Superabsorbent Polymers Application in Agriculture Sector

  • Chapter
  • First Online:
Properties and Applications of Superabsorbent Polymers

Abstract

Super Absorbent Polymers (SAPs) are the new type of three-dimensional macro cross-linked hydrophilic polymers, which swell without dissolving on contacting with water or other biological fluids and by osmosis, will uptake about 100,000% of its own weight in a short span of time. In the soil, they form granules to enhance its properties and for slow release of agrochemicals. The various characteristics of these super absorbent polymers overcome the problems related to the degradation process, environmental and health issues. This chapter would prove to be a comprehensive review on various SAPs (natural and synthetic), their properties, preparation techniques, modification with specific functions and their applications with remarkable advantages in agriculture sector. Here the emphasis is given to the two key applications of SAPs, i.e., water absorbance and retention and as control release devices for agrochemicals. The future developments of SAPs have also been discussed in this chapter for providing a background for their amazing properties/performance in the field of agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Welch RM, Graham RD (1999) A new paradigm for world agriculture: meeting human needs: productive, sustainable, nutritious. F Crop Res 60:1. https://doi.org/10.1016/S0378-4290(98)00129-4

  2. **ali PL (2012) Green revolution: impacts, limits, andthe path ahead. Proc Natl Acad Sci USA 109:12302. https://doi.org/10.1073/pnas.0912953109

    Article  PubMed  PubMed Central  Google Scholar 

  3. Popp J, Pető K, Nagy J (2013) Pesticide productivity and food security. A review. Agron Sustain Dev 33:243. https://doi.org/10.1007/s13593-012-0105-x.

  4. Yang YC, Zhang M, Li Y, Fan XH, Geng YQ (2012) Improving the quality of polymer-coated urea with recycled plastic, proper additives, and large tablets. J Agric Food Chem 60:11229. https://doi.org/10.1021/jf302813g

    Article  CAS  PubMed  Google Scholar 

  5. Rasul G (2016) Managing the food, water, and energy nexus for achieving the sustainable development goals in South Asia. Environ Dev 18:14. https://doi.org/10.1016/j.envdev.2015.12.001

    Article  Google Scholar 

  6. Lebreton LCM, Van Der Zwet J, Damsteeg JW, Slat B, Andrady A, Reisser J (2017) River plastic emissions to the world’s oceans. Nat Commun 8. https://doi.org/10.1038/ncomms15611

  7. Alavanja MCR (2009) Introduction: pesticides use and exposure extensive worldwide. Rev Environ Health 24:303. https://doi.org/10.1515/REVEH.2009.24.4.303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Drew JJ, Dirr MA, Armitage AM (1993) Effects of fertilizer and night interruption on overwinter survival of rooted cuttings of Quercus L. J Environ Hortic 11:97. https://doi.org/10.24266/0738-2898-11.3.97

  9. Aktar W, Sengupta D, Chowdhury A (2009) Impact of Pesticides Use in Agriculture: Their Benefits and Hazards. Interdiscip Toxicol 2:1. https://doi.org/10.2478/v10102-009-0001-7

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, Kohli SK, Yadav P, Bali AS, Parihar RD, Dar OI, Singh K, Jasrotia S, Bakshi P, Ramakrishnan M, Kumar S, Bhardwaj R, Thukral AK (2019) Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci 1. https://doi.org/10.1007/s42452-019-1485-1.

  11. Qiao D, Liu H, Yu L, Bao X, Simon GP, Petinakis E, Chen L (2016) Preparation and Characterization of Slow-Release Fertilizer Encapsulated by Starch-Based Superabsorbent Polymer. Carbohydr Polym 147:146. https://doi.org/10.1016/j.carbpol.2016.04.010

    Article  CAS  PubMed  Google Scholar 

  12. Bindraban PS, Dimkpa CO, Pandey R (2020) Exploring phosphorus fertilizers and fertilization strategies for improved human and environmental health. Biol Fertil Soils 56:299. https://doi.org/10.1007/s00374-019-01430-2

    Article  CAS  Google Scholar 

  13. Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141. https://doi.org/10.1093/aob/mcq028

    Article  PubMed  PubMed Central  Google Scholar 

  14. Han SH, An JY, Hwang J, Bin Kim S, Park BB (2016) The effects of organic manure and chemical fertilizer on the growth and nutrient concentrations of yellow poplar (Liriodendron Tulipifera Lin.) in a nursery system, Forest Sci Technol 12:137. https://doi.org/10.1080/21580103.2015.1135827.

  15. Guo M, Liu M, Zhan F, Wu L (2005) Preparation and properties of a slow-release membrane-encapsulated urea fertilizer with superabsorbent and moisture preservation. Ind Eng Chem Res 44:4206. https://doi.org/10.1021/ie0489406

    Article  CAS  Google Scholar 

  16. Wu L, Liu M (2008) Preparation and Properties of Chitosan-Coated NPK Compound Fertilizer with Controlled-Release and Water-Retention. Carbohydr Polym 72:240. https://doi.org/10.1016/j.carbpol.2007.08.020

    Article  CAS  Google Scholar 

  17. Lin W, Lin M, Zhou H, Wu H, Li Z, Lin W (2019) The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS One 14. https://doi.org/10.1371/journal.pone.0217018

  18. J. C. Majsztrik, A. G. Ristvey, and J. D. Lea-Cox, Water and Nutrient Management in the Production of Container-Grown Ornamentals, Hortic. Rev. (Am. Soc. Hortic. Sci). 38, 253 (2011). https://doi.org/10.1002/9780470872376.ch7.

  19. Singh J, Dhaliwal AS (2020) Water Retention and Controlled Release of KCl by Using Microwave-Assisted Green Synthesis of Xanthan Gum-Cl-Poly(Acrylic Acid)/AgNPs Hydrogel Nanocomposite. Polym Bull 77:4867. https://doi.org/10.1007/s00289-019-02990-x

    Article  CAS  Google Scholar 

  20. C. R. Bauli, G. F. Lima, A. G. de Souza, R. R. Ferreira, and D. S. Rosa, Eco-Friendly Carboxymethyl Cellulose Hydrogels Filled with Nanocellulose or Nanoclays for Agriculture Applications as Soil Conditioning and Nutrient Carrier and Their Impact on Cucumber Growing, Colloids Surfaces A Physicochem. Eng. Asp. 623, (2021). https://doi.org/10.1016/j.colsurfa.2021.126771.

  21. Judd LA, Jackson BE, Fonteno WC (2015) Advancements in Root Growth Measurement Technologies and Observation Capabilities for Container-Grown Plants. Plants 4:369. https://doi.org/10.3390/plants4030369

    Article  PubMed  PubMed Central  Google Scholar 

  22. Schmidt M, Pearson O (2016) Pastoral Livelihoods under Pressure: Ecological, Political and Socioeconomic Transitions in Afar (Ethiopia). J Arid Environ 124:22. https://doi.org/10.1016/j.jaridenv.2015.07.003

    Article  Google Scholar 

  23. Dhiman J, Prasher SO, ElSayed E, Patel RM, Nzediegwu C, Mawof A (2021) Effect of Hydrogel Based Soil Amendments on Yield and Growth of Wastewater Irrigated Potato and Spinach Grown in a Sandy Soil. Environ Technol Innov 23:101730. https://doi.org/10.1016/j.eti.2021.101730

    Article  CAS  Google Scholar 

  24. A. Boretti and L. Rosa, Reassessing the Projections of the World Water Development Report, Npj Clean Water 2, (2019). https://doi.org/10.1038/s41545-019-0039-9.

  25. J. Hoogesteger, Regulating Agricultural Groundwater Use in Arid and Semi-Arid Regions of the Global South: Challenges and Socio-Environmental Impacts, Curr. Opin. Environ. Sci. Heal. 27, (2022). https://doi.org/10.1016/j.coesh.2022.100341.

  26. J. Roldán-Cañas and M. F. Moreno-Pérez, Water and Irrigation Management in Arid and Semiarid Zones, Water (Switzerland) 13, (2021). https://doi.org/10.3390/w13172446.

  27. Cao Y, Wang B, Guo H, **ao H, Wei T (2017) The Effect of Super Absorbent Polymers on Soil and Water Conservation on the Terraces of the Loess Plateau. Ecol Eng 102:270. https://doi.org/10.1016/j.ecoleng.2017.02.043

    Article  Google Scholar 

  28. S. Zhang, R. Wang, X. Yang, B. Sun, and Q. Li, Soil Aggregation and Aggregating Agents as Affected by Long Term Contrasting Management of an Anthrosol, Sci. Rep. 6, (2016). https://doi.org/10.1038/srep39107.

  29. Levy BS, Sidel VW (2011) Editorial: Water Rights and Water Fights: Preventing and Resolving Conflicts before They Boil Over. Am J Public Health 101:778. https://doi.org/10.2105/AJPH.2010.194670

    Article  PubMed  PubMed Central  Google Scholar 

  30. Rosegrant MW, Ringler C, Zhu T (2009) Water for Agriculture: Maintaining Food Security under Growing Scarcity. Annu Rev Environ Resour 34:205. https://doi.org/10.1146/annurev.environ.030308.090351

    Article  Google Scholar 

  31. T. Gomiero, Soil Degradation, Land Scarcity and Food Security: Reviewing a Complex Challenge, Sustain. 8, (2016). https://doi.org/10.3390/su8030281.

  32. X. xia Wen, D. qi Zhang, Y. cheng Liao, Z. kuan Jia, and S. qin Ji, Effects of Water-Collecting and -Retaining Techniques on Photosynthetic Rates, Yield, and Water Use Efficiency of Millet Grown in a Semiarid Region, J. Integr. Agric. 11, 1119 (2012). https://doi.org/10.1016/S2095-3119(12)60105-1.

  33. M. Falkenmark, Growing Water Scarcity in Agriculture: Future Challenge to Global Water Security, Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 371, (2013). https://doi.org/10.1098/rsta.2012.0410.

  34. Wei J, Yang H, Cao H, Tan T (2016) Using Polyaspartic Acid Hydro-Gel as Water Retaining Agent and Its Effect on Plants under Drought Stress. Saudi J. Biol. Sci. 23:654. https://doi.org/10.1016/j.sjbs.2015.08.016

    Article  CAS  PubMed  Google Scholar 

  35. Tubert E, Vitali VA, Alvarez MS, Tubert FA, Baroli I, Amodeo G (2018) Synthesis and Evaluation of a Superabsorbent-Fertilizer Composite for Maximizing the Nutrient and Water Use Efficiency in Forestry Plantations. J Environ Manage 210:239. https://doi.org/10.1016/j.jenvman.2017.12.062

    Article  CAS  PubMed  Google Scholar 

  36. C. D. V. Nascimento, R. W. Simmons, J. P. de A. Feitosa, C. T. dos S. Dias, and M. C. G. Costa, Potential of Superabsorbent Hydrogels to Improve Agriculture under Abiotic Stresses, J. Arid Environ. 189, (2021). https://doi.org/10.1016/j.jaridenv.2021.104496.

  37. Barajas-Ledesma RM, Hossain L, Wong VNL, Patti AF, Garnier G (2021) Effect of the Counter-Ion on Nanocellulose Hydrogels and Their Superabsorbent Structure and Properties. J Colloid Interface Sci 599:140. https://doi.org/10.1016/j.jcis.2021.04.065

    Article  CAS  PubMed  Google Scholar 

  38. Singh J, Dhaliwal AS (2018) Synthesis, Characterization and Swelling Behavior of Silver Nanoparticles Containing Superabsorbent Based on Grafted Copolymer of Polyacrylic Acid/ Guar Gum. Vacuum 157:51. https://doi.org/10.1016/j.vacuum.2018.08.017

    Article  CAS  Google Scholar 

  39. E. R. Kenawy, M. Seggiani, A. Hosny, M. Rashad, P. Cinelli, K. M. Saad-Allah, M. El-Sharnouby, S. Shendy, and M. M. Azaam, Superabsorbent Composites Based on Rice Husk for Agricultural Applications: Swelling Behavior, Biodegradability in Soil and Drought Alleviation, J. Saudi Chem. Soc. 25, (2021). https://doi.org/10.1016/j.jscs.2021.101254.

  40. Kaith BS, Sharma R, Kalia S, Bhatti MS (2014) Response Surface Methodology and Optimized Synthesis of Guar Gum-Based Hydrogels with Enhanced Swelling Capacity. RSC Adv 4:40339. https://doi.org/10.1039/c4ra05300a

    Article  CAS  Google Scholar 

  41. Singh J, Dhaliwal AS (2021) Effective Removal of Methylene Blue Dye Using Silver Nanoparticles Containing Grafted Polymer of Guar Gum/Acrylic Acid as Novel Adsorbent. J Polym Environ 29:71. https://doi.org/10.1007/s10924-020-01859-9

    Article  CAS  Google Scholar 

  42. Hüttermann A, Zommorodi M, Reise K (1999) Addition of Hydrogels to Soil for Prolonging the Survival of Pinus Halepensis Seedlings Subjected to Drought. Soil Tillage Res. 50:295. https://doi.org/10.1016/S0167-1987(99)00023-9

    Article  Google Scholar 

  43. Santos RVA, Costa GMN, Pontes KV (2019) Development of Tailor-Made Superabsorbent Polymers: Review of Key Aspects from Raw Material to Kinetic Model. J Polym Environ 27:1861. https://doi.org/10.1007/s10924-019-01485-0

    Article  CAS  Google Scholar 

  44. M. S. Ostrand, T. M. DeSutter, A. L. M. Daigh, R. F. Limb, and D. D. Steele, Superabsorbent Polymer Characteristics, Properties, and Applications, Agrosystems, Geosci. Environ. 3, (2020). https://doi.org/10.1002/agg2.20074.

  45. A. T. (Editor) Buchholz, Fredric L. / Graham, Modern Superabsorbent Polymer Technology, Vol. 35 (1998). https://doi.org/10.5860/choice.35-5664.

  46. L. Hossain, R. M. B. Ledesma, J. Tanner, and G. Garnier, Effect of Crosslinking on Nanocellulose Superabsorbent Biodegradability, Carbohydr. Polym. Technol. Appl. 3, (2022). https://doi.org/10.1016/j.carpta.2022.100199.

  47. Y. Bachra, A. Grouli, F. Damiri, M. Talbi, and M. Berrada, A Novel Superabsorbent Polymer from Crosslinked Carboxymethyl Tragacanth Gum with Glutaraldehyde: Synthesis, Characterization, and Swelling Properties, Int. J. Biomater. 2021, (2021). https://doi.org/10.1155/2021/5008833.

  48. A. M. AbdAllah, A. M. Mashaheet, and K. O. Burkey, Super Absorbent Polymers Mitigate Drought Stress in Corn (Zea Mays L.) Grown under Rainfed Conditions, Agric. Water Manag. 254, (2021). https://doi.org/10.1016/j.agwat.2021.106946.

  49. M. Fallah, H. Hadi, R. Amirnia, A. Hassanzadeh-Ghorttapeh, A. T. K. Zuan, and R. Z. Sayyed, Eco-Friendly Soil Amendments Improve Growth, Antioxidant Activities, and Root Colonization in Lingrain (Linum Usitatissimum L.) under Drought Conditions, PLoS One 16, (2021).https://doi.org/10.1371/journal.pone.0261225.

  50. M. K. Ejaz, M. Aurangzaib, R. Iqbal, M. Shahzaman, M. Habib-Ur-rahman, M. El-Sharnouby, R. Datta, F. M. Alzuaibr, M. I. Sakran, and A. El Sabagh, The Use of Soil Conditioners to Ensure a Sustainable Wheat Yield under Water Deficit Conditions by Enhancing the Physiological and Antioxidant Potentials, Land 11, (2022). https://doi.org/10.3390/land11030368.

  51. Bodner G, Nakhforoosh A, Kaul HP (2015) Management of Crop Water under Drought: A Review. Agron Sustain Dev 35:401. https://doi.org/10.1007/s13593-015-0283-4

    Article  Google Scholar 

  52. G. R. Kudoyarova, I. C. Dodd, D. S. Veselov, S. A. Rothwell, and S. Yu. Veselov, Common and Specific Responses to Availability of Mineral Nutrients and Water, J. Exp. Bot. 66, 2133 (2015). https://doi.org/10.1093/jxb/erv017

  53. L. J. Del Valle, A. Díaz, and J. Puiggalí, Hydrogels for Biomedical Applications: Cellulose, Chitosan, and Protein/Peptide Derivatives, Gels 3, (2017). https://doi.org/10.3390/gels3030027.

  54. Liang R, Liu M, Wu L (2007) Controlled Release NPK Compound Fertilizer with the Function of Water Retention. React Funct Polym 67:769. https://doi.org/10.1016/j.reactfunctpolym.2006.12.007

    Article  CAS  Google Scholar 

  55. Sikder A, Pearce AK, Parkinson SJ, Napier R, O’Reilly RK (2021) Recent Trends in Advanced Polymer Materials in Agriculture Related Applications. ACS Appl. Polym. Mater. 3:1203. https://doi.org/10.1021/acsapm.0c00982

    Article  CAS  Google Scholar 

  56. K. Sampathkumar, K. X. Tan, and S. C. J. Loo, Develo** Nano-Delivery Systems for Agriculture and Food Applications with Nature-Derived Polymers, IScience 23, (2020). https://doi.org/10.1016/j.isci.2020.101055.

  57. N. Ranganathan, R. Joseph Bensingh, M. Abdul Kader, and S. K. Nayak, Cellulose-Based Hydrogels for Agricultures, 1039 (2019). https://doi.org/10.1007/978-3-319-77830-3_34.

  58. S. Kathi, C. Simpson, A. Umphres, and G. Schuster, Cornstarch-Based, Biodegradable Superabsorbent Polymer to Improve Water Retention, Reduce Nitrate Leaching, and Result in Improved Tomato Growth and Development, HortScience 141, 1486 (2021). https://doi.org/10.21273/HORTSCI16089-21.

  59. M. Cycoń, A. Mrozik, and Z. Piotrowska-Seget, Antibiotics in the Soil Environment—Degradation and Their Impact on Microbial Activity and Diversity, Front. Microbiol. 10, (2019). https://doi.org/10.3389/fmicb.2019.00338.

  60. M. F. Dignac, D. Derrien, P. Barré, S. Barot, L. Cécillon, C. Chenu, T. Chevallier, G. T. Freschet, P. Garnier, B. Guenet, M. Hedde, K. Klumpp, G. Lashermes, P. A. Maron, N. Nunan, C. Roumet, and I. Basile-Doelsch, Increasing Soil Carbon Storage: Mechanisms, Effects of Agricultural Practices and Proxies. A Review, Agron. Sustain. Dev. 37, (2017). https://doi.org/10.1007/s13593-017-0421-2.

  61. V. Siracusa, Microbial Degradation of Synthetic Biopolymers Waste, Polymers (Basel). 11, (2019). https://doi.org/10.3390/polym11061066.

  62. Souza AJJ, Guimarães RJ, Dominghetti AW, Scalco MS, Rezende TT (2016) Water-Retaining Polymer and Seedling Type When Planting Irrigated Coffee. Rev. Cienc. Agron. 47:334. https://doi.org/10.5935/1806-6690.20160039

    Article  Google Scholar 

  63. Thombare N, Mishra S, Siddiqui MZ, Jha U, Singh D, Mahajan GR (2018) Design and Development of Guar Gum Based Novel, Superabsorbent and Moisture Retaining Hydrogels for Agricultural Applications. Carbohydr Polym 185:169. https://doi.org/10.1016/j.carbpol.2018.01.018

    Article  CAS  PubMed  Google Scholar 

  64. C. Demitri, F. Scalera, M. Madaghiele, A. Sannino, and A. Maffezzoli, Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture, Int. J. Polym. Sci. 2013, (2013). https://doi.org/10.1155/2013/435073.

  65. F. S. El-banna, M. E. Mahfouz, S. Leporatti, M. El-Kemary, and N. A. N. Hanafy, Chitosan as a Natural Copolymer with Unique Properties for the Development of Hydrogels, Appl. Sci. 9, (2019). https://doi.org/10.3390/app9112193.

  66. A. Morone, P. Mulay, and S. P. Kamble, Removal of Pharmaceutical and Personal Care Products from Wastewater Using Advanced Materials, Pharm. Pers. Care Prod. Waste Manag. Treat. Technol. 173 (2019). https://doi.org/10.1016/b978-0-12-816189-0.00008-1.

  67. T. A. Zanoni, R. L. Whistler, and T. Hymowitz, Guar: Agronomy, Production, Industrial Use, and Nutrition., Brittonia 32, 143 (1980). https://doi.org/10.2307/2806779.

  68. Mudgil D, Barak S, Khatkar BS (2014) Guar Gum: Processing, Properties and Food Applications - A Review. J Food Sci Technol 51:409. https://doi.org/10.1007/s13197-011-0522-x

    Article  CAS  PubMed  Google Scholar 

  69. B. Sen Gupta and J. E. Ako, Application of Guar Gum as a Flocculant Aid in Food Processing and Potable Water Treatment, Eur. Food Res. Technol. 221, 746 (2005). https://doi.org/10.1007/s00217-005-0056-4.

  70. S. I. Mussatto and M. Loosdrecht, Cellulose: A Key Polymer for a Greener, Healthier, and Bio-Based Future, Biofuel Res. J. 3, 482 (2016). https://doi.org/10.18331/BRJ2016.3.4.2.

  71. Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated Cellulose - Its Barrier Properties and Applications in Cellulosic Materials: A Review. Carbohydr Polym 90:735. https://doi.org/10.1016/j.carbpol.2012.05.026

    Article  CAS  PubMed  Google Scholar 

  72. Marliere C, Mabrouk E, Lamblet M, Coussot P (2012) How Water Retention in Porous Media with Cellulose Ethers Works. Cem Concr Res 42:1501. https://doi.org/10.1016/j.cemconres.2012.08.010

    Article  CAS  Google Scholar 

  73. Suhas, V. K. Gupta, P. J. M. Carrott, R. Singh, M. Chaudhary, and S. Kushwaha, Cellulose: A Review as Natural, Modified and Activated Carbon Adsorbent, Bioresour. Technol. 216, 1066 (2016). https://doi.org/10.1016/j.biortech.2016.05.106.

  74. ** X, **ang Z, Liu Q, Chen Y, Lu F (2017) Polyethyleneimine-Bacterial Cellulose Bioadsorbent for Effective Removal of Copper and Lead Ions from Aqueous Solution. Bioresour Technol 244:844. https://doi.org/10.1016/j.biortech.2017.08.072

    Article  CAS  PubMed  Google Scholar 

  75. Júnior OK, Gurgel LVA, de Freitas RP, Gil LF (2009) Adsorption of Cu(II), Cd(II), and Pb(II) from Aqueous Single Metal Solutions by Mercerized Cellulose and Mercerized Sugarcane Bagasse Chemically Modified with EDTA Dianhydride (EDTAD). Carbohydr Polym 77:643. https://doi.org/10.1016/j.carbpol.2009.02.016

    Article  CAS  Google Scholar 

  76. K. Missoum, M. N. Belgacem, and J. Bras, Nanofibrillated Cellulose Surface Modification: A Review, Materials (Basel). 6, 1745 (2013). https://doi.org/10.3390/ma6051745.

  77. J. Song, H. Zhao, G. Zhao, Y. **ang, and Y. Liu, Novel Semi-IPN Nanocomposites with Functions of Both Nutrient Slow-Release and Water Retention. 1. Microscopic Structure, Water Absorbency, and Degradation Performance, J. Agric. Food Chem. 67, 7587 (2019). https://doi.org/10.1021/acs.jafc.9b00888.

  78. Kono H, Fujita S, Oeda I (2013) Comparative Study of Homogeneous Solvents for the Esterification Crosslinking of Cellulose with 1,2,3,4-Butanetetracarboxylic Dianhydride and Water Absorbency of the Reaction Products. J Appl Polym Sci 127:478. https://doi.org/10.1002/app.37736

    Article  CAS  Google Scholar 

  79. Zhang H, Luan Q, Huang Q, Tang H, Huang F, Li W, Wan C, Liu C, Xu J, Guo P, Zhou Q (2017) A Facile and Efficient Strategy for the Fabrication of Porous Linseed Gum/Cellulose Superabsorbent Hydrogels for Water Conservation. Carbohydr Polym 157:1830. https://doi.org/10.1016/j.carbpol.2016.11.070

    Article  CAS  PubMed  Google Scholar 

  80. A. Träger, A. Carlmark, and L. Wågberg, Interpenetrated Networks of Nanocellulose and Polyacrylamide with Excellent Mechanical and Absorptive Properties, Macromol. Mater. Eng. 303, (2018). https://doi.org/10.1002/mame.201700594.

  81. Borges CD, Vendruscolo CT (2008) Goma Xantana: Características e Condições Operacionais de Produção. Semin. Ciências Biológicas e Da Saúde 29:171. https://doi.org/10.5433/1679-0367.2008v29n2p171

    Article  Google Scholar 

  82. Katzbauer B (1998) Polymer Degradarion and Smbilit, y 59 (1998) 8 I ~84 $~:T. Polym Degrad Stab 59:81. https://doi.org/10.1016/S0141-3910(97)00180-8

    Article  CAS  Google Scholar 

  83. L. Xu, C. Wang, Y. Cui, A. Li, Y. Qiao, and D. Qiu, Conjoined-Network Rendered Stiff and Tough Hydrogels from Biogenic Molecules, Sci. Adv. 5, (2019). https://doi.org/10.1126/sciadv.aau3442.

  84. Le Corre D, Bras J, Dufresne A (2010) Starch Nanoparticles: A Review. Biomacromol 11:1139. https://doi.org/10.1021/bm901428y

    Article  CAS  Google Scholar 

  85. Zhao C, Zhang M, Liu Z, Guo Y, Zhang Q (2019) Salt-Tolerant Superabsorbent Polymer with High Capacity of Water-Nutrient Retention Derived from Sulfamic Acid-Modified Starch. ACS Omega 4:5923. https://doi.org/10.1021/acsomega.9b00486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Zou W, Yu L, Liu X, Chen L, Zhang X, Qiao D, Zhang R (2012) Effects of Amylose/Amylopectin Ratio on Starch-Based Superabsorbent Polymers. Carbohydr Polym 87:1583. https://doi.org/10.1016/j.carbpol.2011.09.060

    Article  CAS  Google Scholar 

  87. Meng Y, Ye L (2017) Synthesis and Swelling Property of Superabsorbent Starch Grafted with Acrylic Acid/2-Acrylamido-2-Methyl-1-Propanesulfonic Acid. J Sci Food Agric 97:3831. https://doi.org/10.1002/jsfa.8247

    Article  CAS  PubMed  Google Scholar 

  88. Olad A, Doustdar F, Gharekhani H (2018) Starch-Based Semi-IPN Hydrogel Nanocomposite Integrated with Clinoptilolite: Preparation and Swelling Kinetic Study. Carbohydr Polym 200:516. https://doi.org/10.1016/j.carbpol.2018.08.014

    Article  CAS  PubMed  Google Scholar 

  89. E. Motamedi, B. Motesharezedeh, A. Shirinfekr, and S. M. Samar, Synthesis and Swelling Behavior of Environmentally Friendly Starch-Based Superabsorbent Hydrogels Reinforced with Natural Char Nano/Micro Particles, J. Environ. Chem. Eng. 8, (2020). https://doi.org/10.1016/j.jece.2019.103583.

  90. Dash M, Chiellini F, Ottenbrite RM, Chiellini E (2011) Chitosan - A Versatile Semi-Synthetic Polymer in Biomedical Applications. Prog Polym Sci 36:981. https://doi.org/10.1016/j.progpolymsci.2011.02.001

    Article  CAS  Google Scholar 

  91. P. Baharlouei and A. Rahman, Chitin and Chitosan: Prospective Biomedical Applications in Drug Delivery, Cancer Treatment, and Wound Healing, Mar. Drugs 20, (2022). https://doi.org/10.3390/md20070460.

  92. Fang S, Wang G, **ng R, Chen X, Liu S, Qin Y, Li K, Wang X, Li R, Li P (2019) Synthesis of Superabsorbent Polymers Based on Chitosan Derivative Graft Acrylic Acid-Co-Acrylamide and Its Property Testing. Int J Biol Macromol 132:575. https://doi.org/10.1016/j.ijbiomac.2019.03.176

    Article  CAS  PubMed  Google Scholar 

  93. Fang S, Wang G, Li P, **ng R, Liu S, Qin Y, Yu H, Chen X, Li K (2018) Synthesis of Chitosan Derivative Graft Acrylic Acid Superabsorbent Polymers and Its Application as Water Retaining Agent. Int J Biol Macromol 115:754. https://doi.org/10.1016/j.ijbiomac.2018.04.072

    Article  CAS  PubMed  Google Scholar 

  94. Mignon A, Snoeck D, Schaubroeck D, Luickx N, Dubruel P, Van Vlierberghe S, De Belie N (2015) PH-Responsive Superabsorbent Polymers: A Pathway to Self-Healing of Mortar. React Funct Polym 93:68. https://doi.org/10.1016/j.reactfunctpolym.2015.06.003

    Article  CAS  Google Scholar 

  95. Nesrinne S, Djamel A (2017) Synthesis, Characterization and Rheological Behavior of PH Sensitive Poly(Acrylamide-Co-Acrylic Acid) Hydrogels. Arab J Chem 10:539. https://doi.org/10.1016/j.arabjc.2013.11.027

    Article  CAS  Google Scholar 

  96. S. K. H. Gulrez, S. Al-Assaf, and G. O, Hydrogels: Methods of Preparation, Characterisation and Applications, Prog. Mol. Environ. Bioeng. - From Anal. Model. to Technol. Appl. (2011). https://doi.org/10.5772/24553.

  97. Kaihara S, Matsumura S, Fisher JP (2008) Synthesis and Characterization of Cyclic Acetal Based Degradable Hydrogels. Eur J Pharm Biopharm 68:67. https://doi.org/10.1016/j.ejpb.2007.05.019

    Article  CAS  PubMed  Google Scholar 

  98. Irani M, Ismail H, Ahmad Z (2013) Preparation and Properties of Linear Low-Density Polyethylene-g-Poly(Acrylic Acid)/Organo-Montmorillonite Superabsorbent Hydrogel Composites. Polym Test 32:502. https://doi.org/10.1016/j.polymertesting.2013.01.001

    Article  CAS  Google Scholar 

  99. Wen P, Wu Z, He Y, Ye BC, Han Y, Wang J, Guan X (2016) Microwave-Assisted Synthesis of a Semi-Interpenetrating Polymer Network Slow-Release Nitrogen Fertilizer with Water Absorbency from Cotton Stalks. ACS Sustain. Chem. Eng. 4:6572. https://doi.org/10.1021/acssuschemeng.6b01466

    Article  CAS  Google Scholar 

  100. **ang Y, Ru X, Shi J, Song J, Zhao H, Liu Y, Guo D, Lu X (2017) Preparation and Properties of a Novel Semi-IPN Slow-Release Fertilizer with the Function of Water Retention. J Agric Food Chem 65:10851. https://doi.org/10.1021/acs.jafc.7b03827

    Article  CAS  PubMed  Google Scholar 

  101. Yu X, Wang Z, Liu J, Mei H, Yong D, Li J (2019) Preparation, Swelling Behaviors and Fertilizer-Release Properties of Sodium Humate Modified Superabsorbent Resin. Mater. Today Commun. 19:124. https://doi.org/10.1016/j.mtcomm.2018.12.015

    Article  CAS  Google Scholar 

  102. S. Cheng, X. Liu, J. Zhen, and Z. Lei, Preparation of Superabsorbent Resin with Fast Water Absorption Rate Based on Hydroxymethyl Cellulose Sodium and Its Application, Carbohydr. Polym. 225, (2019). https://doi.org/10.1016/j.carbpol.2019.115214.

  103. S. Cheng, W. Zeng, X. Liu, J. Zhao, X. Qiu, and Z. Lei, Anti-Evaporation Performance of Water in Soil of Superabsorbent Resin with Fast Water Absorption Rate, Water. Air. Soil Pollut. 231, (2020). https://doi.org/10.1007/s11270-020-04679-8.

  104. H. L. Guan, D. L. Yong, M. X. Fan, X. L. Yu, Z. Wang, J. J. Liu, and J. B. Li, Sodium Humate Modified Superabsorbent Resin with Higher Salt-Tolerating and Moisture-Resisting Capacities, J. Appl. Polym. Sci. 135, (2018). https://doi.org/10.1002/app.46892.

  105. Swain SK, Shur B, Patra SK (2013) Poly(Acrylamide-Co-Vinyl Alcohol)-Superabsorbent Materials Reinforced by Modified Clay. Polym Compos 34:1794. https://doi.org/10.1002/pc.22583

    Article  CAS  Google Scholar 

  106. Zhang S, Wang W, Wang H, Qi W, Yue L, Ye Q (2014) Synthesis and Characterisation of Starch Grafted Superabsorbent via 10 MeV Electron-Beam Irradiation. Carbohydr Polym 101:798. https://doi.org/10.1016/j.carbpol.2013.10.009

    Article  CAS  PubMed  Google Scholar 

  107. G. Lan, M. Zhang, Y. Liu, H. Qiu, S. Xue, T. Zhang, and Q. Xu, Synthesis and Swelling Behavior of Super-Absorbent Soluble Starch-g-Poly(AM-Co-NaAMC 14 S) Through Graft Copolymerization and Hydrolysis, Starch/Staerke 71, (2019). https://doi.org/10.1002/star.201800272.

  108. Z. Song, J. Liu, Y. Bai, J. Wei, D. Li, Q. Wang, Z. Chen, D. P. Kanungo, and W. Qian, Laboratory and Field Experiments on the Effect of Vinyl Acetate Polymer-Reinforced Soil, Appl. Sci. 9, (2019). https://doi.org/10.3390/app9010208.

  109. Liu X, Luan S, Li W (2019) Utilization of Waste Hemicelluloses Lye for Superabsorbent Hydrogel Synthesis. Int J Biol Macromol 132:954. https://doi.org/10.1016/j.ijbiomac.2019.04.041

    Article  CAS  PubMed  Google Scholar 

  110. W. Wang, S. Yang, A. Zhang, and Z. Yang, Preparation and Properties of Novel Corn Straw Cellulose–Based Superabsorbent with Water-Retaining and Slow-Release Functions, J. Appl. Polym. Sci. 137, (2020). https://doi.org/10.1002/app.48951.

  111. and S. I. Suhail Ahmad, Kaiser Manzoor, Roli Purwar, Morphological and Swelling Potential Evaluation of Moringa Oleifera Gum/Poly(Vinyl Alcohol) Hydrogels as a Superabsorbent, ACS Omega 5, 17955 (2020). https://pubs.acs.org/doi/abs/https://doi.org/10.1021/acsomega.0c01023.

  112. Hoffman JD (1964) Theoretical Aspects of Polymer Crystallization with Chain Folds: Bulk Polymers. Polym Eng Sci 4:315. https://doi.org/10.1002/pen.760040413

    Article  CAS  Google Scholar 

  113. Wang J, Wu W (2005) Swelling Behaviors, Tensile Properties and Thermodynamic Studies of Water Sorption of 2-Hydroxyethyl Methacrylate/Epoxy Methacrylate Copolymeric Hydrogels. Eur Polym J 41:1143. https://doi.org/10.1016/j.eurpolymj.2004.11.034

    Article  CAS  Google Scholar 

  114. Drury JL, Mooney DJ (2003) Hydrogels for Tissue Engineering: Scaffold Design Variables and Applications. Biomaterials 24:4337. https://doi.org/10.1016/S0142-9612(03)00340-5

    Article  CAS  PubMed  Google Scholar 

  115. Suhail M, Khan A, Rosenholm JM, Minhas MU, Wu PC (2021) Fabrication and Characterization of Diclofenac Sodium Loaded Hydrogels of Sodium Alginate as Sustained Release Carrier. Gels 7:1. https://doi.org/10.3390/gels7010010

    Article  CAS  Google Scholar 

  116. Riccardo R (1994) Water-Absorbent Polymers: A Patent Survey. J. Macromol. Sci. Part C 34:607. https://doi.org/10.1080/15321799408014168

    Article  Google Scholar 

  117. J. Zhang, H. Chen, and A. Wang, Study on Superabsorbent Composite. III. Swelling Behaviors of Polyacrylamide/Attapulgite Composite Based on Acidified Attapulgite and Organo-Attapulgite, Eur. Polym. J. 41, 2434 (2005). https://doi.org/10.1016/j.eurpolymj.2005.03.022.

  118. L. Gao, S. Wang, and X. Zhao, Synthesis and Characterization of Agricultural Controllable Humic Acid Superabsorbent, J. Environ. Sci. (China) 25, (2013). https://doi.org/10.1016/S1001-0742(14)60629-X.

  119. Peppas NA, Khare AR (1993) Preparation, Structure and Diffusional Behavior of Hydrogels in Controlled Release. Adv Drug Deliv Rev 11:1. https://doi.org/10.1016/0169-409X(93)90025-Y

    Article  CAS  Google Scholar 

  120. Laftah WA, Hashim S, Ibrahim AN (2011) Polymer Hydrogels: A Review. Polym. - Plast. Technol. Eng. 50:1475. https://doi.org/10.1080/03602559.2011.593082

    Article  CAS  Google Scholar 

  121. H. Omidian, S. A. Hashemi, F. Askari, and S. Nafisi, Modifying Acrylic‐based Superabsorbents. I. Modification of Crosslinker and Comonomer Nature, J. Appl. Polym. Sci. 54, 241 (1994). https://doi.org/10.1002/app.1994.070540210.

  122. Y. R. Kwon, J. S. Kim, and D. H. Kim, Effective Enhancement of Water Absorbency of Itaconic Acid Based-Superabsorbent Polymer via Tunable Surface—Crosslinking, Polymers (Basel). 13, (2021). https://doi.org/10.3390/polym13162782.

  123. Warson H (2000) Modern Superabsorbent Polymer Technology, Edited by F L Buchholz and A T Graham, Wiley-VCH, New York, 1998, PP Xvii + 279. Polym Int 49:1548. https://doi.org/10.1002/1097-0126(200011)49:11%3c1548::aid-pi482%3e3.0.co;2-d

    Article  CAS  Google Scholar 

  124. Bell CL, Peppas NA (1995) Biomedical Membranes from Hydrogels and Interpolymer Complexes. Adv Polym Sci 122:124. https://doi.org/10.1007/3540587888_15

    Article  Google Scholar 

  125. A. S. Huffman, A. Afrassiabi, and L. C. Dong, Thermally Reversible Hydrogels: II. Delivery and Selective Removal of Substances from Aqueous Solutions, J. Control. Release 4, 213 (1986). https://doi.org/10.1016/0168-3659(86)90005-2.

  126. C. A. Finch, Superabsorbent Polymers—Science and Technology. Acs Symposium Series No. 573. Edited by F. L. Buchholz and N. A. Peppas. American Chemical Society, Washington DC, 1994. Pp. Ix + 148, Price US$49.95. ISBN 0–8412–3039–0, Polym. Int. 39, 78 (1996). https://doi.org/10.1002/pi.1996.210390115.

  127. Trijasson P, Pith T, Lambla M (1990) Hydrophilic Polyelectrolyte Gels by Inverse Suspension. Makromol. Chemie. Macromol. Symp. 35–36:141. https://doi.org/10.1002/masy.19900350111

    Article  Google Scholar 

  128. Hill DJT, Lim MCH, Whittaker AK (1999) Water Diffusion in Hydroxyethyl Methacrylate (HEMA)-Based Hydrogels Formed by γ-Radiolysis. Polym Int 48:1046. https://doi.org/10.1002/(sici)1097-0126(199910)48:10%3c1046::aid-pi267%3e3.0.co;2-w

    Article  CAS  Google Scholar 

  129. T. P. Davis and M. B. Huglin, Effect of Composition on Properties of Copolymeric N-Vinyl-2-Pyrrolidone Methyl Methacrylate Hydrogels and Organogels, Polymer (Guildf). 31, 513 (1990). https://doi.org/10.1016/0032-3861(90)90395-F.

  130. El-Rehim HA (2006) Fast Swelling and Superabsorbent Properties of Radiation Crosslinked Acrylamide Based Polymers. Int J Polym Mater Polym Biomater 55:161. https://doi.org/10.1080/009140390916594

    Article  CAS  Google Scholar 

  131. H. L. Abd El-Mohdy, Radiation Synthesis of Nanosilver/Poly Vinyl Alcohol/Cellulose Acetate/Gelatin Hydrogels for Wound Dressing, J. Polym. Res. 20, (2013). https://doi.org/10.1007/s10965-013-0177-6.

  132. Bardajee GR, Pourjavadi A, Soleyman R (2009) Irradiation Synthesis of Biopolymer-Based Superabsorbent Hydrogel: Optimization Using the Taguchi Method and Investigation of Its Swelling Behavior. Adv Polym Technol 28:131. https://doi.org/10.1002/adv.20154

    Article  CAS  Google Scholar 

  133. Sukriti, B. S. Kaith, R. **dal, M. Kumari, and M. Kaur, Biodegradable-Stimuli Sensitive Xanthan Gum Based Hydrogel: Evaluation of Antibacterial Activity and Controlled Agro-Chemical Release, React. Funct. Polym. 120, 1 (2017). https://doi.org/10.1016/j.reactfunctpolym.2017.08.012.

  134. Song S, Wang Z, Qian Y, Zhang L, Luo E (2012) The Release Rate of Curcumin from Calcium Alginate Beads Regulated by Food Emulsifiers. J Agric Food Chem 60:4388. https://doi.org/10.1021/jf3006883

    Article  CAS  PubMed  Google Scholar 

  135. Sukriti, B. S. Kaith, and R. **dal, Controlled Biofertilizer Release Kinetics and Moisture Retention in Gum Xanthan-Based IPN, Iran. Polym. J. (English Ed. 26, 563 (2017). https://doi.org/10.1007/s13726-017-0539-8.

  136. He Y, Wu Z, Tu L, Han Y, Zhang G, Li C (2015) Encapsulation and Characterization of Slow-Release Microbial Fertilizer from the Composites of Bentonite and Alginate. Appl Clay Sci 109–110:68. https://doi.org/10.1016/j.clay.2015.02.001

    Article  CAS  Google Scholar 

  137. Singh B, Sharma N, Chauhan N (2007) Synthesis, Characterization and Swelling Studies of PH Responsive Psyllium and Methacrylamide Based Hydrogels for the Use in Colon Specific Drug Delivery. Carbohydr Polym 69:631. https://doi.org/10.1016/j.carbpol.2007.01.020

    Article  CAS  Google Scholar 

  138. P. L. Ritger and N. A. Peppas, A Simple Equation for Description of Solute Release II. Fickian and Anomalous Release from Swellable Devices, J. Control. Release 5, 37 (1987). https://doi.org/10.1016/0168-3659(87)90035-6.

  139. Mahdavinia GR, Mousavi SB, Karimi F, Marandi GB, Garabaghi H, Shahabvand S (2009) Synthesis of Porous Poly(Acrylamide) Hydrogels Using Alcium Carbonate and Its Application for Slow Release of Potassium Nitrate. Express Polym Lett 3:279. https://doi.org/10.3144/expresspolymlett.2009.35

    Article  CAS  Google Scholar 

  140. Sharma K, Kumar V, Kaith BS, Som S, Kumar V, Pandey A, Kalia S, Swart HC (2015) Synthesis of Biodegradable Gum Ghatti Based Poly(Methacrylic Acid-Aniline) Conducting IPN Hydrogel for Controlled Release of Amoxicillin Trihydrate. Ind Eng Chem Res 54:1982. https://doi.org/10.1021/ie5044743

    Article  CAS  Google Scholar 

  141. A. R. Kulkarni, K. S. Soppimath, T. M. Aminabhavi, A. M. Dave, and M. H. Mehta, Urea-Formaldehyde Crosslinked Starch and Guar Gum Matrices for Encapsulation of Natural Liquid Pesticide [Azadirachta Indica a. Juss. (Neem) Seed Oil]: Swelling and Release Kinetics, J. Appl. Polym. Sci. 73, 2437 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990919)73:12<2437::AID-APP12>3.0.CO;2-7.

  142. Shaviv A, Mikkelsen RL (1993) Controlled-Release Fertilizers to Increase Efficiency of Nutrient Use and Minimize Environmental Degradation - A Review. Fertil. Res. 35:1. https://doi.org/10.1007/BF00750215

    Article  CAS  Google Scholar 

  143. W. Vendrame, K. K. Moore, and T. K. Broschat, Interaction of Light Intensity and Controlled-Release Fertilization Rate on Growth and Flowering of Two New Guinea Impatiens Cultivars, Horttechnology 14, 491 (2004). https://doi.org/10.21273/horttech.14.4.0491.

  144. T. Kurvits and T. Marta, Agricultural NH3 and NOx Emissions in Canada, Nitrogen, the Confer-N-S 187 (1998). https://doi.org/10.1016/b978-0-08-043201-4.50030-7.

  145. T. K. Broschat, Nitrate, Phosphate, and Potassium Leaching from Container-Grown Plants Fertilized by Several Methods, HortScience 30, 74 (1995). https://doi.org/10.21273/hortsci.30.1.74.

  146. B. A. Birrenkott, J. L. Craig, and G. R. McVey, A Leach Collection System to Track the Release of Nitrogen from Controlled-Release Fertilizers in Container Ornamentals, HortScience 40, 1887 (2005). https://doi.org/10.21273/hortsci.40.6.1887.

  147. K. T. Morgan, K. E. Cushman, and S. Sato, Release Mechanisms for Slow- and Controlledrelease Fertilizers and Strategies for Their Use in Vegetable Production, Horttechnology 19, 10 (2009). https://doi.org/10.21273/hortsci.19.1.10.

  148. M. E. Engelsjord, O. Fostad, and B. R. Singh, Effects of Temperature on Nutrient Release from Slow-Release Fertilizers - I. Commerical and Experimental Products, Nutr. Cycl. Agroecosystems 46, 179 (1996). https://doi.org/10.1007/BF00420552.

  149. D. J. Merhaut, E. K. Blythe, J. P. Newman, and J. P. Albano, Nutrient Release from Controlled-Release Fertilizers in Acid Substrate in a Greenhouse Environment: I. Leachate Electrical Conductivity, PH, and Nitrogen, Phosphorus, and Potassium Concentrations, HortScience 41, 780 (2006). https://doi.org/10.21273/hortsci.41.3.780.

  150. R. L. Mikkelsen and T. W. Bruulsema, Fertilizer Use for Horticultural Crops in the U.S. during the 20th Century, Horttechnology 15, 24 (2005). https://doi.org/10.21273/horttech.15.1.0024.

  151. Lawrencia D, Wong SK, Low DYS, Goh BH, Goh JK, Ruktanonchai UR, Soottitantawat A, Lee LH, Tang SY (2021) Controlled Release Fertilizers: A Review on Coating Materials and Mechanism of Release. Plants 10:1. https://doi.org/10.3390/plants10020238

    Article  CAS  Google Scholar 

  152. F. Eghbali Babadi, R. Yunus, S. Masoudi Soltani, and A. Shotipruk, Release Mechanisms and Kinetic Models of Gypsum-Sulfur-Zeolite-Coated Urea Sealed with Microcrystalline Wax for Regulated Dissolution, ACS Omega 6, 11144 (2021). https://doi.org/10.1021/acsomega.0c04353.

  153. Fertahi S, Ilsouk M, Zeroual Y, Oukarroum A, Barakat A (2021) Recent Trends in Organic Coating Based on Biopolymers and Biomass for Controlled and Slow Release Fertilizers. J Control Release 330:341. https://doi.org/10.1016/j.jconrel.2020.12.026

    Article  CAS  PubMed  Google Scholar 

  154. B. Fotovvati, N. Namdari, and A. Dehghanghadikolaei, On Coating Techniques for Surface Protection: A Review, J. Manuf. Mater. Process. 3, (2019). https://doi.org/10.3390/jmmp3010028.

  155. Shavit U, Reiss M, Shaviv A (2003) Wetting Mechanisms of Gel-Based Controlled-Release Fertilizers. J Control Release 88:71. https://doi.org/10.1016/S0168-3659(02)00455-8

    Article  CAS  PubMed  Google Scholar 

  156. Chatzoudis GK, Rigas F (1998) Macroreticular Hydrogel Effects on Dissolution Rate of Controlled-Release Fertilizers. J Agric Food Chem 46:2830. https://doi.org/10.1021/jf970969f

    Article  CAS  Google Scholar 

  157. R. Shahhoseini, K. Saeidi, H. Babaahmadi, and M. T. Ebadi, Effect of Fertilizers and Superabsorbent Hydrogel on the Yield, Essential Oil Content and Composition of Lemon Verbena (Lippia Citriodora Kunth.) Cultivated in Iran, J. Essent. Oil-Bearing Plants 21, 230 (2018). https://doi.org/10.1080/0972060X.2017.1422808.

  158. Singh B, Sharma DK, Gupta A (2008) In Vitro Release Dynamics of Thiram Fungicide from Starch and Poly(Methacrylic Acid)-Based Hydrogels. J Hazard Mater 154:278. https://doi.org/10.1016/j.jhazmat.2007.10.024

    Article  CAS  PubMed  Google Scholar 

  159. L. Vojtová, M. Vávrová, K. Bebnařík, E. Šucman, J. David, and J. Jančář, Preparation and Ecotoxicity Assessment of New Biodegradable Polyurethane Foams, J. Environ. Sci. Heal. - Part A Toxic/Hazardous Subst. Environ. Eng. 42, 677 (2007). https://doi.org/10.1080/10934520701244482.

  160. A. K. Bajpai and A. Giri, Swelling Dynamics of a Ternary Interpenetrating Polymer Network (IPN) and Controlled Release of Potassium Nitrate as a Model Agrochemical, J. Macromol. Sci. - Pure Appl. Chem. 39 A, 75 (2002). https://doi.org/10.1081/MA-120006520.

  161. Bajpai AK, Giri A (2003) Water Sorption Behaviour of Highly Swelling (Carboxy Methylcellulose-g-Polyacrylamide) Hydrogels and Release of Potassium Nitrate as Agrochemical. Carbohydr Polym 53:271. https://doi.org/10.1016/S0144-8617(03)00071-7

    Article  CAS  Google Scholar 

  162. Liu M, Liang R, Zhan F, Liu Z, Niu A (2007) Preparation of Superabsorbent Slow Release Nitrogen Fertilizer by Inverse Suspension Polymerization. Polym Int 56:729. https://doi.org/10.1002/pi.2196

    Article  CAS  Google Scholar 

  163. B. Singh, D. K. Sharma, and A. Gupta, Controlled Release of Thiram Fungicide from Starch-Based Hydrogels, J. Environ. Sci. Heal. - Part B Pestic. Food Contam. Agric. Wastes 42, 677 (2007). https://doi.org/10.1080/03601230701465825.

  164. Liang R, Yuan H, ** G, Zhou Q (2009) Synthesis of Wheat Straw-g-Poly(Acrylic Acid) Superabsorbent Composites and Release of Urea from It. Carbohydr Polym 77:181. https://doi.org/10.1016/j.carbpol.2008.12.018

    Article  CAS  Google Scholar 

  165. Aouada FA, De Moura MR, Orts WJ, Mattoso LHC (2010) Polyacrylamide and Methylcellulose Hydrogel as Delivery Vehicle for the Controlled Release of Paraquat Pesticide. J Mater Sci 45:4977. https://doi.org/10.1007/s10853-009-4180-6

    Article  CAS  Google Scholar 

  166. Ni B, Liu M, Lü S, **e L, Wang Y (2011) Environmentally Friendly Slow-Release Nitrogen Fertilizer. J Agric Food Chem 59:10169. https://doi.org/10.1021/jf202131z

    Article  CAS  PubMed  Google Scholar 

  167. Rashidzadeh A, Olad A, Reyhanitabar A (2015) Hydrogel/Clinoptilolite Nanocomposite-Coated Fertilizer: Swelling, Water-Retention and Slow-Release Fertilizer Properties. Polym Bull 72:2667. https://doi.org/10.1007/s00289-015-1428-y

    Article  CAS  Google Scholar 

  168. A. S. Giroto, G. G. F. Guimarães, M. Foschini, and C. Ribeiro, Role of Slow-Release Nanocomposite Fertilizers on Nitrogen and Phosphate Availability in Soil, Sci. Rep. 7, (2017). https://doi.org/10.1038/srep46032.

  169. Olad A, Zebhi H, Salari D, Mirmohseni A, Tabar ARAR (2018) Water Retention and Slow Release Studies of a Salep-Based Hydrogel Nanocomposite Reinforced with Montmorillonite Clay. New J Chem 42:2758. https://doi.org/10.1039/c7nj03667a

    Article  CAS  Google Scholar 

  170. Ghobashy MM, El-Damhougy BK, Nady N, El-Wahab HA, Naser AM, Abdelhai F (2018) Radiation Crosslinking of Modifying Super Absorbent (Polyacrylamide/Gelatin) Hydrogel as Fertilizers Carrier and Soil Conditioner. J Polym Environ 26:3981. https://doi.org/10.1007/s10924-018-1273-9

    Article  CAS  Google Scholar 

  171. Zhan F, Liu M, Guo M, Wu L (2004) Preparation of Superabsorbent Polymer with Slow-Release Phosphate Fertilizer. J Appl Polym Sci 92:3417. https://doi.org/10.1002/app.20361

    Article  CAS  Google Scholar 

  172. Alharbi K, Ghoneim A, Ebid A, El-Hamshary H, El-Newehy MH (2018) Controlled Release of Phosphorous Fertilizer Bound to Carboxymethyl Starch-g-Polyacrylamide and Maintaining a Hydration Level for the Plant. Int J Biol Macromol 116:224. https://doi.org/10.1016/j.ijbiomac.2018.04.182

    Article  CAS  PubMed  Google Scholar 

  173. Tong Y, Wu Y, Zhao C, Xu Y, Lu J, **ang S, Zong F, Wu X (2017) Polymeric Nanoparticles as a Metolachlor Carrier: Water-Based Formulation for Hydrophobic Pesticides and Absorption by Plants. J Agric Food Chem 65:7371. https://doi.org/10.1021/acs.jafc.7b02197

    Article  CAS  PubMed  Google Scholar 

  174. D. Sarmah and N. Karak, Biodegradable Superabsorbent Hydrogel for Water Holding in Soil and Controlled-Release Fertilizer, J. Appl. Polym. Sci. 137, (2020). https://doi.org/10.1002/app.48495.

  175. Vudjung C, Saengsuwan S (2018) Biodegradable IPN Hydrogels Based on Pre-Vulcanized Natural Rubber and Cassava Starch as Coating Membrane for Environment-Friendly Slow-Release Urea Fertilizer. J Polym Environ 26:3967. https://doi.org/10.1007/s10924-018-1274-8

    Article  CAS  Google Scholar 

  176. Kiran, R. Tiwari, S. Krishnamoorthi, and K. Kumar, Synthesis of Cross-Linker Devoid Novel Hydrogels: Swelling Behaviour and Controlled Urea Release Studies, J. Environ. Chem. Eng. 7, (2019). https://doi.org/10.1016/j.jece.2019.103162.

  177. Zhong K, Zheng XL, Mao XY, Lin ZT, Jiang GB (2012) Sugarcane Bagasse Derivative-Based Superabsorbent Containing Phosphate Rock with Water-Fertilizer Integration. Carbohydr Polym 90:820. https://doi.org/10.1016/j.carbpol.2012.06.006

    Article  CAS  PubMed  Google Scholar 

  178. Shahid SA, Qidwai AA, Anwar F, Ullah I, Rashid U (2012) Improvement in the Water Retention Characteristics of Sandy Loam Soil Using a Newly Synthesized Poly(Acrylamide-Co-Acrylic Acid)/AlZnFe 2O 4 Superabsorbent Hydrogel Nanocomposite Material. Molecules 17:9397. https://doi.org/10.3390/molecules17089397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. J. Sharma, Sukriti, B. S. Kaith, and M. S. Bhatti, Fabrication of Biodegradable Superabsorbent Using RSM Design for Controlled Release of KNO3, J. Polym. Environ. 26, 1 (2017). https://doi.org/10.1007/s10924-017-0959-8.

  180. A. Singh, D. J. Sarkar, S. Mittal, R. Dhaka, P. Maiti, A. Singh, T. Raghav, D. Solanki, N. Ahmed, and S. B. Singh, Zeolite Reinforced Carboxymethyl Cellulose-Na + -g-Cl-Poly(AAm) Hydrogel Composites with PH Responsive Phosphate Release Behavior, J. Appl. Polym. Sci. 136, (2019). https://doi.org/10.1002/app.47332.

  181. Olad A, Gharekhani H, Mirmohseni A, Bybordi A (2017) Synthesis, Characterization, and Fertilizer Release Study of the Salt and PH-Sensitive NaAlg-g-Poly(AA-Co-AAm)/RHA Superabsorbent Nanocomposite. Polym Bull 74:3353. https://doi.org/10.1007/s00289-016-1899-5

    Article  CAS  Google Scholar 

  182. E. S. Abrisham, M. Jafari, A. Tavili, A. Rabii, M. A. Zare Chahoki, S. Zare, T. Egan, H. Yazdanshenas, D. Ghasemian, and M. Tahmoures, Effects of a Super Absorbent Polymer on Soil Properties and Plant Growth for Use in Land Reclamation, Arid L. Res. Manag. 32, 407 (2018). https://doi.org/10.1080/15324982.2018.1506526.

  183. M. Fazeli Rostampour, M. Yarnia, F. Rahimzadeh Khoee, M. J. Seghatoleslami, and G. R. Moosavi, Physiological Response of Forage Sorghum to Polymer under Water Deficit Conditions, Agron. J. 105, 951 (2013). https://doi.org/10.2134/agronj2012.0071.

  184. Yang L, Han Y, Yang P, Wang C, Yang S, Kuang S, Yuan H, **ao C (2015) Effects of Superabsorbent Polymers on Infiltration and Evaporation of Soil Moisture under Point Source Drip Irrigation. Irrig Drain 64:275. https://doi.org/10.1002/ird.1883

    Article  Google Scholar 

  185. Yu J, Shi JG, Dang PF, Mamedov AI, Shainberg I, Levy GJ (2012) Soil and Polymer Properties Affecting Water Retention by Superabsorbent Polymers under Drying Conditions. Soil Sci Soc Am J 76:1758. https://doi.org/10.2136/sssaj2011.0387

    Article  CAS  Google Scholar 

  186. Banedjschafie S, Durner W (2015) Water Retention Properties of a Sandy Soil with Superabsorbent Polymers as Affected by Aging and Water Quality. J Plant Nutr Soil Sci 178:798. https://doi.org/10.1002/jpln.201500128

    Article  CAS  Google Scholar 

  187. X. Li, J. Z. He, J. M. Hughes, Y. R. Liu, and Y. M. Zheng, Effects of Super-Absorbent Polymers on a Soil-Wheat (Triticum Aestivum L.) System in the Field, Appl. Soil Ecol. 73, 58 (2014). https://doi.org/10.1016/j.apsoil.2013.08.005.

  188. D. Khodadadi Dehkordi, Evaluation of Two Types of Superabsorbent Polymer on Soil Water and Some Soil Microbial Properties, Paddy Water Environ. 16, 143 (2018). https://doi.org/10.1007/s10333-017-0623-x.

  189. Wilske B, Bai M, Lindenstruth B, Bach M, Rezaie Z, Frede HG, Breuer L (2014) Biodegradability of a Polyacrylate Superabsorbent in Agricultural Soil. Environ Sci Pollut Res 21:9453. https://doi.org/10.1007/s11356-013-2103-1

    Article  CAS  Google Scholar 

  190. Bai W, Zhang H, Liu B, Wu Y, Song JQ (2010) Effects of Super-Absorbent Polymers on the Physical and Chemical Properties of Soil Following Different Wetting and Drying Cycles. Soil Use Manag 26:253. https://doi.org/10.1111/j.1475-2743.2010.00271.x

    Article  Google Scholar 

  191. M. M. Ghobashy, I. M. Mousaa, and G. S. El-Sayyad, Radiation Synthesis of Urea/Hydrogel Core Shells Coated with Three Different Natural Oils via a Layer-by-Layer Approach: An Investigation of Their Slow Release and Effects on Plant Growth-Promoting Rhizobacteria, Prog. Org. Coatings 151, (2021). https://doi.org/10.1016/j.porgcoat.2020.106022.

  192. D. T. Gungula, F. P. Andrew, J. Joseph, S. A. Kareem, J. T. Barminas, E. F. Adebayo, A. M. Saddiq, V. T. Tame, I. Dere, W. J. Ahinda, and R. Ator, Formulation and Characterization of Water Retention and Slow-Release Urea Fertilizer Based on Borassus Aethiopum Starch and Maesopsis Eminii Hydrogels, Results Mater. 12, (2021). https://doi.org/10.1016/j.rinma.2021.100223.

  193. Noppakundilograt S, Pheatcharat N, Kiatkamjornwong S (2015) Multilayer-coated NPK compound fertilizer hydrogel with controlled nutrient release and water absorbency. J Appl Polym Sci 132. https://doi.org/10.1002/app.41249

  194. Helaly FM, Essawy HA, El-Nashar DE, Maziad NA (2005) Slow release of urea as a source of nitrogen from some acrylamide and acrylic acid hydrogels. Polym. - Plast. Technol. Eng. 44:253. https://doi.org/10.1081/PTE-200048712

    Article  CAS  Google Scholar 

  195. Elbarbary AM, Ghobashy MM (2017) Controlled release fertilizers using superabsorbent hydrogel prepared by Gamma radiation. Radiochim Acta 105:865. https://doi.org/10.1515/ract-2016-2679

    Article  CAS  Google Scholar 

  196. Wu Y, Brickler C, Li S, Chen G (2021) Synthesis of microwave-mediated biochar-hydrogel composites for enhanced water absorbency and nitrogen release. Polym Test 93. https://doi.org/10.1016/j.polymertesting.2020.106996

  197. Busscher WJ, Bjorneberg DL, Sojka RE (2009) Field Application of PAM as an amendment in deep-tilled US Southeastern Coastal plain soils. Soil Tillage Res. 104:215. https://doi.org/10.1016/j.still.2009.02.009

    Article  Google Scholar 

  198. Yang Y, Wu J, Zhao S, Mao Y, Zhang J, Pan X, He F, van der Ploeg M (2021) Impact of long-term sub-soiling tillage on soil porosity and soil physical properties in the soil profile. L Degrad Dev 32:2892. https://doi.org/10.1002/ldr.3874

    Article  Google Scholar 

  199. Yang Y, Wu J, Mao Y, Han Q, He F (2013) Using computed tomography scanning to study soil pores under different soil structure improvement measures, Nongye Gongcheng Xuebao/Transactions Chinese Soc. Agric Eng 29:99. https://doi.org/10.3969/j.issn.1002-6819.2013.23.014

    Article  Google Scholar 

  200. Yan X, Zhou H, Zhu QH, Wang XF, Zhang YZ, Yu XC, Peng X (2013) Carbon sequestration efficiency in Paddy soil and Upland soil under long-term fertilization in Southern China. Soil Tillage Res. 130:42. https://doi.org/10.1016/j.still.2013.01.013

    Article  Google Scholar 

  201. Keck RW, Boyer JS (1974) Chloroplast response to low leaf water potentials. Plant Physiol 53:474. https://doi.org/10.1104/pp.53.3.474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Hou X, Li R, He W, Dai X, Ma K, Liang Y (2018) Superabsorbent polymers influence soil physical properties and increase potato tuber yield in a dry-farming region. J Soils Sediments 18:816. https://doi.org/10.1007/s11368-017-1818-x

    Article  CAS  Google Scholar 

  203. Silva DW, Bufalino L, Martins MA, Júnior HS, Denzin Tonoli GH, Mendes LM (2021) Superabsorbent ability polymer to reduce the bulk density of extruded cement boards. J Build Eng 43. https://doi.org/10.1016/j.jobe.2021.103130.

  204. Parvathy PC, Jyothi AN, John KS, Sreekumar J (2014) Cassava starch based superabsorbent polymer as soil conditioner: impact on soil physico-chemical and biological properties and plant growth. Clean - Soil, Air, Water 42:1610. https://doi.org/10.1002/clen.201300143

    Article  CAS  Google Scholar 

  205. Wallace A, Wallace GA (1986)Effects of soil conditioners on emergence and growth of tomato, cotton, and lettuce seedlings. Soil Sci 141:313. https://doi.org/10.1097/00010694-198605000-00002

    Article  CAS  Google Scholar 

  206. de Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401. https://doi.org/10.1590/S1415-475738420150053

    Article  PubMed  PubMed Central  Google Scholar 

  207. Morrissey J, Lou Guerinot M (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553. https://doi.org/10.1021/cr900112r.

  208. Scavo A, Abbate C, Mauromicale G (2019) Plant allelochemicals: agronomic, nutritional and ecological relevance in the soil system. Plant Soil 442:23. https://doi.org/10.1007/s11104-019-04190-y

    Article  CAS  Google Scholar 

  209. Schoonover JE, Crim JF (2015) An introduction to soil concepts and the role of soils in watershed management. J Contemp Water Res Educ 154:21. https://doi.org/10.1111/j.1936-704x.2015.03186.x

    Article  Google Scholar 

  210. Hartman K, Tringe SG (2019) Interactions between plants and soil sha** the root microbiome under abiotic stress. Biochem J 476:2705. https://doi.org/10.1042/BCJ20180615

    Article  CAS  PubMed  Google Scholar 

  211. Gregory PJ, Bengough AG, George TS, Hallett PD (2015) Rhizosphere engineering by plants: quantifying soil-root Interactions, enhancing underst. Quantif Soil-Root Growth Interact 1. https://doi.org/10.2134/advagricsystmodel4.c1.

  212. Cornejo J, Celis R, Cox L, Carmen Hermosin M (2004) Pesticide-clay interactions and formulations. Interface Sci Technol 1:247. https://doi.org/10.1016/S1573-4285(04)80043-7

  213. Montesano FF, Parente A, Santamaria P, Sannino A, Serio F (2015) Biodegradable superabsorbent hydrogel increases water retention properties of growing media and plant growth. Agric Agric Sci Procedia 4:451. https://doi.org/10.1016/j.aaspro.2015.03.052

    Article  Google Scholar 

  214. Salavati S, Valadabadi SA, Parvizi KH, Sayfzadeh S, Hadidi Masouleh E (2018) The effect of super-absorbent polymer and sowing depth on growth and yield indices of potato (Solanum Tuberosum L.) in Hamedan Province, Iran. Appl Ecol Environ Res 16:7063. https://doi.org/10.15666/aeer/1605_70637078

  215. Grabiński J, Wyzin’ska M (2018) The effect of superabsorbent polymer application on yielding of winter wheat (Triticum Aestivum L.). Res Rural Dev 2:55. https://doi.org/10.22616/rrd.24.2018.051

  216. Khodadadi Dehkordi D (2017) Effect of superabsorbent polymer on salt and drought resistance of eucalyptus globulus. Appl Ecol Environ Res 15:1791. https://doi.org/10.15666/aeer/1504_17911802

  217. Satriani A, Catalano M, Scalcione E (2018) The role of superabsorbent hydrogel in bean crop cultivation under deficit irrigation conditions: a case-study in Southern Italy. Agric Water Manag 195:114. https://doi.org/10.1016/j.agwat.2017.10.008

    Article  Google Scholar 

  218. Chen X, Mao X, Lu Q, Liao Z, He Z (2016) Characteristics and mechanisms of acrylate polymer damage to maize seedlings. Ecotoxicol Environ Saf 129:228. https://doi.org/10.1016/j.ecoenv.2016.03.018

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dhaliwal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, J., Kumar, A., Dhaliwal, A.S. (2023). Superabsorbent Polymers Application in Agriculture Sector. In: Arpit, S., Jaya, T. (eds) Properties and Applications of Superabsorbent Polymers. Springer, Singapore. https://doi.org/10.1007/978-981-99-1102-8_5

Download citation

Publish with us

Policies and ethics

Navigation