Production of Bioethanol Using Waste Biomass

  • Chapter
  • First Online:
Sustainable Clean Energy Production Using Waste Biomass

Part of the book series: Clean Energy Production Technologies ((CEPT))

  • 69 Accesses

Abstract

In the present study, the most common sources of starch and sugar are used in the production of bioethanol, such as maize, wheat, sugarcane, and sugar beet. The different ways of converting these sources into bioethanol, such as saccharification and fermentation, which are critical stages in the transformation of starch and sugar into bioethanol, are also investigated. The chapter also examines all the steps and methods involved in the use of the most common raw material, i.e., lignocellulosic biomass for the production of bioethanol, and focuses on the study of pretreatment, enzymatic hydrolysis, fermentation, distillation, and purification. The study is followed by the issues associated with the utilization of lignocellulosic biomass for bioethanol production, such as farming leftovers, forestry refuse, and specialized energy crops. This book part discusses the present status of research on the use of palm tree residues, rice straw, and citrus peel as raw materials for the production of bioethanol, in addition to the production techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Thailand)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 117.69
Price includes VAT (Thailand)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
EUR 149.99
Price excludes VAT (Thailand)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abedinifar S, Karimi K, Khanahmadi M, Taherzadeh MJ (2009) Ethanol production by Mucor indicus and Rhizopus oryzae from rice straw by separate hydrolysis and fermentation. Biomass Bioenergy 33(5):828–833

    Article  CAS  Google Scholar 

  • Abraham M, Kurup GM (1997) Pretreatment studies of cellulose wastes for optimization of cellulase enzyme activity. Appl Biochem Biotechnol 62:201–211

    Article  CAS  Google Scholar 

  • Ahmad T, Rafatullah M, Ghazali A, Sulaiman O, Hashim R (2011) Oil palm biomass-based adsorbents for the removal of water pollutants—a review. J Environ Sci Health C 29(3):177–222

    Article  CAS  Google Scholar 

  • Angarita JD, Souza RBA, Cruz AJG, Biscaia EC Jr, Secchi AR (2015) Kinetic modeling for enzymatic hydrolysis of pretreated sugarcane straw. Biochem Eng J 104:10–19

    Article  CAS  Google Scholar 

  • Axelsson J (2011) Separate hydrolysis and fermentation of pretreated spruce. Environ Sci Eng Chem 20:50

    Google Scholar 

  • Balat M, Balat H, Öz C (2008) Progress in bioethanol processing. Prog Energy Combust Sci 34(5):551–573

    Article  CAS  Google Scholar 

  • Banerjee G, Car S, Liu T, Williams DL, Meza SL, Walton JD, Hodge DB (2012) Scale-up and integration of alkaline hydrogen peroxide pretreatment, enzymatic hydrolysis, and ethanolic fermentation. Biotechnol Bioeng 109(4):922–931

    Article  CAS  PubMed  Google Scholar 

  • Barisano D, De Bari I, Viola E, Zimbardi F, Braccio G, Cantarella M, Gallifuoco A (2001) State of the art on bioethanol production, vol 33(1). ENEA, pp 98–100

    Google Scholar 

  • Berson RE (2009) Ethanol production from biomass: large scale facility design project (no. DOE-ULRF-14221), vol 1(1). Univ. of Louisville, Louisville, KY, pp 294–298

    Google Scholar 

  • Cara C, Ruiz E, Ballesteros M, Manzanares P, Negro MJ, Castro E (2008) Production of fuel ethanol from steam-explosion pretreated olive tree pruning. Fuel 87(6):692–700

    Article  CAS  Google Scholar 

  • Cardona E, Llano B, Peñuela M, Peña J, Rios LA (2018) Liquid-hot-water pretreatment of palm-oil residues for ethanol production: an economic approach to the selection of the processing conditions. Energy 160:441–451

    Article  CAS  Google Scholar 

  • Chang SH (2014) An overview of empty fruit bunch from oil palm as feedstock for bio-oil production. Biomass Bioenergy 62:174–181

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Rials TG, Lee SH (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14:593–602

    Article  CAS  Google Scholar 

  • Chung D, Cha M, Guss AM, Westpheling J (2014) Direct conversion of plant biomass to ethanol by engineered Caldicellulosiruptor bescii. Proc Natl Acad Sci 111(24):8931–8936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Converse AO, Optekar JD (1993) A synergistic kinetics model for enzymatic cellulose hydrolysis compared to degree-of-synergism experimental results. Biotechnol Bioeng 42(1):145–148

    Article  CAS  PubMed  Google Scholar 

  • Demirbaş A (2004) Ethanol from cellulosic biomass resources. Int J Green Energy 1(1):79–87

    Article  Google Scholar 

  • Duarah P, Haldar D, Patel AK, Dong CD, Singhania RR, Purkait MK (2022) A review on global perspectives of sustainable development in bioenergy generation. Bioresour Technol 348:126791

    Article  CAS  PubMed  Google Scholar 

  • Escobar JC, Lora ES, Venturini OJ, Yáñez EE, Castillo EF, Almazan O (2009) Biofuels: environment, technology and food security. Renew Sust Energ Rev 13(6–7):1275–1287

    Article  CAS  Google Scholar 

  • Fan LT, Lee YH, Gharpuray MM (2005) The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. In: Microbial reactions, vol 23. Springer, Berlin, pp 157–187

    Chapter  Google Scholar 

  • Fengel D, Wegener G (eds) (2011) Wood: chemistry, ultrastructure, reactions, vol 13. Walter de Gruyter, pp 607–612

    Google Scholar 

  • Gírio FM, Fonseca C, Carvalheiro F, Duarte LC, Marques S, Bogel-Łukasik R (2010) Hemicelluloses for fuel ethanol: a review. Bioresour Technol 101(13):4775–4800

    Article  PubMed  Google Scholar 

  • Glassner D, Hettenhaus JR, Schechinger TM (1998) Corn stover collection project. In: Bioenergy, vol 98. Omnipress, pp 1100–1110

    Google Scholar 

  • Gregg DJ, Saddler JN (1996) Factors affecting cellulose hydrolysis and the potential of enzyme recycle to enhance the efficiency of an integrated wood to ethanol process. Biotechnol Bioeng 51(4):375–383

    Article  CAS  PubMed  Google Scholar 

  • Grohmann K, Baldwin EA (1992) Hydrolysis of orange peel with pectinase and cellulase enzymes. Biotechnol Lett 14:1169–1174

    Article  CAS  Google Scholar 

  • Gusakov AV, Sinitsyn AP, Manenkova JA, Protas OV (1992) Enzymatic saccharification of industrial and agricultural lignocellulosic wastes: main features of the process. Appl Biochem Biotechnol 34:625–637

    Article  Google Scholar 

  • Holtzapple MT, Caram HS, Humphrey AE (1984) A comparison of two empirical models for the enzymatic hydrolysis of pretreated poplar wood. Biotechnol Bioeng 26(8):936–941

    Article  CAS  PubMed  Google Scholar 

  • Holtzapple M, Cognata M, Shu Y, Hendrickson C (1990) Inhibition of Trichoderma reesei cellulase by sugars and solvents. Biotechnol Bioeng 36(3):275–287

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Wada M, Honda Y, Kuwahara M, Watanabe T (2003) Bioorganosolve pretreatments for simultaneous saccharification and fermentation of beech wood by ethanolysis and white rot fungi. J Biotechnol 103(3):273–280

    Article  CAS  PubMed  Google Scholar 

  • Jiang ST, Guo N (2016) The steam explosion pretreatment and enzymatic hydrolysis of wheat bran. Energy Sources A Recov Util Environ Effects 38(2):295–299

    CAS  Google Scholar 

  • Kaya F, Heitmann JA Jr, Joyce TW (1994) Cellulase binding to cellulose fibers in high shear fields. J Biotechnol 36(1):1–10

    Article  CAS  Google Scholar 

  • Khunrong T, Punsuvon V, Vaithanomsat P, Pomchaitaward C (2010) Production of ethanol from pulp obtained by steam explosion pretreatment of oil palm trunk. Energy Sources A Recov Util Environ Effects 33(3):221–228

    Google Scholar 

  • Koseolu S, Rhee K, Lusas E (1991) Membrane separation and application in cereal processing. Cereal Foods World 36(3):376–383

    Google Scholar 

  • Lane AG (1983) Removal of peel oil from citrus peel press liquors before anaerobic digestion. Environ Technol 4(2):65–72

    CAS  Google Scholar 

  • Laosiriwut O, Srinophakun TR (2021) Process simulation of ethanol production from palm residues, Doctoral dissertation. Kasetsart University 1(1):135–138

    Google Scholar 

  • Licht FO (2006) World ethanol markets: the outlook to 2015, vol 1(1). F.O. Licht, pp 45–49

    Google Scholar 

  • Limayem A, Ricke SC (2012) Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci 38(4):449–467

    Article  CAS  Google Scholar 

  • Linde R, Bekers M, Ventina E, Vina I, Kaminska H, Upite D, Scherbaka R, Danilevich A (1998) Ethanol and fructose from sugar beets. In: 10th European conference and technology exhibition on biomass for energy and industry, pp 464–467

    Google Scholar 

  • Lu XB, Zhang YM, Yang J, Liang Y (2007) Enzymatic hydrolysis of corn stover after pretreatment with dilute sulfuric acid. Chem Eng Technol 30(7):938–944

    Article  CAS  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nat Biotechnol 26(2):169–172

    Article  CAS  PubMed  Google Scholar 

  • Mabee WE, Gregg DJ, Arato C, Berlin A, Bura R, Gilkes N, Mirochnik O, Pan X, Pye EK, Saddler JN (2006) Updates on softwood-to-ethanol process development. In: Twenty-seventh symposium on biotechnology for fuels and chemicals, vol 129. Humana Press, pp 55–70

    Chapter  Google Scholar 

  • Maiorella BL (1985) Ethanol. In: Comprehensive biotechnology, vol 3. Pergamon Press, pp 861–914

    Google Scholar 

  • Matthew Rendleman C, Hohmann N (1993) The impact of production innovations in the fuel ethanol industry. Agribusiness 9(3):217–231

    Article  Google Scholar 

  • Mes-Hartree M, Yu EKC, Reid ID, Saddler JN (1987) Suitability of aspenwood biologically delignified with Pheblia tremellosus for fermentation to ethanol or butanediol. Appl Microbiol Biotechnol 26:120–125

    Article  CAS  Google Scholar 

  • Murdock DI, Allen WE (1960) Germicidal effect of orange peel oil and D-limonene in water and orange juice. Food Technol 14(9):441–445

    CAS  Google Scholar 

  • Nazarpour F, Abdullah DK, Abdullah N, Zamiri R (2013) Evaluation of biological pretreatment of rubberwood with white rot fungi for enzymatic hydrolysis. Materials 6(5):2059–2073

    Article  PubMed  PubMed Central  Google Scholar 

  • Nidetzky B, Steiner W, Hayn M, Claeyssens M (1994) Cellulose hydrolysis by the cellulases from Trichoderma reesei: a new model for synergistic interaction. Biochem J 298(3):705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Sullivan AC (1997) Cellulose: the structure slowly unravels. Cellulose 4(3):173–207

    Article  Google Scholar 

  • Öhgren K, Bengtsson O, Gorwa-Grauslund MF, Galbe M, Hahn-Hägerdal B, Zacchi G (2006) Simultaneous saccharification and co-fermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. J Biotechnol 126(4):488–498

    Article  PubMed  Google Scholar 

  • Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74(1):25–33

    Article  CAS  Google Scholar 

  • Pascoli DU, Suko A, Gustafson R, Gough HL, Bura R (2021) Novel ethanol production using biomass preprocessing to increase ethanol yield and reduce overall costs. Biotechnol Biofuels 14(1):1–18

    Article  Google Scholar 

  • Pérez J, Munoz-Dorado J, De la Rubia TDLR, Martinez J (2002) Biodegradation and biological treatments of cellulose, hemicellulose and lignin: an overview. Int Microbiol 5:53–63

    Article  PubMed  Google Scholar 

  • Philippidis GP (1994) Cellulase production technology: evaluation of current status. In: Enzymatic conversion of biomass for fuel production, vol 566. American Chemical Society, pp 188–217

    Chapter  Google Scholar 

  • Piarpuzán D, Quintero JA, Cardona CA (2011) Empty fruit bunches from oil palm as a potential raw material for fuel ethanol production. Biomass Bioenergy 35(3):1130–1137

    Article  Google Scholar 

  • Qureshi N, Manderson GJ (1995) Bioconversion of renewable resources into ethanol: an economic evaluation of selected hydrolysis, fermentation, and membrane technologies. Energy Sources 17(2):241–265

    Article  CAS  Google Scholar 

  • Reese ET, Ryu DY (1980) Shear inactivation of cellulase of Trichoderma reesei. Enzym Microb Technol 2(3):239–240

    Article  CAS  Google Scholar 

  • Roberto IC, Mussatto SI, Rodrigues RC (2003) Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind Crop Prod 17(3):171–176

    Article  CAS  Google Scholar 

  • Rolz C, De Leon R, De Arriola MC, De Cabrera S (1986) Biodelignification of lemon grass and citronella bagasse by white-rot fungi. Appl Environ Microbiol 52(4):607–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Root DF (1957) Kinetics of the acid catalyzed conversion of xylose to furfural, vol 1(1). The University of Wisconsin-Madison, pp 177–237

    Google Scholar 

  • Sharma V, Nargotra P, Bajaj BK (2019) Ultrasound and surfactant assisted ionic liquid pretreatment of sugarcane bagasse for enhancing saccharification using enzymes from an ionic liquid tolerant Aspergillus assiutensis VS34. Bioresour Technol 285:121319

    Article  CAS  PubMed  Google Scholar 

  • Sheehan J (2001) The road to bioethanol: a strategic perspective of the US Department of Energy”s national ethanol program. ACS Symp Ser 769:2–25

    Article  Google Scholar 

  • Shengdong Z, Yuanxin W, Yufeng Z, Shaoyong T, Yong** X, Ziniu Y, Xuan Z (2006) Fed-batch simultaneous saccharification and fermentation of microwave/acid/alkali/H2O2 pretreated rice straw for production of ethanol. Chem Eng Commun 193(5):639–648

    Article  Google Scholar 

  • Singhania RR, Patel AK, Raj T, Chen CW, Ponnusamy VK, Tahir N, Kim SH, Dong CD (2022) Lignin valorisation via enzymes: a sustainable approach. Fuel 311:122608

    Article  CAS  Google Scholar 

  • Talebnia F (2008) Ethanol production from cellulosic biomass by encapsulated Saccharomyces cerevisiae, Doctoral dissertation, vol 3(1). Chalmers University of Technology, Dept. of Chemical and Biological Engineering, pp 786–787

    Google Scholar 

  • Tarantili PA, Koullas DP, Christakopoulos P, Kekos D, Koukios EG, Macris BJ (1996) Cross-synergism in enzymatic hydrolysis of lignocellulosics: mathematical correlations according to a hyperbolic model. Biomass Bioenergy 10(4):213–219

    Article  CAS  Google Scholar 

  • Tibelius C, Trenholm HL (1997) Coproducts and near coproducts of fuel ethanol fermentation from grain. Final report, contract no. 01531-5-7157

    Google Scholar 

  • Tran TTA, Le TKP, Mai TP, Nguyen DQ (2019) Bioethanol production from lignocellulosic biomass. In: Alcohol fuels-current technologies and future prospect, vol 86. IntechOpen, pp 11–13

    Google Scholar 

  • Tripodo MM, Lanuzza F, Micali G, Coppolino R, Nucita F (2004) Citrus waste recovery: a new environmentally friendly procedure to obtain animal feed. Bioresour Technol 91(2):111–115

    Article  CAS  PubMed  Google Scholar 

  • Tse TJ, Wiens DJ, Reaney MJ (2021) Production of bioethanol—a review of factors affecting ethanol yield. Fermentation 7(4):268

    Article  CAS  Google Scholar 

  • Vaccarino C, Curto RL, Tripodo MM, Patane R, Lagana G, Ragno A (1989) SCP from orange peel by fermentation with fungi—acid-treated peel. Biol Wastes 30(1):1–10

    Article  CAS  Google Scholar 

  • Waghmare PR, Kadam AA, Saratale GD, Govindwar SP (2014) Enzymatic hydrolysis and characterization of waste lignocellulosic biomass produced after dye bioremediation under solid state fermentation. Bioresour Technol 168:136–141

    Article  CAS  PubMed  Google Scholar 

  • Wheals AE, Basso LC, Alves DM, Amorim HV (1999) Fuel ethanol after 25 years. Trends Biotechnol 17(12):482–487

    Article  CAS  PubMed  Google Scholar 

  • Wilkins MR, Suryawati L, Maness NO, Chrz D (2007) Ethanol production by Saccharomyces cerevisiae and Kluyveromyces marxianus in the presence of orange-peel oil. World J Microbiol Biotechnol 23:1161–1168

    Article  CAS  Google Scholar 

  • Wong YC, Sanggari V (2014) Bioethanol production from sugarcane bagasse using fermentation process. Orient J Chem 30(2):507–513

    Article  CAS  Google Scholar 

  • **ong X, Iris KM, Dutta S, Mašek O, Tsang DC (2021) Valorization of humins from food waste biorefinery for synthesis of biochar-supported Lewis acid catalysts. Sci Total Environ 775:145851

    Article  CAS  PubMed  Google Scholar 

  • Yoswathana N, Phuriphipat P, Treyawutthiwat P, Eshtiaghi MN (2010) Bioethanol production from rice straw. Energy Res J 1(1):26

    Article  Google Scholar 

  • Zabed H, Sahu JN, Boyce AN, Faruq G (2016) Fuel ethanol production from lignocellulosic biomass: an overview on feedstocks and technological approaches. Renew Sust Energ Rev 66:751–774

    Article  CAS  Google Scholar 

  • Zheng Y, Pan Z, Zhang R, Jenkins BM (2009) Kinetic modeling for enzymatic hydrolysis of pretreated cree** wild ryegrass. In: 2009 Reno, Nevada, 21–24 Jun 2009. American Society of Agricultural and Biological Engineers, p 1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumit Kumar Jana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nath, S., Pal, D.B., Jana, S.K. (2024). Production of Bioethanol Using Waste Biomass. In: Pal, D.B., Rai, A.K., Siddiqui, S. (eds) Sustainable Clean Energy Production Using Waste Biomass. Clean Energy Production Technologies. Springer, Singapore. https://doi.org/10.1007/978-981-97-0840-6_6

Download citation

Publish with us

Policies and ethics

Navigation