Log in

Phytoremediation of Mercury and Arsenic from Tropical Opencast Coalmine Effluent Through Naturally Occurring Aquatic Macrophytes

  • Published:
Water, Air, and Soil Pollution Aims and scope Submit manuscript

Abstract

Under the present investigation phytoremediation of mercury and arsenic from a tropical open cast coalmine effluent was performed. Three aquatic macrophytes Eichhornia crassipes, Lemna minor and Spirodela polyrrhiza removed appreciable amount of mercury and arsenic during 21 days experiment. Removal capacities of these macrophytes were found in the order of E. crassipes > L. minor > S. polyrrhiza. Translocation factor (shot to root ratio of heavy metals) revealed low transportation of metals from root to leaves leading higher accumulation of metals in root as compared to leaves of the plant. It was evident from plant tissue analysis that mercury and arsenic up take by macrophytes had deteriorated the N, P, K, chlorophyll and protein content in these macrophytes. Correlations between removal of arsenic and mercury from mining effluent and its increase in plant parts were highly significant. Results favoured selected species to use as promising accumulator of metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antunes, A. P. M., Watkins, G. M., & Duncan, J. R. (2001). Batch studies on removal of gold (III) from aqueous solution by Azolla filiculoides. Biotechnology, 23, 249–251.

    CAS  Google Scholar 

  • Arnon, D. E. (1949). Copper enzyme in isolated chloroplast, polyphenol oxidase in Beta vulgaris. Plant Physiology, 24, 1–15.

    CAS  Google Scholar 

  • Arvind, P., & Prasad, M. N. V. (2005). Cadmium–zinc interactions in a hydroponic system using Ceratophyllum demersum L.: Adaptive ecophysiology, biochemistry and molecular toxicology. Brazilian Journal of Plant Physiology, 17, 3–20.

    Google Scholar 

  • Axtell, N. R., Sternberg, P. K., Steven, N., & Claussen, K. (2003). Lead and nickel removal using Microspora and Lemna minor. Bioresource Technology, 89, 41–48.

    Article  CAS  Google Scholar 

  • Bissen, M., & Frimmel, F. H. (2000). Speciation of As(III), As(V), MMA and DMA in contaminated soil extracts by HPLC-ICP/MS. Fresenius’ Journal of Analytical Chemistry, 367, 51–55.

    Article  CAS  Google Scholar 

  • Brooks, R. R., & Robinson, B. H. (1998). Aquatic phytoremediation by accumulator plants. In R. R. Brooks (Ed.), Plants that Hyperaccumulate Heavy Metals: their Role in Archaeology, Microbiology, Mineral Exploration, Phytomining and Phytoremediation (pp. 203–226). Wallingford: CAB International.

    Google Scholar 

  • Brown, B. T., & Rattigan, B. M. (1979). Toxicity of soluble copper and other metal ions to Elodea canadensis. Environmental Pollution, 20, 303–314.

    Article  CAS  Google Scholar 

  • Carbonell, A. A., Aarabi, M. A., DeLaune, R. D., Gambrell, R. P., & Patrick, W. H. Jr (1998). Arsenic in wetland vegetation: availability, phytotoxicity, uptake and effects on plant growth and nutrition. Science of the Total Environment, 217, 189–199.

    Article  CAS  Google Scholar 

  • Carbonell-Barrachina, M. A., Aarabi, M. A., DeLaune, R. D., Gambrell, R. P., & Patrick, W. H. Jr (1998). The influence of arsenic chemical form and concentration on Spartina patens and Spartina alterniflora growth and tissue arsenic concentration. Plant Soil, 198, 33–43.

    Article  CAS  Google Scholar 

  • Cohen-Shoel, N., Barkay, Z., Ilzycer, D., Gilath, L., & Tel-Or, E. (2002). Biofilteration of toxic elements by Azolla biomass. Water, Air and Soil Pollution, 135, 93–104.

    Article  CAS  Google Scholar 

  • De, A. K., Sen, A. K., Modak, D. P., & Jana, S. (1985). Studies of toxic effects of mercury II on Pistia stratiotes. Water, Air and Soil Pollution, 24, 351–360.

    Article  CAS  Google Scholar 

  • Dikshit, A. K., Pallamreddy, K., Reddy, L. V. P., & Saha, J. C. (2000). Arsenic in ground water and its sorption by kimberlite tailings. Journal of Environmental Science and Health, 35, 65–85.

    Google Scholar 

  • Ensley, H. E., Sharma, H. A., Barber, J. T., & Polito, M. A. (1996). Metabolism of chlorinated phenols by Lemna gibba, duckweed. In E. L. Kruger, T. A. Anderson, J. R. Coats, & A. C. Society (Eds.) Phytoremediation of soil and water contaminants (pp. 238–253). Orlando, FL: American Chemical Society.

    Google Scholar 

  • European Standard EN (1483, 1997). European Standard EN 1483, 1997. Water quality. Determination of mercury. Bruxelles: European Committee for Standardization.

  • Indiana Geological Survey. (2004). Indiana University, www.igs.indiana.edu/geology.

  • International Standard Organization ISO 11969 (1996). Water quality. Determination of arsenic. Atomic absorption spectrometric method (hydride technique). Geneva: International Organization for Standarization.

  • Jackson, M. L. (1962). Soil chemical analysis pp. 183–190. Englewood Cliffs, NJ, USA: Prentice Hall.

  • Kamal, M., Ghalya, A. E., Mahmouda, N., & Cote, R. (2004). Phytoaccumulation of heavy metals by aquatic plants. Environment International, 29, 1029–1039.

    Article  CAS  Google Scholar 

  • Kelly, C., Mielke, R. E., Dimaquabo, D., Curtis, A. J., & Dewitt, J. G. (1999). Adsorption of Eu (III) into roots of water hyacinth. Environmental Science and Technology, 33, 1439–1443.

    Article  Google Scholar 

  • Landberg, T., & Greger, M. (1996). Difference in uptake and tolerance to heavy metal in Salix from unpolluted and polluted areas. Applied Geochemistry, 11, 175–180.

    Article  CAS  Google Scholar 

  • Lasat, M. M. (2002). Phytoextraction of toxic metals: A review of biological mechanism. Journal of Environmental Quality, 31, 109–120.

    Article  CAS  Google Scholar 

  • Lin, T.-H., Huang, Y.-L., & Wang, M.-Y. (1998). Arsenic species in drinking water, hair, fingernails, and urine of patients with blackfoot disease. Journal of Toxicology and Environmental Health, Part A, 53, 85–93.

    Article  CAS  Google Scholar 

  • Lowry, O. H., Rosebraugh, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with folin-phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  • Manahan, S. E. (1997). Environmental science and technology. New York: Lewis Publishers.

    Google Scholar 

  • Matsui, M., Nishigori, C., Toyokuni, S., Takada, J., Akaboshi, M., Ishikawa, M., et al. (1999). The role of oxidative DNA damage in human arsenic carcinogenesis: Detection of 8-hydroxy-2¢-deoxyguanosine in arsenic-related Bowen’s disease. Journal of Investigative Dermatology, 113, 26–31.

    Article  CAS  Google Scholar 

  • Mishra, V. K., Upadhyaya, A. R., Pandey, S. K., & Tripathi, B. D. (2008a). Concentrations of heavy metals and nutrients in water, sediments and aquatic macrophytes of GBP Sagar an anthropogenic lake affected by coal mining effluent. Environmental Monitoring and Assessment, DOI 10.1007/s10661-007-9877-x (in press).

  • Mishra, V. K., Upadhyaya, A. R., Pandey, S. K., & Tripathi, B. D. (2008b). Heavy metal pollution induced due to coal mining effluent on surrounding aquatic ecosystem and its management due through naturally occurring aquatic macrophytes. Bioresource Technology, 99, 930–936.

    Article  CAS  Google Scholar 

  • Muramoto, S., & Oki, Y. (1983). Removal of some heavy metals from polluted water by water hyacinth (Eichhornia crassipes). Bulletin of Environmental Contamination and Toxicology, 30, 170–177.

    Article  CAS  Google Scholar 

  • Noraho, N., & Gaur, J. P. (1996). Cadmium adsorption and intracellular uptake by two macrophytes, Azolla pinnata and Spirodela polyrhiza. Archiv fuer Hydrobiologie, 136, 135–144.

    CAS  Google Scholar 

  • Pandey, M., & Srivastava, H. S. (1993). Inhibition of nitrate reductase activity and nitrate accumulation by mercury in maize leaf segment. Journal of Environmental Health, 35, 110–114.

    Google Scholar 

  • Peach, K., & Tracey, M. V. (1956). Modern methods of plant analysis, Vol.-1. Berlin: Springer.

    Google Scholar 

  • Pickering, I. J., Prince, R. C., George, M. J., Smith, R. D., George, G. N., & Salt, D. E. (2000). Reduction and coordination of arsenic in Indian mustard. Plant Physiology, 122, 1171–1177.

    Article  CAS  Google Scholar 

  • Prasad, D. D. K., & Prasad, A. R. K. (1987). Altered d-aminolaevulinic acid metabolism by lead and mercury in germinating seedlings of bajra (Pennisetum typhoideum). Journal of Plant Physiology, 127, 241–249.

    CAS  Google Scholar 

  • Rahmani, G. N. H., & Sternberg, S. P. K. (1999). Bioremoval of lead from water using Lemna minor. Bioresource Technology, 70, 225.

    Article  CAS  Google Scholar 

  • Ravit, B., Ehrenfeld, J. G., & Haggblom, M. M. (2003). A comparison of sediment microbial communities associated with Phragmites australis and Spartina alterniflora in two brackish wetlands of New Jersey. Estuaries, 26, 465–474.

    Google Scholar 

  • Sharma, P., & Dubey, R. S. (2005). Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17, 35–52.

    Article  CAS  Google Scholar 

  • Skinner, K., Wright, N., & Porter-Goff, E. (2007). Mercury uptake and accumulation by four species of aquatic plants. Environmental Pollution, 145, 234–237.

    Article  CAS  Google Scholar 

  • Spearot, R. M., & Peck, J. R. (1984). Recovery process for complexed copper bearing rinse waters. Environmental Progress, 3, 124–129.

    Article  CAS  Google Scholar 

  • Standard Methods for Examination of Water and Wastewater (1995). American Public Health Association, American Water Works Association, and Water Pollution Control Federation, Washington, DC.

  • US Environmental Protection Agency. (2006). www.epa.gov.

  • Vogel-Mikus, K., Drobne, D., & Regvar, M. (2005). Zn, Cd and Pd accumulation and arbuscular mycorrhizal colonization of pennycress Thlapi praecox Wulf (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia. Environmental Pollution, 133, 233–42.

    Article  CAS  Google Scholar 

  • Wang, W., & Lewis, M. A. (1977). Metal accumulation by aquatic macrophytes. In W. Wang, J. W. Gorsuch, & J. S. Hughes (Eds.) Plants for environmental studies (pp. 367–416). New York: CRC Lewis Publishers.

    Google Scholar 

  • Wenzl, P., Patino, G. M., Chaves, A. L., Mayer, J. E., & Rao, I. M. (2001). The high level of aluminum resistance in signal grass is not associated with known mechanisms of external aluminum detoxification in root apices. Plant Physiology, 125, 1473–1484.

    Article  CAS  Google Scholar 

  • William, J. B. (2002). Phytoremediation in wetland ecosystem: progress, problems and potential. Critical Reviews in Plant Sciences, 21, 607–635.

    Article  Google Scholar 

  • Zaranyika, M. F., & Ndapwadza, T. (1995). Uptake of Ni, Zn, Fe, Co, Cr, Pb, Cu and Cd by water hyacinth in Mukuvisi and Manyame rivers, Zimbabwe. Journal of Environmental Science and Health, Part A, 30, 157–169.

    Article  Google Scholar 

Download references

Acknowledgement

Authors are thankful to Mining Authorities; Northern Coal fields limited, Singrauli for their permission and co-operation during research and work Council of Scientific and Industrial Research, New Delhi for financial assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra Kumar Mishra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mishra, V.K., Upadhyay, A.R., Pathak, V. et al. Phytoremediation of Mercury and Arsenic from Tropical Opencast Coalmine Effluent Through Naturally Occurring Aquatic Macrophytes. Water Air Soil Pollut 192, 303–314 (2008). https://doi.org/10.1007/s11270-008-9657-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11270-008-9657-4

Keywords

Navigation