Log in

Effective Removal of Methylene Blue Dye Using Silver Nanoparticles Containing Grafted Polymer of Guar Gum/Acrylic Acid as Novel Adsorbent

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

In the present work, the synthesis of novel nanocomposite adsorbent based on graft copolymer of Poly(AA)/GG incorporated silver nanoparticles (AgNPs) has been carried out for the elimination of Methylene blue (MB) dye from the aqueous phase. The characterization of synthesized nanocomposite has been carried out by using various analytical techniques such as UV–Vis, FTIR, XRD, FE-SEM, EDX, DLS and BET studies. The UV–Vis, DLS and XRD studies revealed the stable formation of AgNPs inside the polymer matrix with an average size of 100 ± 1 nm. The − 26.40 mV value of Zeta potential also confirms the stability of AgNPs inside the polymer matrix. Furthermore, the resultant adsorbent with an improved adsorption capacity is used to eliminate the MB dye from liquid phase. The parameters such as adsorbent dose and pH of dye solution in adsorption process are optimized. Moreover, the study of the adsorption kinetics and isotherm indicate that the pseudo-second-order kinetics and Langmuir isotherm model is more suitable for describing the experimental adsorption data having maximum adsorption capacity of 833.33 mg/g. Further, the positive values of enthalpy and entropy change specify that the adsorption of MB dye onto the surface of AgNPs/GG/Poly(AA) is endothermic, spontaneous and favorable process. Hence, In-situ synthesis of AgNPs inside polymer and grafting of AA as monomer onto GG has proven to be accountable for the substantial changes in adsorption capacity for removal of MB dye from aqueous phase. Therefore, the resultant AgNPs/GG/Poly(AA) nanocomposite may prove to be a noble adsorbent for the removal of MB dye from the liquid phase.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Ramezani S, Zahedi P, Bahrami SH, Nemati Y (2019) Microfluidic fabrication of nanoparticles based on ethyl acrylate-functionalized chitosan for adsorption of methylene blue from aqueous solutions. J Polym Environ 27:1653–1665. https://doi.org/10.1007/s10924-019-01463-6

    Article  CAS  Google Scholar 

  2. Rafatullah M, Sulaiman O, Hashim R, Ahmad A (2010) Adsorption of methylene blue on low-cost adsorbents: a review. J Hazard Mater 177:70–80. https://doi.org/10.1016/j.jhazmat.2009.12.047

    Article  CAS  PubMed  Google Scholar 

  3. Sen TK, Afroze S, Ang HM (2011) Equilibrium, kinetics and mechanism of removal of methylene blue from aqueous solution by adsorption onto pine cone biomass of Pinus radiata. Water Air Soil Pollut 218:499–515. https://doi.org/10.1007/s11270-010-0663-y

    Article  CAS  Google Scholar 

  4. Zollinger H (2003) Color chemistry: syntheses, properties, and applications of organic. Dyes Pigment. https://doi.org/10.1002/col.5080130314

    Article  Google Scholar 

  5. Liu Y, Chen X, Li J, Burda C (2005) Photocatalytic degradation of azo dyes by nitrogen-doped TiO2 nanocatalysts. Chemosphere 61:11–18. https://doi.org/10.1016/j.chemosphere.2005.03.069

    Article  CAS  PubMed  Google Scholar 

  6. Singh J, Dhaliwal AS (2018) Plasmon-induced photocatalytic degradation of methylene blue dye using biosynthesized silver nanoparticles as photocatalyst. Environ Technol (United Kingdom). https://doi.org/10.1080/09593330.2018.1540663

    Article  Google Scholar 

  7. Khan MI, Akhtar S, Zafar S et al (2015) Removal of Congo Red from aqueous solution by anion exchange membrane (EBTAC): adsorption kinetics and themodynamics. Materials (Basel) 8:4147–4161. https://doi.org/10.3390/ma8074147

    Article  CAS  Google Scholar 

  8. Akbari A, Remigy JC, Aptel P (2002) Treatment of textile dye effluent using a polyamide-based nanofiltration membrane. Chem Eng Process 41:601–609. https://doi.org/10.1016/S0255-2701(01)00181-7

    Article  CAS  Google Scholar 

  9. Zhu MX, Lee L, Wang HH, Wang Z (2007) Removal of an anionic dye by adsorption/precipitation processes using alkaline white mud. J Hazard Mater 149:735–741. https://doi.org/10.1016/j.jhazmat.2007.04.037

    Article  CAS  PubMed  Google Scholar 

  10. Rastgar M, Zolfaghari AR, Mortaheb HR et al (2013) Photocatalytic/adsorptive removal of methylene blue dye by electrophoretic nanostructured TiO2/montmorillonite composite films. J Adv Oxid Technol 16:292–297. https://doi.org/10.1515/jaots-2013-0211

    Article  CAS  Google Scholar 

  11. Wang S, Zhu ZH (2005) Sonochemical treatment of fly ash for dye removal from wastewater. J Hazard Mater 126:91–95. https://doi.org/10.1016/j.jhazmat.2005.06.009

    Article  CAS  PubMed  Google Scholar 

  12. Fernandes A, Morao A, Magrinho M et al (2004) Electrochemical degradation of C. I. Acid Orange 7. Dye Pigment 61:287–296. https://doi.org/10.1016/j.dyepig.2003.11.008

    Article  CAS  Google Scholar 

  13. Pelekani C, Snoeyink VL (2001) Kinetic and equilibrium study of competitive adsorption between atrazine and Congo red dye on activated carbon: the importance of pore size distribution. Carbon N Y 39:25–37. https://doi.org/10.1016/S0008-6223(00)00078-6

    Article  CAS  Google Scholar 

  14. Pendleton P, Wu SH (2003) Kinetics of dodecanoic acid adsorption from caustic solution by activated carbon. J Colloid Interface Sci 266:245–250. https://doi.org/10.1016/S0021-9797(03)00575-7

    Article  CAS  PubMed  Google Scholar 

  15. Faria PCC, Orfao JJM, Pereira MFR (2004) Adsorption of anionic and cationic dyes on activated carbons with different surface chemistries. Water Res 38:2043–2052. https://doi.org/10.1016/j.watres.2004.01.034

    Article  CAS  PubMed  Google Scholar 

  16. Ai L, Li M, Li L (2011) Adsorption of methylene blue from aqueous solution with activated carbon/cobalt ferrite/alginate composite beads: kinetics, isotherms, and thermodynamics. J Chem Eng Data 56:3475–3483. https://doi.org/10.1021/je200536h

    Article  CAS  Google Scholar 

  17. Baek MH, Ijagbemi CO, Se-** O, Kim DS (2010) Removal of Malachite Green from aqueous solution using degreased coffee bean. J Hazard Mater 176:820–828. https://doi.org/10.1016/j.jhazmat.2009.11.110

    Article  CAS  PubMed  Google Scholar 

  18. Zhao M, Tang Z, Liu P (2008) Removal of methylene blue from aqueous solution with silica nano-sheets derived from vermiculite. J Hazard Mater 158:43–51. https://doi.org/10.1016/j.jhazmat.2008.01.031

    Article  CAS  PubMed  Google Scholar 

  19. Attia AA, Girgis BS, Fathy NA (2008) Removal of methylene blue by carbons derived from peach stones by H3PO4 activation: batch and column studies. Dye Pigment 76:282–289. https://doi.org/10.1016/j.dyepig.2006.08.039

    Article  CAS  Google Scholar 

  20. Hajati S, Ghaedi M, Mazaheri H (2016) Removal of methylene blue from aqueous solution by walnut carbon: optimization using response surface methodology. Desalin Water Treat 57:3179–3193. https://doi.org/10.1080/19443994.2014.981217

    Article  CAS  Google Scholar 

  21. Ahmad S, Ahmad M, Manzoor K et al (2019) A review on latest innovations in natural gums based hydrogels: preparations & applications. Int J Biol Macromol 136:870–890. https://doi.org/10.1016/j.ijbiomac.2019.06.113

    Article  CAS  PubMed  Google Scholar 

  22. Mittal H, **dal R, Kaith BS et al (2014) Synthesis and flocculation properties of gum ghatti and poly(acrylamide-co-acrylonitrile) based biodegradable hydrogels. Carbohydr Polym 114:321–329. https://doi.org/10.1016/j.carbpol.2014.08.029

    Article  CAS  PubMed  Google Scholar 

  23. Singh J, Dhaliwal AS (2019) Novel green synthesis and characterization of the antioxidant activity of silver nanoparticles prepared from Nepeta leucophylla root extract. Anal Lett 52:213–230. https://doi.org/10.1080/00032719.2018.1454936

    Article  CAS  Google Scholar 

  24. Ghorai S, Sarkar A, Raoufi M et al (2014) Enhanced removal of methylene blue and methyl violet dyes from aqueous solution using a nanocomposite of hydrolyzed polyacrylamide grafted xanthan gum and incorporated nanosilica. ACS Appl Mater Interfaces 6:4766–4777. https://doi.org/10.1021/am4055657

    Article  CAS  PubMed  Google Scholar 

  25. Singh J, Kumar S, Dhaliwal AS (2020) Journal of drug delivery science and technology controlled release of amoxicillin and antioxidant potential of gold nanoparticles-xanthan gum/poly (Acrylic acid) biodegradable nanocomposite. J Drug Deliv Sci Technol 55:101384. https://doi.org/10.1016/j.jddst.2019.101384

    Article  Google Scholar 

  26. Ghimici L, Nichifor M (2010) Novel biodegradable flocculanting agents based on cationic amphiphilic polysaccharides. Bioresour Technol 101:8549–8554. https://doi.org/10.1016/j.biortech.2010.06.049

    Article  CAS  PubMed  Google Scholar 

  27. Manzoor K, Ahmad M, Ahmad S, Ikram S (2019) Synthesis, characterization, kinetics, and thermodynamics of EDTA-modified chitosan-carboxymethyl cellulose as Cu(II) ion adsorbent. ACS Omega 4:17425–17437. https://doi.org/10.1021/acsomega.9b02214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paulino AT, Belfiore LA, Kubota LT et al (2011) Efficiency of hydrogels based on natural polysaccharides in the removal of Cd2+ ions from aqueous solutions. Chem Eng J 168:68–76. https://doi.org/10.1016/j.cej.2010.12.037

    Article  CAS  Google Scholar 

  29. Mittal H, Maity A, Ray SS (2016) Gum karaya based hydrogel nanocomposites for the effective removal of cationic dyes from aqueous solutions. Appl Surf Sci 364:917–930. https://doi.org/10.1016/j.apsusc.2015.12.241

    Article  CAS  Google Scholar 

  30. Manatunga DC, De Silva RM, De Silva KMN, Ratnaweera R (2016) Natural polysaccharides leading to super adsorbent hydroxyapatite nanoparticles for the removal of heavy metals and dyes from aqueous solutions. RSC Adv 6:105618–105630. https://doi.org/10.1039/c6ra22662k

    Article  CAS  Google Scholar 

  31. Lessa EF, Medina AL, Ribeiro AS, Fajardo AR (2020) Removal of multi-metals from water using reusable pectin/cellulose microfibers composite beads. Arab J Chem 13:709–720. https://doi.org/10.1016/j.arabjc.2017.07.011

    Article  CAS  Google Scholar 

  32. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci 30:38–70. https://doi.org/10.1016/j.progpolymsci.2004.11.002

    Article  CAS  Google Scholar 

  33. Manzoor K, Ahmad M, Ahmad S, Ikram S (2019) Removal of Pb(ii) and Cd(ii) from wastewater using arginine cross-linked chitosan-carboxymethyl cellulose beads as green adsorbent. RSC Adv 9:7890–7902. https://doi.org/10.1039/C9RA00356H

    Article  CAS  Google Scholar 

  34. Yan L, Chang PR, Zheng P, Ma X (2012) Characterization of magnetic guar gum-grafted carbon nanotubes and the adsorption of the dyes. Carbohydr Polym 87:1919–1924. https://doi.org/10.1016/j.carbpol.2011.09.086

    Article  CAS  Google Scholar 

  35. Sharma R, Kalia S, Kaith BS, Srivastava MK (2016) Synthesis of guar gum-acrylic acid graft copolymers based biodegradable adsorbents for cationic dye removal. Int J Plast Technol 20:294–314. https://doi.org/10.1007/s12588-016-9156-1

    Article  CAS  Google Scholar 

  36. Mittal H, Maity A, Ray SS (2015) Effective removal of cationic dyes from aqueous solution using gum ghatti-based biodegradable hydrogel. Int J Biol Macromol 79:8–20. https://doi.org/10.1016/j.ijbiomac.2015.04.045

    Article  CAS  PubMed  Google Scholar 

  37. Kumar N, Mittal H, Parashar V et al (2016) Efficient removal of rhodamine 6G dye from aqueous solution using nickel sulphide incorporated polyacrylamide grafted gum karaya bionanocomposite hydrogel. RSC Adv 6:21929–21939. https://doi.org/10.1039/C5RA24299A

    Article  CAS  Google Scholar 

  38. Kera NH, Bhaumik M, Ballav N et al (2016) Selective removal of Cr(VI) from aqueous solution by polypyrrole/2,5-diaminobenzene sulfonic acid composite. J Colloid Interface Sci 476:144–157. https://doi.org/10.1016/j.jcis.2016.05.011

    Article  CAS  PubMed  Google Scholar 

  39. Shankar SS, Rai A, Ahmad A, Sastry M (2004) Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502. https://doi.org/10.1016/j.jcis.2004.03.003

    Article  CAS  PubMed  Google Scholar 

  40. Mittal AK, Bhaumik J, Kumar S, Banerjee UC (2014) Biosynthesis of silver nanoparticles: elucidation of prospective mechanism and therapeutic potential. J Colloid Interface Sci 415:39–47. https://doi.org/10.1016/j.jcis.2013.10.018

    Article  CAS  PubMed  Google Scholar 

  41. Singh J, Dhaliwal AS (2019) Water retention and controlled release of KCl by using microwave—assisted green synthesis of xanthan gum—cl - poly ( acrylic acid )/AgNPs hydrogel nanocomposite. Polym Bull. https://doi.org/10.1007/s00289-019-02990-x

    Article  Google Scholar 

  42. Sharma R, Kaith BS, Kalia S et al (2015) Biodegradable and conducting hydrogels based on Guar gum polysaccharide for antibacterial and dye removal applications. J Environ Manag 162:37–45. https://doi.org/10.1016/j.jenvman.2015.07.044

    Article  CAS  Google Scholar 

  43. Pandey S, Goswami GK, Nanda KK (2013) Green synthesis of polysaccharide/gold nanoparticle nanocomposite: an efficient ammonia sensor. Carbohydr Polym 94:229–234. https://doi.org/10.1016/j.carbpol.2013.01.009

    Article  CAS  PubMed  Google Scholar 

  44. Singh J, Dhaliwal AS (2018) Synthesis, characterization and swelling behavior of silver nanoparticles containing superabsorbent based on grafted copolymer of polyacrylic acid/Guar gum. Vacuum 157:51–60. https://doi.org/10.1016/j.vacuum.2018.08.017

    Article  CAS  Google Scholar 

  45. Vieira AP, Santana SAA, Bezerra CWB et al (2009) Kinetics and thermodynamics of textile dye adsorption from aqueous solutions using babassu coconut mesocarp. J Hazard Mater 166:1272–1278. https://doi.org/10.1016/j.jhazmat.2008.12.043

    Article  CAS  PubMed  Google Scholar 

  46. Pathania D, Sharma S, Singh P (2017) Removal of methylene blue by adsorption onto activated carbon developed from Ficus carica bast. Arab J Chem 10:S1445–S1451. https://doi.org/10.1016/j.arabjc.2013.04.021

    Article  CAS  Google Scholar 

  47. Ho YS, McKay G (1998) A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process Saf Environ Prot 76:332–340. https://doi.org/10.1205/095758298529696

    Article  CAS  Google Scholar 

  48. Langmuir I (1916) The constitution and fundamental properties of solids and liquids. Part I. Solids J Am Chem Soc 38:2221–2295. https://doi.org/10.1021/ja02268a002

    Article  CAS  Google Scholar 

  49. Ozmen EY, Yilmaz M (2007) Use of β-cyclodextrin and starch based polymers for sorption of Congo red from aqueous solutions. J Hazard Mater 148:303–310. https://doi.org/10.1016/j.jhazmat.2007.02.042

    Article  CAS  PubMed  Google Scholar 

  50. Freundlich H, Heller W (1939) The Adsorption of cis - and trans -Azobenzene. J Am Chem Soc 61:2228–2230. https://doi.org/10.1021/ja01877a071

    Article  CAS  Google Scholar 

  51. Khan TA, Dahiya S, Ali I (2012) Use of kaolinite as adsorbent: equilibrium, dynamics and thermodynamic studies on the adsorption of Rhodamine B from aqueous solution. Appl Clay Sci 69:58–66. https://doi.org/10.1016/j.clay.2012.09.001

    Article  CAS  Google Scholar 

  52. Liu C, Omer AM, Ouyang X (2017) Adsorptive removal of cationic methylene blue dye using carboxymethyl cellulose/k-carrageenan/activated montmorillonite composite beads: isotherm and kinetic studies. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2017.08.084

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gong G, Zhang F, Cheng Z, Zhou L (2015) Facile fabrication of magnetic carboxymethyl starch/poly(vinyl alcohol) composite gel for methylene blue removal. Int J Biol Macromol 81:205–211. https://doi.org/10.1016/j.ijbiomac.2015.07.061

    Article  CAS  PubMed  Google Scholar 

  54. Ge F, Ye H, Li M-M, Zhao B-X (2012) Efficient removal of cationic dyes from aqueous solution by polymer-modified magnetic nanoparticles. Chem Eng J 198–199:11–17. https://doi.org/10.1016/j.cej.2012.05.074

    Article  CAS  Google Scholar 

  55. Sun XF, Liu B, **g Z, Wang H (2015) Preparation and adsorption property of xylan/poly(acrylic acid) magnetic nanocomposite hydrogel adsorbent. Carbohydr Polym 118:16–23. https://doi.org/10.1016/j.carbpol.2014.11.013

    Article  CAS  PubMed  Google Scholar 

  56. Hou C, Ma K, Jiao T et al (2016) Preparation and dye removal capacities of porous silver nanoparticle-containing composite hydrogels: via poly(acrylic acid) and silver ions. RSC Adv 6:110799–110807. https://doi.org/10.1039/c6ra23371f

    Article  CAS  Google Scholar 

  57. Liu Y, Hou C, Jiao T et al (2018) Self-assembled AgNP-containing nanocomposites constructed by electrospinning as efficient dye photocatalyst materials for wastewater treatment. Nanomaterials. https://doi.org/10.3390/nano8010035

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the MHRD (Govt. of India), New Delhi, and Sant Longowal Institute of Engineering and Technology, Longowal (SLIET), for providing the essential research facilities. The author (Jagdeep Singh) is also very thankful to the Sophisticated Analytical Instrumentation Facility (SAIF), Panjab University, Chandigarh and central facility of SLIET, Longowal for analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Dhaliwal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Dhaliwal, A.S. Effective Removal of Methylene Blue Dye Using Silver Nanoparticles Containing Grafted Polymer of Guar Gum/Acrylic Acid as Novel Adsorbent. J Polym Environ 29, 71–88 (2021). https://doi.org/10.1007/s10924-020-01859-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01859-9

Keywords

Navigation