Efficiency of Aquatic Plants for Remediation of Wastewater

  • Chapter
  • First Online:
Aquatic Macrophytes: Ecology, Functions and Services

Abstract

Rampant industrialization, unplanned urbanization, and agricultural activities release an enormous quantity of contaminants in water which adversely affects social and economic development globally. Today, aquatic ecosystems are a major environmental threat due to inorganic (heavy metals and metalloids) and organic contaminants, especially in develo** countries. Heavy metals and POP are common environmental pollutants that affect soil, water, and air quality. Heavy metals are of high concern due to their persistent, carcinogenic, the potential of long-distance transport, and bioaccumulation in the food chain. Hence, wastewater must be treated up to adequate level before being discharged into the aquatic system. Traditional treatment approaches are not always very effective in wastewater remediation. Phytoremediation is an eco-friendly and economically sound technique, which has been accepted by several researchers as an alternative to the current high-cost cleanup methods. Aquatic plants are used in this technology to efficiently remove, detoxify, or immobilize heavy metals and persistent organic pollutants. Many aquatic plant species, particularly high growth-rate plants like macrophytes, are currently being studied to determine their potential and effectiveness for phytoremediation applications. Excess contaminants in domestic, agricultural, and industrial effluent, such as inorganic and organic pollutants, metals, and pharmaceutical pollutants, can be absorbed by aquatic plants. This chapter deliberates the phytoremediation potential of Eichhornia crassipes, Azolla, and duckweeds aquatic macrophytes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adabembe BA, Fasinmirin JT, Olanrewaju OO, Dada AA, Faloye OT (2022) Phytoremediation of aquaculture wastewater using Azolla pinnata and evaluation of its suitability for irrigation purpose. Sustain Water Resour Manag 8:166. https://doi.org/10.1007/s40899-022-00753

    Article  Google Scholar 

  • Ahmad S, Ali A, Ashfaq A (2016) Heavy metal pollution, sources, toxic effects and techniques adopted for control. Int J Curr Res Aca Rev 4(6):39–58

    Article  CAS  Google Scholar 

  • Akinbile CO, Yusof MS (2012) Water hyacinth (Eichhornia crassipes) and lettuce (pistiastratiotes) efectiveness in aquaculture wastewater treatment in Malaysia. Inter J Phytoremed 14(3):201–211

    Article  CAS  Google Scholar 

  • Akinbile CO, Ogunrinde TA, Man HC, Aziz HA (2015) Phytoremediation of domestic wastewaters in free water surface constructed wetlands using Azolla pinnata. Int J Phytoremediation 18(1):54–56. https://doi.org/10.1080/15226514.2015.1058330

    Article  CAS  Google Scholar 

  • Alharbi OM, Khattab RA, Ali I (2018) Health and environmental effects of persistent organic pollutants. J Mol Lisq 263:442–453

    Article  CAS  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals – concepts and applications. Chemosphere 91:869–881

    Article  CAS  PubMed  Google Scholar 

  • Ali S, Abbas Z, Rizwan M et al (2020) Application of floating aquatic plants in phytoremediation of heavy metals polluted water: a review. Sustainability 12:1927. https://doi.org/10.3390/su12051927

    Article  CAS  Google Scholar 

  • Aravind P, Prasad MNV, Malec P, Waloszek A, StrzaÅ‚ka K (2009) Zinc protects Ceratophyllum demersum L. (free-floating hydrophyte) against reactive oxygen species induced by cadmium. J Trace Elem Med Biol 23:50–60

    Article  CAS  PubMed  Google Scholar 

  • Arora A, Sood A, Singh PK (2004) Hyperaccumulation of cadmium and nickel by Azolla species. Indian J Plant Physiol 3:302–304

    Google Scholar 

  • Arora A, Saxena S, Sharma DK (2006) Tolerance and phytoaccumulation of chromium by three Azolla species. World J Microbiol Biotechnol 22:97–100

    Article  CAS  Google Scholar 

  • Arora M, Kiran K, Rani S, Rani A, Kaur B, Mittal N (2008) Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chem 111:811–815

    Article  CAS  Google Scholar 

  • Babić M, Radić S, Cvjetko P, Roje V, Pevalek-Kozlina B, Pavlica M (2009) Antioxidative response of Lemna minor plants exposed to thallium (I)-acetate. Aquat Bot 91:166–172

    Article  Google Scholar 

  • Baek G, Saeed M, Choi H-K (2021) Duckweeds: their utilization, metabolites and cultivation. Appl Biol Chem 64:73. https://doi.org/10.1186/s13765-021-00644-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Barakat MA (2011) New trends in removing heavy metals from industrial wastewater. Arab J Chem 4:361–377

    Article  CAS  Google Scholar 

  • Bennicelli R, Stepniewska Z, Banach A, Szajnocha K, Ostrowski J (2004) The ability of Azolla caroliniana to remove heavy metals Hg(II), Cr(III) and Cr(VI) from municipal wastewater. Chemosphere 55(1):141–146

    Article  CAS  PubMed  Google Scholar 

  • Bergman Ã…, Heindel J, Jobling S, Kidd K, Zoeller R (2014) WHO (World Health Organization)/UNEP (United Nations Environment Programme) Global assessment of the state-of-the-science of endocrine disruptors, vol 121, p A107. https://doi.org/10.1289/ehp.1306695

    Book  Google Scholar 

  • Bhatiya M, Goyal D (2014) Analyzing remediation potential of wastewater through wetland plants: A review. Environ Prog Sustain Energy 33(1):9–27

    Article  Google Scholar 

  • Bokhari SH, Ahmad I, Mahmood-Ul-Hassan M, Mohammad A (2016) Phytoremediation potential of Lemna minor L. for heavy metals. Int J Phytoremediation 18:25–32

    Article  CAS  PubMed  Google Scholar 

  • Boonyapookana B, Upatham ES, Kruatrachue M, Pokethitiyook P, Singhakaew S (2002) Phyoaccumulation and phytotoxicity of Cd and Cr in duckweed Wolffia globosa. Int J Phytoremediation 4:87

    Article  CAS  PubMed  Google Scholar 

  • Boulé KM, Vicente JAF, Nabais C, Prasad MNV, Freitas H (2009) Ecophysiological tolerance of duckweeds exposed to copper. Aquat Toxicol 91:1–9

    Article  Google Scholar 

  • Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metal. Ecol Eng 18:317–325

    Article  Google Scholar 

  • Dai LP, **ong ZT, Huang Y, Li MJ (2006) Cadmium induced changes in pigments, total phenolics, and phenylalanine ammonia-lyase activity in fronds of Azolla imbricata. Environ Toxicol 21:505–512

    Article  CAS  PubMed  Google Scholar 

  • Dhir B, Sharmila P, Pardha Saradhi P, Nasim SA (2009) Physiological and antioxidant responses of Salvinia natans exposed to chromium-rich wastewater. Ecotoxicol Environ Saf 72:1790–1797

    Article  CAS  PubMed  Google Scholar 

  • Dixit S, Dhote S (2010) Evaluation of uptake rate of heavy metals by Eichhornia crassipes and Hydrilla verticillata. Environ Monit Assess 169:367–374

    Article  CAS  PubMed  Google Scholar 

  • Eid EM, Galal TM, Sewelam NA, Talha NI, Abdallah SM (2020) Phytoremediation of heavy metals by four aquatic macrophytes and their potential use as contamination indicators: A comparative assessment. Environ Sci Pollut Res 27:1–14

    Article  Google Scholar 

  • El-Samrani AG, Lartiges BS, Villiéras F (2008) Chemical coagulation of combined sewer overflow: heavy metal removal and treatment optimization. Water Res 42:951–960

    Article  CAS  PubMed  Google Scholar 

  • Fazal S, Zhang B, Mehmood Q (2015) Biological treatment of combined industrial wastewater. Ecol Eng 84:551–558

    Article  Google Scholar 

  • Fenglian F, Wang Q (2011) Removal of heavy metal ions from wastewaters: A review. J Environ Manag 92:407–418

    Article  Google Scholar 

  • Garg P, Chandra P (1994) The duckweed (Wolffia globosa) as an indicator of heavy metal pollution. Environ Monitor Assess 29:89–95

    Article  CAS  Google Scholar 

  • Gorgoglione A, Torretta V (2018) sustainable management and successful application of constructed wetlands: a critical review. Sustainability 2018(10):3910. https://doi.org/10.3390/su10113910

    Article  CAS  Google Scholar 

  • Han D, Currell MJ (2017) Persistent organic pollutants in China’s surface water systems. Sci Total Environ 580:602–625

    Article  CAS  PubMed  Google Scholar 

  • Harguinteguy CA, Cirelli AF, Pignata ML (2014) Heavy metal accumulation in leaves of aquatic plant Stuckenia filiformis and its relationship with sediment and water in the Suquía river (Argentina). Microchem J 114:111–118. https://doi.org/10.1016/j.microc.2013.12.010

    Article  CAS  Google Scholar 

  • Hoang H, Sakakibara NTHM, Sano S, Hori RS, Sera K (2009) The potential of Eleocharis acicularis for phytoremediation: case study at an abandoned mine site. Clean Soil Air Water 37:203–208

    Article  Google Scholar 

  • Jain SK, Vasudevan P, Jha NK (1989) Removal of some heavy metals from polluted water by aquatic plants: studies on duckweed and water velvet. Biol Wastes 28:115–126

    Article  CAS  Google Scholar 

  • Jayaweera MW, Kasturiachchi JC, Kularatne RKA, Wijeyekoon LJ (2008) Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrients conditions to Fe-removal mechanisms in constructed wetlands. J Environ Manag 87:450–460

    Article  CAS  Google Scholar 

  • Jonker MT, Koelmans AA (2002) Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment: mechanistic considerations. Environ Sci Technol 36(17):3725–3734

    Article  CAS  PubMed  Google Scholar 

  • Kara Y (2005) Bioaccumulation of Cu, Zn and Ni from the wastewater by treated Nasturtium officinal. Int J Environ Sci Technol 2(1):63–67

    Article  CAS  Google Scholar 

  • Kelley C, Mielke R, Dimaquibo D, Curtis AJ, Dewitt JG (1999) Adsorption of Eu(III) onto roots of water hyacinth. Environ Sci Technol 33:1439–1443

    Article  CAS  Google Scholar 

  • Kolawole BS (2001) Cleaning of effluent from textile industry by water hyacinth (B. Sc. Thesis). University of Agriculture, Abeokuta, Ogun state

    Google Scholar 

  • Korner S, Vermaat JE, Veenstra S (2003) The capacity of duckweed to treat wastewater: ecological considerations for a sound design. J Environ Qual 32:1583–1590

    Article  PubMed  Google Scholar 

  • Kumar S, Dutta V (2019) Constructed wetland microcosms as sustainable technology for domestic wastewater treatment: an overview. Environ Sci Pollut Res 26:11662. https://doi.org/10.1007/s11356-019-04816-9

    Article  CAS  Google Scholar 

  • Kumar N, Bauddha K, Dwivedi N, Barman SC, Singh DP (2012) Accumulation of metals in selected macrophytes grown in mixture of drain water and tannery effluent and their phytoremediation potential. J Environ Biol 33:923–927

    CAS  PubMed  Google Scholar 

  • Kumar N, Bauddha K, Kumar S, Dwivedi N, Singh DC, Barman SC (2013) Accumulation of metals in weed species grown on the soil contaminated with industrial waste and their phytoremediation potential. Ecol Eng 61:491–495

    Article  Google Scholar 

  • Kumar D, Bharti SK, Anand S, Kumar N (2018) Defluoridation of water with the help of copper phytoremediated Andrographis paniculata plant biomass. J Environ Biol 39:664–670

    Article  CAS  Google Scholar 

  • Laet CD, Matringe T, Petit E, Grison C (2019) Eichhornia crassipes: a powerful bio-indicator for water pollution by emerging pollutants. Sci Rep 9:7326. https://doi.org/10.1038/s41598-019-43769-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li C, Yang L, Shi M, Liu G (2019a) Persistent organic pollutants in typical lake ecosystems. Ecotoxicol Environ Saf 180:668–678

    Article  CAS  PubMed  Google Scholar 

  • Li C, Yang L, Shi M, Liu G (2019b) Persistent organic pollutants in typical lake ecosys-tems. Ecotoxicol Environ Saf 180:668–678

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Liu M, Hou L, Li X, Yin G, Sun P, Zheng D (2021) Geographical distribution of polycyclic aromatic hydrocarbons in estuarine sediments over China: human impacts and source apportionment. Sci Total Environ 768:145279

    Article  CAS  PubMed  Google Scholar 

  • Liao S, Chang W (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aqua Plant Manage 42:60–68

    Google Scholar 

  • Lu Q, Zhenli LH, Graetz DA, Stoffella PJ, Yang X (2010) Phytoremediation to remove nutrients and improve eutrophic stormwaters using water lettuce (Pistia stratiotes L.). Environ Sci Pollut Resour 17:84–96

    Article  CAS  Google Scholar 

  • Malec P, Maleva MG, Prasad MN, Strzalka K (2010) Response of Lemna trisulca L. (Duckweed) exposed to low doses of Cadmium: thiols, metal binding complexs and photosynthetic pigments as sensitive biomarkers of ecotoxicity. Protoplasma 240(1–4):69–74

    Article  CAS  PubMed  Google Scholar 

  • Mant C, Costa S, Williams J, Tambourgi E (2006) Phytoremediation of chromium by model constructed wetland. Bioresour Technol 97:1767–1772

    Article  CAS  PubMed  Google Scholar 

  • Mant C, Costa S, Williams J, Tambourgi E (2007) Phytoremediation of chromium by model constructed wetland. Bioresour Technol 97:767–772

    Google Scholar 

  • Mishra VK, Tripathi BD (2008) Concurrent removal and accumulation of heavy metals by the three aquatic macrophytes. Bioresour Technol 99(15):7091–7097

    Article  CAS  PubMed  Google Scholar 

  • Mishra VK, Upadhyay AR, Pandey SK, Tripathi BD (2008a) Concentrations of heavy metals and aquatic macrophytes of Govind Ballabh Pant Sagar an anthropogenic lake affected by coal mining effluent. Environ Monitor Assess 141:49–58

    Article  CAS  Google Scholar 

  • Mishra VK, Upadhyay AR, Pathak V, Tripathi BD (2008b) Phytoremediation of mercury and arsenic from tropical opencast coalmine effluent through naturally occurring aquatic macrophytes. Water Air Soil Pollut 192:303–314

    Article  CAS  Google Scholar 

  • Mishra VK, Tripathi BD, Kim KH (2009) Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. J Hazard Mater 172:749–754

    Article  CAS  PubMed  Google Scholar 

  • Mkandawire M, Taubert B, Dudel EG (2004) Capacity of Lemna gibba L. (Duckweed) for uranium and arsenic phytoremediationin mine tailing waters. Int J Phytoremediation 6:347–362

    Article  CAS  PubMed  Google Scholar 

  • Mokhtar H, Morad N, Ahmad Fizri FF (2011) Hyperaccumulation of copper by two species of aquatic plants. International Conference on Environmental Science and Engineering IPCBEE 8. IACSIT Press, Singapore

    Google Scholar 

  • Monferran MV, Sanchez Agudo JA, Pignata ML, Wunderlin DA (2009) Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophytes Potamogeton pusillus. Environ Pollut 157:2570–2576

    Article  CAS  PubMed  Google Scholar 

  • Naghipour D, Ashrafi SD, Gholamzadeh M, Taghavi K, Naimi-Joubani M (2018) Phytoremediation of heavy metals (Ni, Cd, Pb) by Azolla filiculoides from aqueous solution: a dataset. Data Brief 21:1409–1414. https://doi.org/10.1016/j.dib.2018.10.111

    Article  PubMed  PubMed Central  Google Scholar 

  • Nikitha T, Satyaprakash M, Vani SS, Sadhana B, Padal SB (2017) A review on pol-ycyclic aromatic hydrocarbons: their transport, fate and biodegradation in the environment. Int J Curr Microbiol Appl Sci 6(4):1627–1639

    Article  CAS  Google Scholar 

  • Okereafor U, Makhatha M, Mekuto L et al (2020) Toxic metal implications on agricultural soils, plants, animals, aquatic life and human health. Int J Environ Res Public Health 17:2204. https://doi.org/10.3390/ijerph17072204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oporta C, Arce O, Bracck EVD, Bruggen BVD, Vandecasteele C (2006) Experimental study and modelling of Cr (VI) removal from waste water using Lemna minor. Water Res 40:1458–1464

    Article  Google Scholar 

  • Para LM, Torres G, Arenas AD, Sanchez E and Rodriguez K. 2012. Phytoremediation of low levels of heavy metals using duckweed (Lemna minor). Abiotic stress responses in plants: metabolism, productivity and sustainabilty. Springer New York, NY, 451–463

    Google Scholar 

  • Pati S, Satapathy KB (2016) Phytoremediation potential of aquatic macrophyte azolla pinnata R.Br. and salvinia molesta mitchell for removal of chromium from waste water. Int J Sci Environ Technol 5(4):2146–2160

    Google Scholar 

  • Pietrobelli JMT, de Módenes AN, Fagundes-Klen MRF, Espinoza-Quiñones FR (2009) Cadmium, copper and zinc biosorption study by non-living Egeria densa biomass. Water Air Soil Pollut 202:385–392

    Article  CAS  Google Scholar 

  • Priya ES, Selvan PS (2014) Water hyacinth (Eichhornia crassipes) – an efficient and economic adsorbent for textile effluent treatment – a review. Arab J Chem 10:S3548–S3558

    Article  Google Scholar 

  • Radic S, Stipanicev D, Cvjetko P, Mikelic IL, Rajcic MM, Sirac S, Kozlina BP, Palvica M (2010) Ecotoxicological assessment of industrial effluent using duckweed (Lemna minor L.) as a test organism. Ecotoxicology 19:216–222

    Article  CAS  PubMed  Google Scholar 

  • Radjenovic J, Sedlak DL (2015) Challenges and opportunities for electrochemical processes as next generation technologies for the treatment of contaminated water. Environ Sci Technol 49(19):11292–11302

    Article  CAS  PubMed  Google Scholar 

  • Rahman MA, Hasegawa H, Ueda K, Maki T, Rahman MM (2008) Influence of EDTA and chemical species on arsenic accumulation in Spirodela polyrhiza L. (duckweed). Ecotoxicol Environ Saf 70:311–318

    Article  CAS  PubMed  Google Scholar 

  • Rai PK (2008) Phytoremediation of Hg and Cd from industrial effluent using an aquatic free floating macrophyte Azolla pinnata. Int J Phytoremediation 10:430–439

    Article  CAS  PubMed  Google Scholar 

  • Rai PK (2009) Heavy metal phytoremediation from aquatic ecosystems with special reference to macrophytes. Crit Rev Environ Sci Technol 39:697–753

    Article  CAS  Google Scholar 

  • Rai PK, Tripathi BD (2009) Comparative assessment of Azolla pinnata and Vallisneria spiralis in Hg removal from G.B. Pant Sagar of Singrauli Industrial region, India. Environ Monitor Assess 148:75–84

    Article  CAS  Google Scholar 

  • Ramaswami A, Carr P, Burkhardi M (2001) Plant-uptake of Urenium: hydroponic and soil system studies. Int J Phytoremediation 3(2):189–201

    Article  CAS  Google Scholar 

  • Rezania S, Ponraj M, Md Din MF, Chelliapan S, Md Sairan F (2016) Effectiveness of Eichhornia crassipes in nutrient removal from domestic wastewater based on its optimal growth rate. J Desalinat Water Treat 57(1):360–365

    CAS  Google Scholar 

  • Robinson B, Kim N, Marchetti M, Moni C, Schroeter L, Dijssel CD, Milne G, Clothier B (2006) Arsenic Hyperaccumulation by aquatic macrophytes in the Taupo volcanic zone, New Zealand. Environ Exp Bot 2006(58):206–215

    Article  Google Scholar 

  • Sakakibara M, Ohmori Y, Ha NTH, Sano S, Sera K (2011) Phytoremediation of heavy metal-contaminated water and sediment by Eleocharis acicularis. Clean Soil Air Water 39:735–741

    Article  CAS  Google Scholar 

  • Sampera E, Rodrígueza M, De la Rubia MA, Prats D (2009) Removal of metal ions at low concentration by micellar-enhanced ultrafiltration (MEUF) using sodium dodecyl sulfate (SDS) and linear alkylbenzene sulfonate (LAS). Sep Purif Technol 65:337–342

    Article  Google Scholar 

  • Sasmaz A, Obekb E, Hasarb H (2008) The accumulation of heavy metals in Typha lotifolia L. Grown in a stream carrying secondary effluent. Ecol Eng 33:278–284

    Article  Google Scholar 

  • Schneider IAH, Rubio J, Misra M, Smith RW (1995) Eichhornia crassipes as biosorbent for heavy metal ions. Min Eng 8:979–988

    Article  CAS  Google Scholar 

  • Sekomo CB, Rousseau DPL, Saleha SA, Lensa PNL (2012) Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. 2012. Ecol Eng 44:102–110

    Article  Google Scholar 

  • Sela M, Garty J, Tel-Or E (1989) The accumulation and effect of heavy metal on the water fern Azolla filiculoides. New Phytol 112:7–12

    Article  CAS  Google Scholar 

  • Sharma SS, Gaur JP (1995) Potential of Lemna polyrhiza for removal of heavy metals. Ecol Eng 4:37–45

    Article  Google Scholar 

  • Sharma R, Lenaghan SC (2022) Duckweed: a potential phytosensor for heavy metals. Plant Cell Rep 41:2231. https://doi.org/10.1007/s00299-022-02913-7

    Article  CAS  PubMed  Google Scholar 

  • Shutes RBE (2001) Artificial wetlands and water quality improvement. Environ Int 26:441–447

    Article  CAS  PubMed  Google Scholar 

  • Sirés I, Brillas E, Oturan MA, Rodrigo MA, Panizza M (2014) Electrochemical advanced oxidation processes: today and tomorrow. A review. Environ Sci Pollut Res 21:8336–8367

    Article  Google Scholar 

  • Sood A, Ahluwalia AS (2009) Cyanobacterial–plant symbioses with emphasis on Azolla-Anabaena symbiotic system. Indian Fern Journal 26:166–178

    Google Scholar 

  • Sood A, Perm L, Prasanna UR, Ahluwalia AS (2012) Phytoremediation potential of aquatic macrophyte, Azolla. A Journal of the Human Environment 41:122–137

    CAS  Google Scholar 

  • Stepniewska Z, Bennicelli RP, Balakhnina TI, Szajnocha K, Banach A, WolinËœska A (2005) Potential of Azolla caroliniana for the removal of Pb and Cd from wastewaters. Int Agrophys 19:251–255

    CAS  Google Scholar 

  • Tel-Or E, Forni C (2011) Phytoremediation of hazardous toxic metals and organics by photosynthetic aquatic systems. Plant Biosystems 145:224–235

    Article  Google Scholar 

  • Tiwari S, Dixit S, Verma N (2007) An effective means of biofiltration of heavy metal contaminated water bodies using aquatic weed Echhornia crassipes. Environ Monit Assess 129:253–256

    Article  CAS  PubMed  Google Scholar 

  • Trojanowicz M (2020) Removal of persistent organic pollutants (POPs) from waters and wastewaters by the use of ionizing radiation. Sci Total Environ 718:134425

    Article  CAS  PubMed  Google Scholar 

  • Verma VK, Tewari S, Rai JPN (2008) Ion exchange during heavy metal bio-sorption from aqueous solution by dried biomass of macrophytes. Bioresour Technol 99(6):1932–1938

    Article  CAS  PubMed  Google Scholar 

  • Vymazal J (2016) Concentration is not enough to evaluate accumulation of heavy metals and nutrients in plants. Sci Total Environ 544:495–498

    Article  CAS  PubMed  Google Scholar 

  • Yu F, Yang C, Zhu Z, Bai X, Ma J (2019) Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci Total Environ 694:133643

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Lin A-J, Zhao F-J, Xu G-Z, Duan G-L, Zhua Y-G (2008) Arsenic accumulation by the aquatic fern Azolla: comparison of arsenate uptake, speciation and efflux by A. caroliniana and A. filiculoides¬. Environ Pollut 156(1):1149–1155

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Zhao FJ, Huang Q, Williams PN, Sun GX, Zhu YG (2009) Arsenic uptake and speciation in the rootless duckweed Wolffia globosa. New Phytol 182:421–428

    Article  CAS  PubMed  Google Scholar 

  • Zhao M, Duncan JR (1997) Batch removal of sexivalentchromium by Azolla filiculoides. Biotechnol Appl Biochem 26:179–182

    Article  CAS  Google Scholar 

  • Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero valent iron nanoparticles for soil and groundwater remediation. Water Res 100:245–226

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, D. et al. (2023). Efficiency of Aquatic Plants for Remediation of Wastewater. In: Kumar, S., Bauddh, K., Singh, R., Kumar, N., Kumar, R. (eds) Aquatic Macrophytes: Ecology, Functions and Services. Springer, Singapore. https://doi.org/10.1007/978-981-99-3822-3_8

Download citation

Publish with us

Policies and ethics

Navigation