Log in

Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Natural fibers in micro and nano scales may be a potential alternative for man-made fibers because of the comparable mechanical properties to those of glass, carbon, and aramid fibers. Cellulose fibril and fibril aggregate are generally prepared by physical treatments, e.g., high-pressure homogenizer, or chemical treatments, e.g., acid hydrolysis. In this study, fibril aggregates were generated from a regenerated cellulose fiber by a novel mechanical treatment. The geometrical characteristics of the fibers and the fibril aggregates were investigated using scanning electron microscopy (SEM) and polarized light microscopy (PLM), and its crystallinity was investigated by wide angle X-ray diffraction (WAXD). The degree of fibrillation of the fibers was indirectly evaluated by water retention value (WRV). Nano-biocomposites reinforced with fibril aggregates were prepared by film casting and compression molding and evaluated by tensile test. The morphological characteristics of the nanocomposites were investigated with SEM and PLM. As reference, commercial microfibrillated cellulose was also used to reinforce biodegradable polymer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

MFC:

Microfibrillated cellulose

PLM:

Polarized light microscopy

PP:

Polypropylene

PVA:

Poly vinyl alcohol

SEM:

Scanning electron microscopy

WAXD:

Wide angle X-ray diffraction

WRV:

Water retention value

References

  • ASTM D (1708–2002) Standard test method for tensile properties of plastics by use of microtensile specimens

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6(2):1048–1054

    Article  CAS  Google Scholar 

  • Berglund L (2005) Cellulose-based nanocomposites. In: Mohanty AK, Misra M, Drzal L (eds) Natural fibers, biopolymers, and biocomposites. Taylor & Francis, pp 807–832

  • Bondeson D, Mathew A, Oksman K (2006) Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis. Cellulose 13(2):171–180

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2005) Cellulose microfibrils: a novel method of preparation using high shear refining and cryocrushing. Holzforschung 59(1):102–107

    Article  CAS  Google Scholar 

  • Chakraborty A, Sain M, Kortschot M (2006a) Cellulose microfibers as reinforcing agents for structural materials, cellulose nanocomposites: processing, characterization, and properties. Acs Symposium Series, pp 169–186

  • Chakraborty A, Sain M, Kortschot M (2006b) Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung 60(1):53–58

    Article  CAS  Google Scholar 

  • Cheng Q, Wang S, Zhou D, Zhang Y, Rials T (2007) Lyocell-derived cellulose fibril and its biodegradable nanocomposite. J Nan**g For Univ 31(4):21–26

    Google Scholar 

  • Choi YJ, Simonsen J (2006) Cellulose nanocrystal-filled carboxymethyl cellulose nanocomposites. J Nanosci Nanotechnol 6(3):633–639

    Article  CAS  Google Scholar 

  • Dufresne A, Cavaille JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194

    Article  CAS  Google Scholar 

  • Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch-cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092

    Article  CAS  Google Scholar 

  • Eichhorn SJ, Young RJ (2001) The Young’s modulus of a microcrystalline cellulose. Cellulose 8(3):197–207

    Article  CAS  Google Scholar 

  • Favier V, Canova GR, Cavaille JY, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355

    Article  CAS  Google Scholar 

  • Ganster J, Fink HP (2006) Novel cellulose fibre reinforced thermoplastic materials. Cellulose 13(3):271–280

    Article  CAS  Google Scholar 

  • George J, Sreekala MS, Thomas S (2001) A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym Eng Sci 41(9):1471–1485

    Article  CAS  Google Scholar 

  • Hajji P, Cavaille JY, Favier V, Gauthier C, Vigier G (1996) Tensile behavior of nanocomposites from latex and cellulose whiskers. Polym Compos 17(4):612–619

    Article  CAS  Google Scholar 

  • Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci: Appl Polym Symp 37:797–813

    CAS  Google Scholar 

  • Lima MMD, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25(7):771–787

    Article  Google Scholar 

  • Mathew AP, Oksman K, Sain M (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025

    Article  CAS  Google Scholar 

  • Nakagaito AN, Yano H (2005) Novel high-strength biocomposites based on microfibrillated cellulose having nano-order-unit web-like network structure. Appl Phys a-Mater Sci Process 80(1):155–159

    Article  CAS  Google Scholar 

  • Peng SJ, Shao HL, Hu XC (2003) Lyocell fibers as the precursor of carbon fibers. J Appl Polym Sci 90(7):1941–1947

    Article  CAS  Google Scholar 

  • Sakurada I, Nukushina Y, Ito T (1962) Experimental determination of elastic modulus of crystalline regions in oriented polymers. J Polym Sci 57(165):651–660

    Article  CAS  Google Scholar 

  • Samir M, Alloin F, Sanchez JY, Dufresne A (2004) Cross-linked nanocomposite polymer electrolytes reinforced with cellulose whiskers. Macromolecules 37(13):4839–4844

    Article  CAS  Google Scholar 

  • Sturcova A, Davies GR, Eichhorn SJ (2005) Elastic modulus and stress-transfer properties of tunicate cellulose whiskers. Biomacromolecules 6(2):1055–1061

    Article  CAS  Google Scholar 

  • Taniguchi T (1996) Microfibrillation of natural fibrous materials. J Soc Mat Sci Japan 45(4):472–473

    CAS  Google Scholar 

  • Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Stahl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576

    Article  CAS  Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrilated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci: Appl Polym Symp 37:815–827

    CAS  Google Scholar 

  • Wang S, Cheng Q (2007) A novel method to isolate fibrils from cellulose fibers by high intensity ultrasonication (in preparation)

  • Woodings C (2000) Regenerated cellulose fibers. Woodhead publishing limited, Cambridge, England

    Google Scholar 

  • Zimmermann T, Pohler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Joseph Spruiell of Department of Material Science and Engineering, UT, for his help of WAXD; Dr. John R. Dunlap of the Division of Biology, UT, for his valuable assistances in SEM experiments; Lenzing company for their supply of Lyocell fibers; FiberVisions, Georgia for their supply of PP fibers; and USDA Wood Utilization Research Program and Tennessee Agricultural Experiment Station project # 96 for funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siqun Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, Q., Wang, S., Rials, T.G. et al. Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14, 593–602 (2007). https://doi.org/10.1007/s10570-007-9141-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-007-9141-0

Keywords

Navigation