, Zhuo Y, Micklefield J (2016) Recent advances in engineering nonribosomal peptide assembly lines. Nat Prod Rep 33(2):317–347

    Article  CAS  PubMed  Google Scholar 

  • Wulff BB, Horvath DM, Ward ER (2011) Improving immunity in crops: new tactics in an old game. Curr Opin Plant Biol 14(4):468–476

    Article  CAS  PubMed  Google Scholar 

  • Xu Z, Mandic-Mulec I, Zhang H, Liu Y, Sun X, Feng H, Xun W, Zhang N, Shen Q, Zhang R (2019) Antibiotic bacillomycin D affects iron acquisition and biofilm formation in Bacillus velezensis through a Btr-mediated FeuABC-dependent pathway. Cell Rep 29(5):1192–1202

    Article  CAS  PubMed  Google Scholar 

  • Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Characterization of a new lipopeptide surfactant produced by thermotolerant and halotolerant subsurface Bacillus licheniformis BAS50. Appl Environ Microbiol 61(5):1706–1713

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yánez-Mendizábal V, Usall J, Viñas I, Casals C, Marín S, Solsona C, Teixidó N (2011) Potential of a new strain of Bacillus subtilis CPA-8 to control the major postharvest diseases of fruit. Biocontrol Sci Tech 21(4):409–426

    Article  Google Scholar 

  • Yánez-Mendizábal V, Zeriouh H, Viñas I, Torres R, Usall J, de Vicente A, Pérez-García A, Teixidó N (2012) Biological control of peach brown rot (Monilinia spp.) by Bacillus subtilis CPA-8 is based on production of fengycin-like lipopeptides. Eur J Plant Pathol 132(4):609–619

    Article  Google Scholar 

  • Ye YF, Li QQ, Gang FU, Yuan GQ, Miao JH, Wei LI (2012) Identification of antifungal substance (Iturin A2) produced by Bacillus subtilis B47 and its effect on southern corn leaf blight. J Integr Agric 11(1):90–99

    Article  CAS  Google Scholar 

  • Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, Li F, Wang Z (2018) Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS Chem Biol 13(3):500–505

    Article  CAS  PubMed  Google Scholar 

  • Yi HS, Yang JW, Ryu CM (2013) ISR meets SAR outside: additive action of the endophyte Bacillus pumilus INR7 and the chemical inducer, benzothiadiazole, on induced resistance against bacterial spot in field-grown pepper. Front Plant Sci 4:122

    Google Scholar 

  • Yoshida S, Hiradate S, Tsukamoto T, Hatakeda K, Shirata A (2001) Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91(2):181–187

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Dong C, Shang Q, Han Y, Li P (2013) New insights into membrane-active action in plasma membrane of fungal hyphae by the lipopeptide antibiotic bacillomycin L. Biochim Biophys Acta Biomembr 1828(9):2230–2237

    Article  CAS  Google Scholar 

  • Zhao P, Quan C, Wang Y, Wang J, Fan S (2014) Bacillus amyloliquefaciens Q-426 as a potential biocontrol agent against Fusarium oxysporum f. sp. spinaciae. J Basic Microbiol 54(5):448–456

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Jiang H, Cheng H, Fang J, Huang G (2018) Strategies for screening, purification and characterization of bacteriocins. Int J Biol Macromol 117:781–789

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kubilay Kurtulus Bastas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Butt, H., Bastas, K.K. (2023). Environment-Friendly Management of Plant Diseases by Bacillus Through Molecular Pathways. In: Bastas, K.K., Kumar, A., Sivakumar, U. (eds) Microbial Biocontrol: Molecular Perspective in Plant Disease Management. Microorganisms for Sustainability, vol 49. Springer, Singapore. https://doi.org/10.1007/978-981-99-3947-3_11

Download citation

Publish with us

Policies and ethics

Navigation