Nanoengineering Superabsorbent Materials: Agricultural Applications

  • Chapter
  • First Online:
Nanotechnology

Abstract

The superabsorbent polymers (SAP) are able to absorb large amounts of water. Superabsorbent materials are known as hydrophilic complexes which have the capacity to absorb a large volume of aqueous fluids in a short time and desorb the absorbed water under stress condition. The absorption capacity of SAP is one of the important parameters of that could limit the application of this material. The use of superabsorbent polymers for water managing and the renewal of arid as well as desert environment have been considered greatly. The encouraging results show that superabsorbent materials can help agriculture and environment by irrigation water consumption reduction, fertilizer retention time improvement in soil, lowering the death rate of plants, and plant growth rate increment. Overall, the modification of superabsorbent polymers using nanotechnology could include employment of nanomaterials for preparation of superabsorbent nanocomposite materials. One of the most convenient and useful superabsorbent nanocomposites is superabsorbent/clay nanocomposites which are introduced in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali MA, Rehman I, Iqbal A, Din S, Rao AQ, Latif A, Samiullah TR, Azam S, Husnain T (2014) Nanotechnology, a new frontier in agriculture. Adv Life Sci 1(3):129–138

    Google Scholar 

  • Bortolin A, Aouada FA, Mattoso LH, Ribeiro C (2013) Nanocomposite PAAm/methyl cellulose/montmorillonite hydrogel: evidence of synergistic effects for the slow release of fertilizers. J Agric Food Chem 61(31):7431–7439

    Article  CAS  PubMed  Google Scholar 

  • Bowman DC, Evans RY (1991) Calcium inhibition of polyacrylamide gel hydration is partially reversible by potassium. Hortscience 26(8):1063–1065

    CAS  Google Scholar 

  • Brannon-Peppas L, Harland RS (2012) Absorbent polymer technology. Elsevier, New York

    Google Scholar 

  • Colombo P (1993) Swelling-controlled release in hydrogel matrices for oral route. Adv Drug Deliv Rev 11(1):37–57

    Article  CAS  Google Scholar 

  • Cooper SL, Peppas NA (1982) Biomaterials, interfacial phenomena and applications. American Chemical Society, Washington, DC

    Book  Google Scholar 

  • Dotson NA, Galvan R, Macosko CW (1988) Structural development during nonlinear free-radical polymerizations. Macromolecules 21(8):2560–2568

    Article  CAS  Google Scholar 

  • Elliott M (2004) Superabsorbent polymers. Product development scentist for SAP BASF Aktiengesellschaft ss 13

    Google Scholar 

  • Esposito F, Del Nobile M, Mensitieri G, Nicolais L (1996) Water sorption in cellulose-based hydrogels. J Appl Polym Sci 60(13):2403–2407

    Article  CAS  Google Scholar 

  • Flory PJ (1953) Principles of polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  • Giannelis EP (1996) Polymer layered silicate nanocomposites. Adv Mater 8(1):29–35

    Article  CAS  Google Scholar 

  • Haraguchi K, Takehisa T (2002) Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv Mater 14(16):1120

    Article  CAS  Google Scholar 

  • Hussien RA, Donia AM, Atia AA, El-Sedfy OF, El-Hamid ARA, Rashad RT (2012) Studying some hydro-physical properties of two soils amended with kaolinite-modified cross-linked poly-acrylamides. Catena 92:172–178

    Article  CAS  Google Scholar 

  • Jatav GK, Mukhopadhyay R, De N (2013) Characterization of swelling behaviour of nanoclay composite. Int J Innov Res Sci Eng Technol 2:1560–1563

    Google Scholar 

  • Johnson MS, Veltkamp CJ (1985) Structure and functioning of water-storing agricultural polyacrylamides. J Sci Food Agric 36(9):789–793

    Article  CAS  Google Scholar 

  • Kabiri K, Omidian H, Zohuriaan-Mehr M, Doroudiani S (2011) Superabsorbent hydrogel composites and nanocomposites: a review. Polym Compos 32(2):277–289

    Article  CAS  Google Scholar 

  • Kazanskii K, Dubrovskii S (1992) Chemistry and physics of “agricultural” hydrogels. In: Polyelectrolytes hydrogels chromatographic materials. Springer, pp 97–133

    Google Scholar 

  • Khadem SA, Galavi M, Ramrodi M, Mousavi SR, Rousta MJ, Rezvani-Moghadam P (2010) Effect of animal manure and superabsorbent polymer on corn leaf relative water content, cell membrane stability and leaf chlorophyll content under dry condition

    Google Scholar 

  • Kinney A, Scranton AB (1994) Formation and structure of cross-linked polyacrylates: methods for modeling network formation. In: ACS symposium series (USA)

    Google Scholar 

  • Langer R, Peppas N (1981) Present and future applications of biomaterials in controlled drug delivery systems. Biomaterials 2(4):201–214

    Article  CAS  PubMed  Google Scholar 

  • LeBaron PC, Wang Z, Pinnavaia TJ (1999) Polymer-layered silicate nanocomposites: an overview. Appl Clay Sci 15(1):11–29

    Article  CAS  Google Scholar 

  • Liang R, Liu M (2006) Preparation and properties of coated nitrogen fertilizer with slow release and water retention. Ind Eng Chem Res 45(25):8610–8616

    Article  CAS  Google Scholar 

  • Liu PS, Li L, Zhou NL, Zhang J, Wei SH, Shen J (2006) Synthesis and properties of a poly (acrylic acid)/montmorillonite superabsorbent nanocomposite. J Appl Polym Sci 102(6):5725–5730

    Article  CAS  Google Scholar 

  • Macosko CW (1985) Rheological changes during crosslinking. Br Polym J 17(2):239–245

    Article  CAS  Google Scholar 

  • Mahida VP, Patel MP (2014) Synthesis of new superabsorbent poly (NIPAAm/AA/N-allylisatin) nanohydrogel for effective removal of As (V) and Cd (II) toxic metal ions. Chin Chem Lett 25(4):601–604

    Article  CAS  Google Scholar 

  • Meng Y, Wang JN, Xu L, Li AM (2012) Fast removal of Pb 2+ from water using new chelating fiber modified with acylamino and amino groups. Chin Chem Lett 23(4):496–499

    Article  CAS  Google Scholar 

  • Morgan AB, Gilman J (2007) Polymer-clay nanocomposites: design and application of multi-functional materials. Mater Matter 2:20–25

    CAS  Google Scholar 

  • Nie J, Du B, Oppermann W (2005) Swelling, elasticity, and spatial inhomogeneity of poly (N-isopropylacrylamide)/clay nanocomposite hydrogels. Macromolecules 38(13):5729–5736

    Article  CAS  Google Scholar 

  • Organization WH (2005) Bentonite, kaolin, and selected clay minerals. WHO, Geneva

    Google Scholar 

  • Patel YN, Patel MP (2013) A new fast swelling poly [DAPB-co-DMAAm-co-AASS] superabsorbent hydrogel for removal of anionic dyes from water. Chin Chem Lett 24(11):1005–1007

    Article  CAS  Google Scholar 

  • Peppas NA (1987) Hydrogels in medicine and pharmacy, vol 3. CRC press, Boca Raton

    Google Scholar 

  • Qi X, Liu M, Chen Z, Liang R (2007) Preparation and properties of diatomite composite superabsorbent. Polym Adv Technol 18(3):184–193

    Article  CAS  Google Scholar 

  • Raju KM, Raju MP, Mohan YM (2003) Synthesis of superabsorbent copolymers as water manageable materials. Polym Int 52(5):768–772

    Article  CAS  Google Scholar 

  • Rao K, Mohapatra M, Anand S, Venkateswarlu P (2010) Review on cadmium removal from aqueous solutions. Int J Eng Sci Technol 2(7):81–103

    Google Scholar 

  • Rashidzadeh A, Olad A (2014) Slow-released NPK fertilizer encapsulated by NaAlg-g-poly (AA-co-AAm)/MMT superabsorbent nanocomposite. Carbohydr Polym 114:269–278

    Article  CAS  PubMed  Google Scholar 

  • Rivas BL, Muñoz C (2010) Functional water-insoluble polymers with ability to remove arsenic (V). Polym Bull 65(1):1–11

    Article  CAS  Google Scholar 

  • Runcy W, Nithin C, Sabu T (2013) Layered clay rubber composites. In: Key engineering materials. Trans Tech Publ, pp 197–213

    Google Scholar 

  • Samsonov GV, Kuznetsova NP (1992) Crosslinked polyelectrolytes in biology. In: Polyelectrolytes hydrogels chromatographic materials. Springer, Berlin, pp 1–50

    Google Scholar 

  • Schexnailder P, Schmidt G (2009) Nanocomposite polymer hydrogels. Colloid Polym Sci 287(1):1–11

    Article  CAS  Google Scholar 

  • Scranton AB, Peppas NA (1990) A statistical model of free-radical copolymerization/crosslinking reactions. J Polym Sci A Polym Chem 28(1):39–57

    Article  CAS  Google Scholar 

  • Scranton AB, Klier J, Peppas NA (1991) Statistical analysis of free-radical copolymerization/crosslinking reactions using probability generating functions: reaction directionality and general termination. Macromolecules 24(6):1412–1415

    Article  CAS  Google Scholar 

  • Shimomura T, Namba T (1994) Preparation and application of high-performance superabsorbent polymers. In: ACS symposium series

    Google Scholar 

  • Uddin F (2008) Clays, nanoclays, and montmorillonite minerals. Metall Mater Trans A 39(12):2804–2814

    Article  Google Scholar 

  • Vaia RA, Jandt KD, Kramer EJ, Giannelis EP (1996) Microstructural evolution of melt intercalated polymer-organically modified layered silicates nanocomposites. Chem Mater 8(11):2628–2635

    Article  CAS  Google Scholar 

  • Vundavalli R, Vundavalli S, Nakka M, Rao DS (2015) Biodegradable nano-hydrogels in agricultural farming-alternative source for water resources. Proc Mater Sci 10:548–554

    Article  CAS  Google Scholar 

  • Williams RJ, Vallo CI (1988) Statistics of free-radical polymerizations revisited using a fragment approach. 2. Polyfunctional monomers. Macromolecules 21(8):2571–2575

    Article  CAS  Google Scholar 

  • Woodhouse J, Johnson M (1991) The effect of gel-forming polymers on seed germination and establishment. J Arid Environ 20(3):375–380

    Google Scholar 

  • Wu J, Wei Y, Lin J, Lin S (2003) Study on starch-graft-acrylamide/mineral powder superabsorbent composite. Polymer 44(21):6513–6520

    Article  CAS  Google Scholar 

  • Zhang J, Wang A (2007) Study on superabsorbent composites. IX: synthesis, characterization and swelling behaviors of polyacrylamide/clay composites based on various clays. React Funct Polym 67(8):737–745

    Article  CAS  Google Scholar 

  • Zhang MC, Zhou Q, Zhou Y, Li AM, Shuang CD (2012) Efficient adsorption and desorption of Cu 2+ by a novel acid-resistant magnetic weak acid resin. Chin Chem Lett 23(11):1267–1270

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Peyravi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Peyravi, M., Selakjani, P.P., Khalili, S. (2017). Nanoengineering Superabsorbent Materials: Agricultural Applications. In: Prasad, R., Kumar, M., Kumar, V. (eds) Nanotechnology. Springer, Singapore. https://doi.org/10.1007/978-981-10-4573-8_6

Download citation

Publish with us

Policies and ethics

Navigation