Design and Analysis of Hybrid Plasmonic Waveguide-Based Symmetrical Directional Coupler Using Metal Bottom Layer

  • Conference paper
  • First Online:
Proceedings of Second International Conference on Computational Electronics for Wireless Communications

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 554))

Abstract

In this paper, the performance analysis on hybrid plasmonic waveguide (HPW)-based symmetrical directional coupler (DC) is proposed, which contains two parallel arms. In this analysis, one HPW arm performs as an input port and bar (parallel) output port; another HPW arm doings as a cross output port. The principle of DC is satisfied by the coupling of transverse magnetic field (TM) from the bar port to cross port. In the proposed DC, the mode characteristic parameters such as normalized mode area and propagation length are calculated by finite element method (FEM), and performance of the device is analyzed by certain parameters such as propagation loss, cross-talk, insertion loss, and coupling ratio. Hence, the proposed DC is designed with low cross-talk, low insertion loss, low propagation loss, and high propagation length, which could be appropriate for ultra-dense photonic integrated circuits (PICs).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 213.99
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 267.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nat 424(6950):824–830

    Article  Google Scholar 

  2. Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95(4):046802

    Article  Google Scholar 

  3. Bozhevolnyi SI, Volkov VS, Devaux E, Laluet JY, Ebbesen TW (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511

    Article  Google Scholar 

  4. Gordon R, Brolo AG (2005) Increased cut-off wavelength for a subwavelength hole in a real metal. Opt Express 13(6):1933–1938

    Article  Google Scholar 

  5. Chen L, Shakya J, Lipson M (2006) Subwavelength confinement in an integrated metal slot waveguide on silicon. Opt Lett 31(14):2133–2135

    Article  Google Scholar 

  6. Dai D, He S (2009) A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Opt Express 17(19):16646–16653

    Article  Google Scholar 

  7. Kim JT, Ju JJ, Park S, Kim MS, Park SK, Shin SY (2010) Hybrid plasmonic waveguide for low-loss lightwave guiding. Opt Express 18(3):2808–2813

    Article  Google Scholar 

  8. Wu M, Han Z, Van V (2010) Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Opt Express 18(11):11728–11736

    Article  Google Scholar 

  9. Huang Q, Bao F, He S (2013) Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Opt Express 21(2):1430–1439

    Article  Google Scholar 

  10. Guan X, Wu H, Dai D (2014) Silicon hybrid nanoplasmonics for ultra-dense photonic integration. Front Optoelectron 7(3):300–319

    Article  Google Scholar 

  11. Alam MZ, Aitchison JS, Mojahedi M (2014) A marriage of convenience: hybridization of surface plasmon and dielectric waveguide modes. Laser Photonics Rev 8(3):394–408

    Article  Google Scholar 

  12. Bian Y, Ren Q, Kang L, Yue T, Werner PL, Werner DH (2018) Deep-subwavelength light transmission in hybrid nanowire-loaded silicon nano-rib waveguides. Photonics Res 6(1):37–45

    Article  Google Scholar 

  13. Oulton RF, Sorger VJ, Genov DA, Pile DF, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500

    Article  Google Scholar 

  14. Tian J, Zhang C, Liang X, Li H (2013) Mode analysis of a symmetric hybrid surface plasmonic waveguide for photonic integration. IEEE J Quantum Electron 49(3):331–334

    Article  Google Scholar 

  15. Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 75(24):245405

    Article  Google Scholar 

  16. Sun X, Zhou L, Li X, Hong Z, Chen J (2011) Design and analysis of a phase modulator based on a metal–polymer–silicon hybrid plasmonic waveguide. Appl Opt 50(20):3428–3434

    Article  Google Scholar 

  17. Zhu S, Lo GQ, Kwong DL (2010) Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators. Opt Express 18(26):27802–27819

    Article  Google Scholar 

  18. Sorger VJ, Lanzillotti-Kimura ND, Ma RM, Zhang X (2012) Ultra-compact silicon nanophotonic modulator with broadband response. Nanophotonics 1(1):17–22

    Article  Google Scholar 

  19. Wang J, Guan X, He Y, Shi Y, Wang Z, He S, Holmström P, Wosinski L, Thylen L, Dai D (2011) Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides. Opt Express 19(2):838–847

    Article  Google Scholar 

  20. Song Y, Wang J, Yan M, Qiu M (2011) Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter. J Opt 13(7):075002

    Article  Google Scholar 

  21. Perron D, Wu M, Horvath C, Bachman D, Van V (2011) All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator. Opt Lett 36(14):2731–2733

    Article  Google Scholar 

  22. Lou F, Wang Z, Dai D, Thylen L, Wosinski L (2012) Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides. Appl Phys Lett 100(24):241105

    Article  Google Scholar 

  23. Zeng D, Zhang L, **ong Q, Ma J (2018) Directional coupler based on an elliptic cylindrical nanowire hybrid plasmonic waveguide. Appl Opt 57(16):4701–4706

    Article  Google Scholar 

  24. Nikoufard M, Heydari N, Pourgholi S, Khomami AR (2016) Novel hybrid plasmonic-based directional coupler on InP substrate. Photonics Nanostruct Fundam Appl 22:9–17

    Article  Google Scholar 

  25. Holmgaard T, Chen Z, Bozhevolnyi SI, Markey L, Dereux A (2009) Design and characterization of dielectric-loaded plasmonic directional couplers. J Lightwave Technol 27(24):5521–5528

    Article  Google Scholar 

  26. COMSOL Retrieved from https://doc.comsol.com/5.4/doc/com.comsol.help.rf/RFModuleUsersGuide.pdf

  27. Radhakrishnan S, Raja GT, Kumar DS (2021) Numerical investigation on elliptic cylindrical nanowire hybrid plasmonic waveguide–based polarization beam splitter. Plasmonics 16(2):493–500

    Article  Google Scholar 

  28. Ahmed R, Rifat AA, Sabouri A, Al-Qattan B, Essa K, Butt H (2016) Multimode waveguide based directional coupler. Opt Commun 370:183–191

    Article  Google Scholar 

  29. Okamoto K (2010) Fundamentals of optical waveguides. Academic Press, United States

    Google Scholar 

  30. Alam MZ, Meier J, Aitchison JS, Mojahedi M (2007) Super mode propagation in low index medium. In: Quantum electronics and laser science conference, p JThD112. Optical Society of America

    Google Scholar 

  31. Dai D, Shi Y, He S, Wosinski L, Thylen L (2011) Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium. Opt Express 19(14):12925–129236

    Article  Google Scholar 

  32. Kim JT (2011) CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits. IEEE Photonics Technol Lett 23(20):1481–1483

    Article  Google Scholar 

  33. Dai D, He S (2010) Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Opt Express 18(17):17958–17966

    Article  Google Scholar 

  34. Gerd Keiser (2000) Optical fiber communications. International edition, McGraw Hill

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Radhakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Radhakrishnan, S., Raja, G.T., Kumar, D.S. (2023). Design and Analysis of Hybrid Plasmonic Waveguide-Based Symmetrical Directional Coupler Using Metal Bottom Layer. In: Rawat, S., Kumar, S., Kumar, P., Anguera, J. (eds) Proceedings of Second International Conference on Computational Electronics for Wireless Communications. Lecture Notes in Networks and Systems, vol 554. Springer, Singapore. https://doi.org/10.1007/978-981-19-6661-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-6661-3_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-6660-6

  • Online ISBN: 978-981-19-6661-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation