Current Understanding and Future Directions of Biocontrol of Plant Diseases by Bacillus spp., with Special Reference to Induced Systemic Resistance

  • Chapter
  • First Online:
Bacilli in Agrobiotechnology

Abstract

Plant pathogens represent one of the prime threats to sustainable crop production. Till date, synthetic agrochemicals are considered as effective tools for the management of various biotic stresses such as pathogenic microorganisms and insects in plants. Unfortunately, their injudicious and intensive usages in agriculture pose a serious threat to the environment and all living beings dwelling on the earth. Under such circumstances, the application of beneficial Bacillus-mediated management of plant pathogens has emerged as one of the most benevolent and sustainable options. A large number of Bacillus species has been identified as promising candidates for managing a number of plant pathogens through induction of systemic resistance in plants. Significant research progress has been attained in the characterisation and understanding of the role of Bacillus-induced systemic resistance (ISR) against a wide range of pathogens of crop plants. In this chapter, we aim to provide an overview of the mechanisms of Bacillus-induced ISR for instance, elicitors, phytoalexins, lipopeptides, antibiotics, hormones and enzymes to protect plants from various pests. Additionally, glimpses of the research progress in the identification of different Bacillus strains and their evaluation as a potential biocontrol agent have also been presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdallah RAB, Stedel C, Garagounis C, Nefzi A, Jabnoun-Khiareddine H, Papadopoulou KK, Daami-Reamadi M (2017) Involvement of lipopeptide antibiotics and chitinase genes and induction of host defense in suppression of fusarium wilt by endophytic Bacillus spp. in tomato. Crop Prot 99:45–58

    Google Scholar 

  • Adhikari TB, Joseph CM, Yang G, Phillips DA, Nelson LM (2001) Evaluation of bacteria isolated from rice for plant growth promotion and biological control of seedling disease of rice. Can J Microbiol 47:916–924

    CAS  PubMed  Google Scholar 

  • Akram W, Anjum T (2011) Quantitative changes in defense system of tomato induced by two strains of Bacillus against fusarium wilt. Indian J Fund Appl Life Sci 1:7–13

    Google Scholar 

  • Arias RS, Sagardoy MA, van Vuurde JWL (1999) Spatio-temporal distribution of naturally occurring Bacillus spp. and other bacteria on the phylloplane of soybean under field conditions. J Basic Microbiol 39:283–292

    CAS  PubMed  Google Scholar 

  • Asaka O, Shoda M (1996) Biocontrol of Rhizoctonia solani dam**-off of tomato with Bacillus subtilis RB14. Appl Environ Microbiol 62:4081–4085

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ash C, Farrow JAE, Priest FG, Collins MD (1993) Molecular identification of rRNA group 3 bacilli using a PCR probe test. Antonie Van Leeuwenhoek 64:253–260

    CAS  PubMed  Google Scholar 

  • Bacon CW, Hinton DM (2002) Endophytic and biological control potential of Bacillus mojavensis and related species. Biol Control 23:274–284

    CAS  Google Scholar 

  • Bais HP, Park SW, Weir TL, Callaway RM, Vivanco JM (2004) How plants communicate using the underground information superhighway. Trends Plant Sci 9:26–32

    CAS  PubMed  Google Scholar 

  • Baker CJ, Stavely J, Thomas CA, Sasser M, Macfall JS (1983) Inhibitory effect of Bacillus subtilis on Uromyces phaseoli and on development of rust pustules on bean leaves. Phytopathology 73(8):1148–1152

    Google Scholar 

  • Barbieri G, Albertini AM, Ferrari E, Sonenshein AL, Belitsky BR (2016) Interplay of CodY and ScoC in the regulation of major extracellular protease genes of Bacillus subtilis. J Bacteriol 198:907–920

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2002) Characterization of systemic resistance in sugar beet elicited by a nonpathogenic, phyllosphere-colonizing Bacillus mycoides, biological control agent. Physiol Mol Plant Pathol 61:289–298

    CAS  Google Scholar 

  • Bargabus RL, Zidack NK, Sherwood JE, Jacobsen BJ (2004) Screening for the identification of potential biological control agents that induce systemic acquired resistance in sugar beet. Biol Control 30:342–350

    Google Scholar 

  • Basha S, Ulaganathan K (2002) Antagonism of Bacillus species (strain BC121) towards Curvularia lunata. Curr Sci 82(12):1457–1462

    CAS  Google Scholar 

  • Benhamou N, Kloepper JW, Quadt-Hallman A, Tuzun S (1996) Induction of defense-related ultrastructural modifications in pea root tissues inoculated with endophytic bacteria. Plant Physiol 112(3):919–929

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blagoeva-Nikolaeva V, Slavov S, Varsano L (1995) Possibilities for biological control of black-shank disease in tobacco with Bacillus cereus. Biotechnol Biotechnol Equip 9(1):36–39

    Google Scholar 

  • Broden NJ, Flury S, King AN, Schroeder BW, Coe GD, Faulkner MJ (2016) Insights into the function of a second, nonclassical Ahp peroxidase, AhpA, in oxidative stress resistance in Bacillus subtilis. J Bacteriol 198:1044–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bunk B, Schulz A, Stammen S, Munch R, Warren MJ, Jahn D, Biedendieck R (2010) A short story about a big magic bug. Bioeng Bugs 1:85–89

    PubMed  PubMed Central  Google Scholar 

  • Cao Y, Zhang Z, Ling N, Yuan Y, Zheng X, Shen B, Shen Q (2011) Bacillus subtilis SQR 9 can control fusarium wilt in cucumber by colonizing plant roots. Biol Fertil Soils 47(5):495–506

    CAS  Google Scholar 

  • Chakraborty S, Debnath D, Mahapatra S, Das S (2020a) Role of endophytes in plant disease management. In: Singh KP, Jahagirdar S, Sarma BK (eds) Emerging trends in plant pathology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6275-4

    Chapter  Google Scholar 

  • Chakraborty M, Mahmud NU, Gupta DR, Tareq FS, Shin HJ, Islam T (2020b) Inhibitory effects of linear lipopeptides from a marine Bacillus subtilis on the wheat blast fungus Magnaporthe oryzae Triticum. Front Microbiol 11:665

    PubMed  PubMed Central  Google Scholar 

  • Chandler S, Van Hese N, Coutte F, Jacques P, Monica H, De Vleesschauwer D (2015) Role of cyclic lipopeptides produced by Bacillus subtilis in mounting induced immunity in rice (Oryza sativa L.). Physiol Mol Plant Pathol 91:20–30

    CAS  Google Scholar 

  • Choudhary DK, Johri BN (2008) Interactions of Bacillus spp. and plants – with special reference to induced systemic resistance (ISR). Microbiol Res 164:493–513

    PubMed  Google Scholar 

  • Chowdhury SP, Uhl J, Grosch R, Alqueres S, Pittroff S, Dietel K, Schmitt-Kopplin P, Borriss R, Hartmann A (2015) Cyclic Lipopeptides of Bacillus amyloliquefaciens subsp. plantarum colonizing the lettuce rhizosphere enhance plant defense responses toward the bottom rot pathogen Rhizoctonia solani. Mol Plant-Microbe Interact 28:984–995

    CAS  PubMed  Google Scholar 

  • Clayton MK, Hudelson BD (1991) Analysis of spatial patterns in the phyllosphere. In: Andrews JH, Hirano SS (eds) Microbial ecology of leaves. Springer, New York, pp 111–131

    Google Scholar 

  • Crowley DE, Rengel Z (1999) Biology and chemistry of rhizosphere influencing nutrient availability. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. The Haworth, New York, pp 1–40

    Google Scholar 

  • Dong YH, Zhang XF, Xu JL, Zhang LH (2004) Insecticidal Bacillus thuringiensis silences Erwinia carotovora virulence by a new form of microbial antagonism, signal interference. Appl Environ Microbiol 70:954–960

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duineveld BM, Kowalchuk GA, Keijzer A, van Elsas JD, van Veen JA (2001) Analysis of bacterial communities in the rhizosphere of chrysanthemum via denaturing gradient gel electrophoresis of PCR amplified 16S rRNA as well as DNA fragments coding 16S rRNA. Appl Environ Microbiol 67:172–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elad Y, Chet I, Henis Y (1982) Parasitism of Trichoderma spp. on Rhizoctonia solani and Sclerotium rolfsii - scanning electron microscopy and fluorescence microscopy. Phytopathology 28:719–725

    CAS  Google Scholar 

  • El-Bendary MA (2006) Bacillus thuringiensis and Bacillus sphaericus biopesticides production. J Basic Microbiol 46(2):158–170

    CAS  PubMed  Google Scholar 

  • Farace G, Fernandez O, Jacquens L, Coutte F, Krier F, Jacques P, Clement C, Barka EA, Jacquard C, Dorey S (2015) Cyclic lipopeptides from Bacillus subtilis activate distinct patterns of defence responses in grapevine. Mol Plant Pathol 16:177–187

    CAS  PubMed  Google Scholar 

  • Gao Y, Liu Q, Zang P, Li X, Ji Q, He Z, Zhao Y, Yang H, Zhao X, Zhang L (2015) An endophytic bacterium isolated from Panax ginseng CA meyer enhances growth, reduces morbidity, and stimulates ginsenoside biosynthesis. Phytochem Lett 11:132–138

    CAS  Google Scholar 

  • Gao SF, Wu HJ, Yu XF, Qian LM, Gao XW (2016) Swarming motility plays the major role in migration during tomato root colonization by Bacillus subtilis SWR01. Biol Control 98:11–17

    CAS  Google Scholar 

  • Gao Z, Zhang B, Llu H, Han J, Zhang Y (2017) Identification of endophytic Bacillus velezensis ZSY-1 strain and antifungal activity of its volatile compounds against Alternaria solani and Botrytis cinerea. Biol Control 105:27–39

    Google Scholar 

  • García-Gutiérrez L, Zeriouh H, Romero D, Cubero J, de Vicente A, Perez-Garcia A (2013) The antagonistic strain Bacillus subtilis UMAF6639 also confers protection to melon plants against cucurbit powdery mildew by activation of jasmonate- and salicylic acid-dependent defence responses. Microb Biotechnol 6:264–274

    PubMed  PubMed Central  Google Scholar 

  • Gond SK, Bergen MS, Torres MS, White JF Jr (2015) Endophytic Bacillus spp. produce antifungal lipopeptides and induce host defence gene expression in maize. Microbiol Res 172:79–87

    CAS  PubMed  Google Scholar 

  • Hallman J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914

    Google Scholar 

  • Hallmann J (2001) Plant interactions with endophytic bacteria. In: Jeger MJ, Spence NJ (eds) Biotic interactions in plante pathogen associations. CABI Publishing, Wallingford, pp 87–119

    Google Scholar 

  • Hallmann J, Rodríguez-Kábana R, Kloepper JW (1997) Nematode interactions with endophytic bacteria. In: Ogoshi A, Kobayashi K, Homma Y, Kodama F, Kondo N, Akino S (eds) Plant growth-promoting Rhizobacteria-present status and future prospects. Nakanishi Printing, Sapporo, pp 243–245

    Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttila AM, Compant S, Campisano A, Doring M, Sessitsch A (2015) The hidden world within plants: ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79:293–320

    PubMed  PubMed Central  Google Scholar 

  • Hsieh FC, Li MC, Lin TC, Kao SS (2004) Rapid detection and characterization of surfactin- producing Bacillus subtilis and closely related species based on PCR. Curr Microbiol 49:186–191

    CAS  PubMed  Google Scholar 

  • Hsieh PW, Hsu LC, Lai CH, Wu CC, Hwang TL, Lin YK, Wu YC (2009) Evaluation of the bioactivities of extracts of endophytes isolated from Taiwanese herbal plants. World J Microbiol Biotechnol 25:1461–1469

    Google Scholar 

  • Hu X, Roberts DP, **e L, Maul JE, Yu C, Li Y, Zhang S, Liao X (2013) Bacillus megaterium A6 suppresses Sclerotinia sclerotiorum on oilseed rape in the field and promotes oilseed rape growth. Crop Protect 52:151–158

    Google Scholar 

  • Islam MT, Croll D, Gladieux P, Soanes DM, Persoons A, Bhattacharjee P et al (2016a) Emergence of wheat blast in Bangladesh was caused by a south American lineage of Magnaporthe oryzae. BMC Biol 14:84

    PubMed  PubMed Central  Google Scholar 

  • Islam MT, Rahman PP, Jha CK, Aeron A (2016b) Bacilli and Agrobiotechnology. Springer

    Google Scholar 

  • Islam MT, Kim KH, Choi J (2019a) Wheat blast in Bangladesh: the current situation and future impacts. Plant Pathol J 35(1):1–10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Islam T, Rahman MM, Pandey P, Boehme MH, Haesaert G (2019b) Bacilli and agrobiotechnology: phytostimulation and biocontrol. Bacilli in climate resilient agriculture and bioprospecting, vol 2. Springer

    Google Scholar 

  • Islam MT, Gupta DR, Hossain A et al (2020) Wheat blast: a new threat to food security. Phytopathol Res 2(2020):28. https://doi.org/10.1186/s42483-020-00067-6

    Article  Google Scholar 

  • Jaeger CH III, Lindow SE, Miller W, Clark E, Firestone MK (1999) Map** of sugar and amino acids availability in soil around roots with bacterial sensors of sucrose and tryptophan. Appl Environ Microbiol 65:2685–2690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jangir M, Pathak R, Sharma S, Sharma S (2018) Biocontrol mechanisms of Bacillus sp., isolated from tomato rhizosphere, against Fusarium oxysporum f. sp. lycopersici. Biol Control 123:60–70

    CAS  Google Scholar 

  • Jayaraj J, Yi H, Liang G, Muthukrishnan S, Velazhahan R (2004) Foliar application of Bacillus subtilis AUBS1 reduces sheath blight and triggers defense mechanisms in rice. J Plant Dis Prot 111(2):115–125

    CAS  Google Scholar 

  • Jeong H, Choi SK, Kloepper JW, Ryu CM (2014) Genome sequence of the plant endophyte Bacillus pumilus INR7, triggering induced systemic resistance in field crops. Genome Announc 2:e01093–e01014

    PubMed  PubMed Central  Google Scholar 

  • Jiang CH, Wu F, Yu ZY, **e P, Ke HJ, Li HW, Yu YY, Guo JH (2015) Study on screening and antagonistic mechanisms of Bacillus amyloliquefaciens 54 against bacterial fruit blotch (BFB) caused by Acidovorax avenae subsp. citrulli. Microbiol Res 170:95–104

    PubMed  Google Scholar 

  • Kasahara J, Kiriyama Y, Miyashita M, Kondo T, Yamada T, Yazawa K, Yoshikawa R, Yamamoto H (2016) Teichoic acid polymers affect expression and localization of DL-endopeptidase LytE required for lateral cell wall hydrolysis in Bacillus subtilis. J Bacteriol 198:1585–1594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kloepper JW, Reddy MS, Rodríguez-Kabana R, Kenney DS, KokalisBurelle N, MartinezOchoa N (2004a) Application for rhizobacteria in transplant production and yield enhancement. Acta Hortic 631:219–229

    Google Scholar 

  • Kloepper JW, Ryu CM, Zhang S (2004b) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94(11):1259–1266

    CAS  PubMed  Google Scholar 

  • Leclere V, Bechet M, Adam A, Guez JS, Wathelet B, Ongena M, Thonart P, Gancel F, Chollet-Imbert M, Jacques P (2005) Mycosubtilin overproduction by Bacillus subtilis BBG100 enhances the organism’s antagonistic and biocontrol activities. Appl Environ Microbiol 71:4577–4584

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SW, Lee SH, Balaraju K, Park KS, Nam KW, Park JW, Park K (2014) Growth promotion and induced disease suppression of four vegetable crops by a selected plant growth-promoting rhizobacteria (PGPR) strain Bacillus subtilis 21-1 under two different soil conditions. Acta Physiol Plant 36:1353–1362

    CAS  Google Scholar 

  • Lee BD, Dutta S, Ryu H, Yoo SJ, Suh DS, Park K (2015) Induction of systemic resistance in Panax ginseng against Phytophthora cactorum by native Bacillus amyloliquefaciens HK34. J Ginseng Res 39(3):213–220

    PubMed  Google Scholar 

  • Li S, Zhang N, Zhang Z, Luo J, Shen B, Zhang R, Shen Q (2013) Antagonist Bacillus subtilis HJ5 controls Verticillium wilt of cotton by root colonization and biofilm formation. Biol Fertil Soils 49(3):295–303

    Google Scholar 

  • Liu XY, Ruan LF, Hu ZF, Peng DH, Cao SY, Yu ZN, Liu Y, Zheng JS, Sun M (2010) Genome-wide screening reveals the genetic determinants of an antibiotic insecticide in Bacillus thuringiensis. J Biol Chem 285(50):39191–39200

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luo C, Zhou H, Zou J, Wang X, Zhang R, **ang Y, Chen Z (2015) Bacillomycin L and surfactin contribute synergistically to the phenotypic features of Bacillus subtilis 916 and the biocontrol of rice sheath blight induced by Rhizoctonia solani. Appl Microbiol Biotechnol 99(4):1897–1910

    CAS  PubMed  Google Scholar 

  • Mahapatra S, Rayanoothala P, Solanki MK, Das S (2020) Wheat microbiome: present status and future perspective. In: Solanki M, Kashyap P, Kumari B (eds) Phytobiomes: current insights and future vistas. Springer, Singapore. https://doi.org/10.1007/978-981-15-3151-4_8

    Chapter  Google Scholar 

  • Mcspadden Gardener BB (2004) Ecology of Bacillus and Paenibacillus species in agricultural systems. Phytopathology 94:1252–1258

    CAS  PubMed  Google Scholar 

  • Meena KR, Kanwar SS (2015) Lipopeptides as the antifungal and antibacterial agents: applications in food safety and therapeutics. Biomed Res Int 2015:473050

    PubMed  PubMed Central  Google Scholar 

  • Mendoza A, Sikora R (2009) Biological control of Radopholus similis in banana by combined application of the mutualistic endophyte Fusarium oxysporum strain 162, the egg pathogen Paecilomyces lilacinus strain 251 and the antagonistic bacteria Bacillus firmus. Biol Control 54(2):263–272

    Google Scholar 

  • Mitchell R, Alexander M (1962) Lysis of soil fungi by bacteria. Can J Microbiol 9:689–696

    Google Scholar 

  • Mnif I, Ghribi D (2015) Review lipopeptides biosurfactants: mean classes and new insights for industrial, biomedical, and environmental applications. J Pept Sci 104(3):129–147

    CAS  Google Scholar 

  • Molina L, Constantinescu F, Michel L, Reimmann C, Duffy B, Defago G (2003) Degradation of pathogen quorum-sensing molecules by soil bacteria: a preventive and curative biological control mechanism. FEMS Microbiol Ecol 45:71–81

    CAS  PubMed  Google Scholar 

  • Mondol MA, Shin HJ, Islam MT (2013) Diversity of secondary metabolites from marine Bacillus species: chemistry and biological activity. Mar Drugs 11(8):2846–2872

    PubMed  PubMed Central  Google Scholar 

  • Mora I, Cabrefiga J, Montesinos E (2011) Antimicrobial peptide genes in Bacillus strains from plant environments. Int Microbiol 14:213–223

    CAS  PubMed  Google Scholar 

  • Muller S, Strack SN, Hoefler BC, Straight PD, Kearns DB, Kirby JR (2014) Bacillaene and sporulation protect Bacillus subtilis from predation by Myxococcus xanthus. Appl Environ Microb 80:5603–5610

    Google Scholar 

  • Murphy JF, Zehnder GW, Schuster DJ, Sikora EJ, Polston JE, Kloepper JW (2000) Plant growth-promoting rhizobacterial mediated protection in tomato against tomato mottle virus. Plant Dis 84:779–784

    PubMed  Google Scholar 

  • Nielsen TH, Christopheresen C, Anthoni U, Sørensen J (1999) Viscosinamide, a new cyclic depsipeptide with surfactant and antifungal properties produced by Pseudomonas fluorescens DR54. J Appl Microbiol 87:80–90

    CAS  PubMed  Google Scholar 

  • Nielsen TH, Thrane C, Christophersen C, Anthoni U, Sørensen J (2000) Structure, production characteristics and fungal antagonism of tensin — a new antifungal cyclic lipopeptide from Pseudomonas fluorescens strain 96.578. J Appl Microbiol 89:992–1001

    CAS  PubMed  Google Scholar 

  • Nihorimbere V, Ongena M, Cawoy H, Brostaux Y, Kakana P (2010) Beneficial effects of Bacillus subtilis on field-grown tomato in Burundi: reduction of local Fusarium disease and growth promotion. Afr J Microbiol Res 4:11–19

    Google Scholar 

  • Ongena M, Jacques P (2008) Bacillus lipopeptides: versatile weapons for plant disease biocontrol. Trends Microbiol 16(3):115–125

    CAS  PubMed  Google Scholar 

  • Ouyang LJ, Li LM (2016) Effects of an inducible aiiA gene on disease resistance in Eucalyptus urophylla x Eucalyptus grandis. Transgenic Res 25:441–452

    CAS  PubMed  Google Scholar 

  • Panda AK, Bisht SS, DeMondal S, Kumar NS, Gurusubramanian G, Panigrahi AK (2014) Brevibacillus as a biological tool: a short review. Antonie Van Leeuwenhoek 105(4):623–639

    CAS  PubMed  Google Scholar 

  • Parashar V, Konkol MA, Kearns DB, Neiditch MB (2013) A plasmid-encoded phosphatase regulates Bacillus subtilis biofilm architecture, sporulation, and genetic competence. J Bacteriol 195:2437–2448

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park JW, Balaraju K, Kim JW, Lee SW, Park K (2013a) Systemic resistance and growth promotion of chili pepper induced by an antibiotic producing Bacillus vallismortis strain BS07. Biol Control 65(2):246–257

    Google Scholar 

  • Park K, Park JW, Lee SW, Balaraju K (2013b) Disease suppression and growth promotion in cucumbers induced by integrating PGPR agent Bacillus subtilis strain B4 and chemical elicitor ASM. Crop Protect 54:199–205

    CAS  Google Scholar 

  • Podile A, Prakash A (1996) Lysis and biological control of Aspergillus niger by Bacillus subtilis AF 1. Can J Microbiol 42(6):533–538

    CAS  PubMed  Google Scholar 

  • Priest F (1993) Systematics and ecology of Bacillus. In: Sonenshein AL, Hoch J, Losick R (eds) Bacillus subtilis and other gram positive bacteria, biochemistry, physiology and molecular genetics. American Society for Microbiology Press, Washington, DC, pp 3–16

    Google Scholar 

  • Rahman A, Uddin W, Wenner NG (2015) Induced systemic resistance responses in perennial ryegrass against Magnaporthe oryzae elicited by semi-purified surfactin lipopeptides and live cells of Bacillus amyloliquefaciens. Mol Plant Pathol 16:546–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramarathnam R, Bo S, Chen Y, Fernando WGD, Gao XW, de Kievit T (2007) Molecular and biochemical detection of fengycin- and bacillomycin D-producing Bacillus spp., antagonistic to fungal pathogens of canola and wheat. Can J Microbiol 53:901–911

    CAS  PubMed  Google Scholar 

  • Ramyabharathi S, Meena B, Raguchander T (2012) Induction of chitinase and b-1,3-glucanase PR proteins in tomato through liquid formulated Bacillus subtilis EPCO 16 against Fusarium wilt. J Today Biol Sci: Res Rev 1(1):50–60

    Google Scholar 

  • Ramyabharathi S, Rajendran L, Karthikeyan G, Raguchander T (2016) Liquid formulation of endophytic Bacillus and its standardization for the management of Fusarium wilt in tomato. Bangladesh J Botany 45:283–290

    Google Scholar 

  • Rayanoothala P, Divya M, Mahapatra S, Das S (2020) Microbial biofilm:formulation, quorum sensing and its application.In. In: Singh KP, Jahagirdar S, Sarma BK (eds) Emerging trends in plant pathology. Springer, Singapore. https://doi.org/10.1007/978-981-15-6275-4

    Chapter  Google Scholar 

  • Reitz M, Rudolph K, Schroder I, Hoffmann-Hergarten S, Hallmann J, Sikora RA (2000) Lippolsaccharides of Rhizobium etli strain G12 act in potato roots as an inducing agent of systemic resistance to infection by the cyst nematode Globodera pallida. Appl Environ Microbiol 66:3515–3518

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero D, de Vicente A, Rakotoaly RH, Dufour SE, Veening JW, Arrebola E, Cazorla FM, Kuipers OP, Paquot M, Perez-Garcia A (2007) The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis towards Podosphaera fusca. Mol Plant-Microbe Interact 20:430–440

    CAS  PubMed  Google Scholar 

  • Rosado AS, de Azevedo FS, da Cruz DW, van Elsas JD, Seldin L (1998) Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses. J Appl Microbiol 84:216–226

    Google Scholar 

  • Ruiz-Sanchez R, Blake R, Castro-Gamez H, Sanchez F, Montaldo HH, Castillo-Juarez H (2007) Short communication: changes in the association between milk yield and age at first calving in Holstein cows with herd environment level for milk yield. J Dairy Sci 90(10):4830–4834

    CAS  PubMed  Google Scholar 

  • Ryu CM, Hu CH, Reddy M, Klopper JW (2003) Different signaling pathways of induced resistance by rhizobacteria in Arabidopsis thaliana against two pathovars of Pseudomonas syringae. New Phytol 160(2):413–420

    CAS  PubMed  Google Scholar 

  • Ryu CM, Farag MA, Hu CH, Reddy MS, Klopper JW, Pare PW (2004) Bacterial volatiles induce systemic resistance in Arabidopsis. Plant Physiol 134(3):1017–1026

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salas-González I, Reyt G, Flis P, Custódio V, Gopaulchan D, Bakhoum N, Dew TP, Suresh K, Franke RB, Dangl JL, Salt DE, Castrillo G. (2020) Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis. Science 19 Nov 2020: eabd0695. https://doi.org/10.1126/science.abd0695

  • Seldin L (1992) Primary characterization of the bacteriophage BA-4 from a nitrogen fixing Bacillus azotofixans strain. Microbios 71:167–177

    CAS  Google Scholar 

  • Seldin L, Soares Rosado A, da Cruz DW, Nobrega A, van Elsas JD, Paiva E (1998) Comparison of Paenibacillus azotofixans strains isolated from rhizoplane, and non-root-associated soil from maize planted in two different Brazilian soils. Appl Environ Microbiol 64:3860–3868

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selim MM, Hend Nafisa Gomaa M, Essa AMM (2017) Application of endophytic bacteria for the biocontrol of Rhizoctonia solani (Cantharellales: ceratobasidiaceae) dam**-off disease in cotton seedlings. Biocontrol Sci Tech 27(1):81–95

    Google Scholar 

  • Shiomi HF, Silva HSA, de Melo IS, Nunes FV, Bettiol W (2006) Bioprospecting endophytic bacteria for biological control of coffee leaf rust. Scientia Agricola (Piracicaba, Braz) 63:32–39

    Google Scholar 

  • Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56(4):845–857

    CAS  PubMed  Google Scholar 

  • Surovy MZ, Gupta DR, Mahmud NU, et al (2019) Genomics and post-genomics approaches for elucidating molecular mechanisms of plant growth-promoting Bacilli. Bacilli in Climate Resilient Agriculture and Bioprospecting Bacilli and Agrobiotechnology: Phytostimulation and Biocontrol 161–200. https://doi.org/10.1007/978-3-030-15175-1_10

  • Tong-Jian XI, Fang C, Chao GA, Quin-Yun ZH, Qi-Rong SH, Wei RA (2013) Bacillus cereus X5 enhanced bio-organic fertilizers effectively control rootknot nematodes (Meloidogyne sp.). Pedosphere 23(2):160–168

    Google Scholar 

  • Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot 64(1):21–32

    Google Scholar 

  • Udayashankar A, Nayaka SC, Reddy MS, Srinivas C (2011) Plant growth promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol Control 59(2):114–122

    Google Scholar 

  • Van Gestel J, Vlamakis H, Kolter R (2015) New tools for comparing microscopy images: quantitative analysis of cell types in Bacillus subtilis. J Bacteriol 197:699–709

    PubMed  PubMed Central  Google Scholar 

  • Van Overbeek L, van Elsas JD (2008) Effect of plant genotype and growth stage on the structure of bacterial communities associated with potato (Solanum tuberosum L.). FEMS Microbiol Ecol 64:283–296

    PubMed  Google Scholar 

  • Vargas-Ayala R, Rodriguez-Kaban R, Morgan-Jones G, McInroy JA, Kloepper JW (2000) Shifts in soil microflora induced by velvetbean (Mucuna deeringiana) in crop** systems to control root-knot nematodes. Biol Control 17:11–22

    Google Scholar 

  • Vlamakis H, Chai Y, Beauregard P, Losick R, Kolter R (2013) Sticking together: building a biofilm the Bacillus subtilis way. Nat Rev Microbiol 11(3):157–168

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J, Liu J, Wang X, Yao J, Yu Z (2004) Application of electrospray ionization mass spectrometry in rapid ty** of fengycin homologues produced by Bacillus subtilis. Lett Appl Microbiol 39(1):98–102

    CAS  PubMed  Google Scholar 

  • Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth-promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant-Microbe Interact 18:385–396

    CAS  PubMed  Google Scholar 

  • Wang S, Wu H, Qiao J, Ma L, Liu J, **a Y, Gao X (2009) Molecular mechanism of plant growth promotion and induced systemic resistance of tobacco mosaic virus by Bacillus spp. J Microbiol Biotechnol 19(10):1250–1258

    CAS  PubMed  Google Scholar 

  • Wang X, Wang L, Wang J, ** P, Liu H, Zheng Y (2014) Bacillus cereus AR156induced resistance to Colletotrichum acutatum is associated with priming of defense responses in loquat fruit. PLoS One 9(11):e112494

    PubMed  PubMed Central  Google Scholar 

  • Wang T, Liang Y, Wu MB, Chen ZJ, Yang LR (2015) Natural products from Bacillus subtilis with antimicrobial properties. Chin J Chem Eng 23(4):744–754

    CAS  Google Scholar 

  • Wieland G, Neumann R, Backhaus H (2001) Variation of microbial communities in soil, rhizosphere and rhizoplane in response to crop species, soil type and crop development. Appl Environ Microbiol 67:5849–5854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams-Wagner RN, Grundy FJ, Raina M, Ibba M, Henkin TM (2015) The Bacillus subtilis tyrZ gene encodes a highly selective Tyrosyl-tRNA synthetase and is regulated by a MarR regulator and T box riboswitch. J Bacteriol 197:1624–1631

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wulff BB, Horvath DM, Ward ER (2011) Improving immunity in crops: new tactics in an old game. Curr Opin Plant Biol 14(4):468–476

    CAS  PubMed  Google Scholar 

  • Yamamoto S, Shiraishi S, Suzuki S (2015) Are cyclic lipopeptides produced by Bacillus amyloliquefaciens S13–3 responsible for the plant defence response in strawberry against Colletotrichum gloeosporioides? Lett Appl Microbiol 60:379–386

    CAS  PubMed  Google Scholar 

  • Yang CY, Ho YC, Pang JC, Huang SS, Tschen JSM (2009) Cloning and expression of an antifungal chitinase gene of a novel Bacillus subtilis isolate from Taiwan potato field. Bioresour Technol 100:1454–1458

    CAS  PubMed  Google Scholar 

  • Yang L, Quan X, Xue B, Goodwin PH, Lu S, Wang J, Du W, Wu C (2015) Isolation and identification of Bacillus subtilis strain YB-05 and its antifungal substances showing antagonism against Gaeumannomyces graminis var. tritici. Biol Control 85:52–58

    CAS  Google Scholar 

  • You C, Zhang C, Kong F, Feng C, Wang J (2016) Comparison of the effects of biocontrol agent Bacillus subtilis and fungicide metalaxyl–mancozeb on bacterial communities in tobacco rhizospheric soil. Ecol Eng 91:119–125

    Google Scholar 

  • Zhang N, Wu K, He X, Li SQ, Zhang ZH, Shen B, Yang XM, Zhang RF, Huang QW, Shen QR (2011) A new bioorganic fertilizer can effectively control banana wilt by strong colonization with Bacillus subtilis N11. Plant Soil 344(1–2):87–97

    CAS  Google Scholar 

  • Zheng X, Sinclair J (2000) The effects of traits of Bacillus megaterium onseed and root colonization and their correlation with the suppression of Rhizoctonia root rot of soybean. BioControl 45(2):223–243

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tofazzal Islam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahapatra, S., Chakraborty, S., Samanta, M., Das, S., Islam, T. (2022). Current Understanding and Future Directions of Biocontrol of Plant Diseases by Bacillus spp., with Special Reference to Induced Systemic Resistance. In: Islam, M.T., Rahman, M., Pandey, P. (eds) Bacilli in Agrobiotechnology. Bacilli in Climate Resilient Agriculture and Bioprospecting. Springer, Cham. https://doi.org/10.1007/978-3-030-85465-2_6

Download citation

Publish with us

Policies and ethics

Navigation