Log in

Silicon hybrid nanoplasmonics for ultra-dense photonic integration

  • Review Article
  • Published:
Frontiers of Optoelectronics Aims and scope Submit manuscript

Abstract

Recently hybrid plasmonic waveguides have been becoming very attractive as a promising candidate to realize next-generation ultra-dense photonic integrated circuits because of the ability to achieve nano-scale confinement of light and relatively long propagation distance. Furthermore, hybrid plasmonic waveguides also offer a platform to merge photonics and electronics so that one can realize ultra-small optoelectronic integrated circuits (OEICs) for high-speed signal generation, processing as well as detection. In this paper, we gave a review for the progresses on various hybrid plasmonic waveguides as well as ultrasmall functionality devices developed recently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tsuchizawa T, Yamada K, Fukuda H, Watanabe T, Takahashi J, Takahashi M, Shoji T, Tamechika E, Itabashi S, Morita H. Microphotonics devices based on silicon microfabrication technology. IEEE Journal on Selected Topics in Quantum Electronics, 2005, 11(1): 232–240

    Google Scholar 

  2. Almeida V R, Xu Q, Barrios C A, Lipson M. Guiding and confining light in void nanostructure. Optics Letters, 2004, 29(11): 1209–1211

    Google Scholar 

  3. Thylén L, Qiu M, Anand S. Photonic crystals—a step towards integrated circuits for photonics. ChemPhysChem, 2004, 5(9): 1268–1283

    Google Scholar 

  4. Goto T, Katagiri Y, Fukuda H, Shinojima H, Nakano Y, Kobayashi I, Mitsuoka Y. Propagation loss measurement for surface plasmonpolariton modes at metal waveguides on semiconductor substrates. Applied Physics Letters, 2004, 84(6): 852–854

    Google Scholar 

  5. Charbonneau R, Lahoud N, Mattiussi G, Berini P. Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons. Optics Express, 2005, 13(3): 977–984

    Google Scholar 

  6. Zia R, Selker M D, Catrysse P B, Brongersma M L. Geometries and materials for subwavelength surface plasmon modes. Journal of the Optical Society of America. A, Optics, Image Science, and Vision, 2004, 21(12): 2442–2446

    Google Scholar 

  7. Wang B, Wang G P. Surface plasmon polariton propagation in nanoscale metal gap waveguides. Optics Letters, 2004, 29(17): 1992–1994

    Google Scholar 

  8. Tanaka K, Tanaka M. Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Applied Physics Letters, 2003, 82(8): 1158–1160

    Google Scholar 

  9. Tanaka K, Tanaka M, Sugiyama T. Simulation of practical nanometric optical circuits based on surface plasmon polariton gap waveguides. Optics Express, 2005, 13(1): 256–266

    Google Scholar 

  10. Kusunoki F, Yotsuya T, Takahara J, Kobayashi T. Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Applied Physics Letters, 2005, 86(21): 211101-1–211101-3

    Google Scholar 

  11. Pile D F P, Gramotnev D K. Channel plasmon-polariton in a triangular groove on a metal surface. Optics Letters, 2004, 29(10): 1069–1071

    Google Scholar 

  12. Bozhevolnyi S I, Volkov V S, Devaux E, Laluet J Y, Ebbesen TW. Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature, 2006, 440(7083): 508–511

    Google Scholar 

  13. Pile D F P, Gramotnev D K. Plasmonic subwavelength waveguides: next to zero losses at sharp bends. Optics Letters, 2005, 30(10): 1186–1188

    Google Scholar 

  14. **ao S S, Liu L, Qiu M. Resonator channel drop filters in a plasmon-polaritons metal. Optics Express, 2006, 14(7): 2932–2937

    Google Scholar 

  15. Liu L, Han Z H, He S L. Novel surface plasmon waveguide for high integration. Optics Express, 2005, 13(17): 6645–6650

    Google Scholar 

  16. Veronis G, Fan S H. Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Applied Physics Letters, 2005, 87(13): 131102-1–131102-3

    Google Scholar 

  17. Zia R, Schuller A J, Chandran A, Brongersma L M. Plasmonics: the next chip-scale technology. Materials Today, 2006, 9(7–8): 21–27

    Google Scholar 

  18. Alam M Z, Meier J, Aitchison J S, Mojahedi M. Super mode propagation in low index medium. In: Proceedings of Quantum Electronics and Laser Science Conference. Baltimore, 2007, JThD112

    Google Scholar 

  19. Oulton R F, Sorger V J, Genov D A, Pile D F P, Zhang X. A hybrid plasmonic waveguide for subwavelength confinement and longrange propagation. Nature Photonics, 2008, 2(8): 496–500

    Google Scholar 

  20. Fujii M, Leuthold J, Freude W. Dispersion relation and loss of subwavelength confined mode of metal-dielectric-gap optical waveguides. IEEE Photonics Technology Letters, 2009, 21(6): 362–364

    Google Scholar 

  21. Dai D X, He S. A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement. Optics Express, 2009, 17(19): 16646–16653

    Google Scholar 

  22. Dai D X, Yang L. Proposal of a thermally-tunable silicon-oninsulator microring resonator filter. In: Proceedings of Asia Optical Fiber Communication & Optoelectrnic Exposition & Conference. Shanghai, 2007, 582–583

    Google Scholar 

  23. Feng N N, Brongersma M L, Negro L D. Metal-dielectric slotwaveguide structures for the propagation of surface plasmon polaritons at 1.55 μm. IEEE Journal of Quantum Electronics, 2007, 43(6): 479–485

    Google Scholar 

  24. Wang Z, Dai D X, Shi Y, Somesfalean G, Holmstrom P, Thylen L, He S, Wosinski L. Experimental realization of a low-loss nanoscale Si hybrid plasmonic waveguide. In: Proceedings of Optical Fiber Communication Conference. Los Angeles, 2011

    Google Scholar 

  25. Zhou G, Wang T, Pan C, Hui X, Liu F F, Su Y K. Design of plasmon waveguide with strong field confinement and low loss for nonlinearity enhancement. In: Group Four Photonics. Bei**g, 2010

    Google Scholar 

  26. Chen L, Zhang T, Li X, Huang W. Novel hybrid plasmonic waveguide consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film. Optics Express, 2012, 20(18): 20535–20544

    Google Scholar 

  27. Tian J, Ma Z, Li Q, Song Y, Liu Z, Yang Q, Zha C L, Akerman J, Tong L M, Qiu M. Nanowaveguides and couplers based on hybrid plasmonic modes. Applied Physics Letters, 2010, 97(23): 231121-1–231121-3

    Google Scholar 

  28. Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Liu J S, Zhu J S, Zhou T. Hybrid plasmonic waveguide incorporating an additional semiconductor stripe for enhanced optical confinement in the gap region. Journal of Optics, 2013, 15(3): 035503-1–035503-9

    Google Scholar 

  29. Bian Y S, Gong Q H. Multilayer metal-dielectric planar waveguides for subwavelength guiding of long-range hybrid plasmon polaritons at 1550 nm. Journal of Optics, 2014, 16(1): 015001-1–015001-12

    Google Scholar 

  30. Chen L, Li X, Wang G P, Li W, Chen S H, **ao L, Gao D S. A silicon-based 3-D hybrid long-rang plasmonic waveguide for nanophotonic integrating. Journal of Lightwave Technology, 2012, 30(1): 163–168

    Google Scholar 

  31. Noghani M T, Samiei M H V. Analysis and optimum design of hybrid plasmonic slab waveguides. Plasmonics, 2013, 8(2): 1155–1168

    Google Scholar 

  32. Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Liu J S, Zhu J S, Zhou T. Hybrid plasmon polariton guiding with tight mode confinement in a V-shaped metal/dielectric groove. Journal of Optics, 2013, 15(5): 055011-1–055011-6

    Google Scholar 

  33. Bian Y S, Gong Q. Low-loss hybrid plasmonic modes guided by metal-coated dielectric wedges for subwavelength light confinement. Applied Optics, 2013, 52(23): 5733–5741

    Google Scholar 

  34. Bian Y S, Gong Q. Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes. Optics Express, 2013, 21(20): 23907–23920

    Google Scholar 

  35. Amirhosseini A, Safian R. A hybrid plasmonic waveguide for the propagation of surface plasmon polariton at 1.55 μm on SOI substrate. IEEE Transactions on Nanotechnology, 2013, 12(6): 1031–1036

    Google Scholar 

  36. Kou Y, Ye F W, Chen X F. Low-loss hybrid plasmonic waveguide for compact and high-efficient photonic integration. Optics Express, 2011, 19(12): 11746–11752

    Google Scholar 

  37. Hao R, Li E P, Wei X C. Two-dimensional light confinement in cross-index-modulation plasmonic waveguides. Optics Letters, 2012, 37(14): 2934–2936

    Google Scholar 

  38. Huang Q, Bao F, He S. Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Optics Express, 2013, 21(2): 1430–1439

    Google Scholar 

  39. Lu Q, Chen D, Wu G. Low-loss hybrid plasmonic waveguide based on metal ridge and semiconductor nanowire. Optics Communications, 2013, 289: 64–68

    Google Scholar 

  40. Lou F, Wang Z, Dai D, Thylen L, Wosinski L. Experimental demonstration of ultra-compact directional couplers based on silicon hybrid plasmonic waveguides. Applied Physics Letters, 2012, 100(24): 241105-1–241105-4

    Google Scholar 

  41. Alam M Z, Meier J, Aitchison J S, Mojahedi M. Propagation characteristics of hybrid modes supported by metal-low-high index waveguides and bends. Optics Express, 2010, 18(12): 12971–12979

    Google Scholar 

  42. Horvath C, Bachman D, Wu M, Perron D, Van V. Polymer hybrid plasmonic waveguides and microring resonators. IEEE Photonics Technology Letters, 2011, 23(17): 1267–1269

    Google Scholar 

  43. Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G, Zhang X. Plasmon lasers at deep subwavelength scale. Nature, 2009, 461(7264): 629–632

    Google Scholar 

  44. Su Y, Zheng Z, Bian Y S, Liu Y, Liu J S, Zhu J S, Zhou T. Lowloss silicon-based hybrid plasmonic waveguide with an air nanotrench for sub-wavelength mode confinement. Micro & Nano Letters, 2011, 6(8): 643–645

    Google Scholar 

  45. Wu M, Han Z, Van V. Conductor-gap-silicon plasmonic waveguides and passive components at subwavelength scale. Optics Express, 2010, 18(11): 11728–11736

    Google Scholar 

  46. Bian Y S, Zheng Z, Zhao X, Liu L, Su Y L, Liu J S, Zhu J S, Zhou T. Nanoscale light guiding in a silicon-based hybrid plasmonic waveguide that incorporates an inverse metal ridge. Physica Status Solidi A, 2013, 210(7): 1424–1428

    Google Scholar 

  47. Dai D X, Shi Y C, He S L, Wosinski L, Thylen L. Gain enhancement in a hybrid plasmonic nano-waveguide with a lowindex or high-index gain medium. Optics Express, 2011, 19(14): 12925–12936

    Google Scholar 

  48. Goykhman I, Desiatov B, Levy U. Experimental demonstration of locally oxidized hybrid silicon-plasmonic waveguide. Applied Physics Letters, 2010, 97(14): 141106-1–141106-3

    Google Scholar 

  49. Dai D X, He S L. Low-loss hybrid plasmonic waveguide with double low-index nano-slots. Optics Express, 2010, 18(17): 17958–17966

    Google Scholar 

  50. Kwon M S. Metal-insulator-silicon-insulator-metal waveguides compatible with standard CMOS technology. Optics Express, 2011, 19(9): 8379–8393

    Google Scholar 

  51. Kim J T. CMOS-compatible hybrid plasmonic slot waveguide for on-chip photonic circuits. IEEE Photonics Technology Letters, 2011, 23(20): 1481–1483

    Google Scholar 

  52. Kwon M S, Shin J S, Shin S Y, Lee W G. Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal. Optics Express, 2012, 20(20): 21875–21887

    Google Scholar 

  53. Zhu S, Liow T Y, Lo G Q, Kwong D L. Fully complementary metal-oxide-semiconductor compatible nanoplasmonic slot waveguides for silicon electronic photonic integrated circuits. Applied Physics Letters, 2011, 98(2): 021107-1–021107-3

    Google Scholar 

  54. Zhu S, Liow T Y, Lo G Q, Kwong D L. Silicon-based horizontal nanoplasmonic slot waveguides for on-chip integration. Optics Express, 2011, 19(9): 8888–8902

    Google Scholar 

  55. Zuo X, Sun Z. Low-loss plasmonic hybrid optical ridge waveguide on silicon-on-insulator substrate. Optics Letters, 2011, 36(15): 2946–2948

    Google Scholar 

  56. **ang C, Wang J. Long-range hybrid plasmonic slot waveguide. IEEE Photonics Journal, 2013, 5(2): 4800311-1–4800311-11

    Google Scholar 

  57. Li H, Noh J W, Chen Y, Li M. Enhanced optical forces in integrated hybrid plasmonic waveguides. Optics Express, 2013, 21(10): 11839–11851

    Google Scholar 

  58. **ao J, Liu J, Zheng Z, Bian Y, Wang G, Li S. Low-loss metalinsulator-semiconductor waveguide with an air core for on-chip integration. Optics Communications, 2012, 285(17): 3604–3607

    Google Scholar 

  59. Guan X, Chen P, Wang X, Wosinski L, Shi Y, Dai D. Ultrasmall directional coupler and disk-resonantor based on nano-scale silicon hybrid plasmonic waveguides. In: Proceedings of Asia Communications and Photonics Conference. Guangzhou, 2012

    Google Scholar 

  60. Song Y, Yan M, Yang Q, Tong L M, Qiu M. Reducing crosstalk between nanowire-based hybrid plasmonic waveguides. Optics Communications, 2011, 284(1): 480–484

    Google Scholar 

  61. Alam M Z, Caspers J N, Aitchison J S, Mojahedi M. Compact low loss and broadband hybrid plasmonic directional coupler. Optics Express, 2013, 21(13): 16029–16034

    Google Scholar 

  62. Noghani M T, Samiei M H V. Ultrashort hybrid metal-insulator plasmonic directional coupler. Applied Optics, 2013, 52(31): 7498–7503

    Google Scholar 

  63. Li Q, Song Y, Zhou G, Su Y K, Qiu M. Asymmetric plasmonicdielectric coupler with short coupling length, high extinction ratio, and low insertion loss. Optics Letters, 2010, 35(19): 3153–3155

    Google Scholar 

  64. Zhu S, Lo G Q, Kwong D L. Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides. Optics Express, 2012, 20(6): 5867–5881

    Google Scholar 

  65. Zhu S, Lo G Q, Kwong D L. Experiment demonstration of vertical Cu-SiO2-Si hybrid plasmonic waveguide components on an SOI platform. IEEE Photonics Technology Letters, 2012, 24(14): 1224–1226

    Google Scholar 

  66. Chu H S, Bai P, Li E P, Hoefer W R J. Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits. Plasmonics, 2011, 6(3): 591–597

    Google Scholar 

  67. Song Y, Wang J, Yan M, Qiu M. Efficient coupling between dielectric and hybrid plasmonic waveguides by multimode interference power splitter. Journal of Optics, 2011, 13(7): 075002-1–075002-8

    Google Scholar 

  68. Wang J, Guan X, He Y, Shi Y, Wang Z, He S, Holmström P, Wosinski L, Thylen L, Dai D. Sub-μm2 power splitters by using silicon hybrid plasmonic waveguides. Optics Express, 2011, 19(2): 838–847

    Google Scholar 

  69. **ao J, Liu J, Zheng Z, Bian Y, Wang G. Design and analysis of a nanostructure grating based on a hybrid plasmonic slot waveguide. Journal of Optics, 2011, 13(10): 105001

    Google Scholar 

  70. Shin J S, Kwon M S, Lee C H, Shin S Y. Investigation and improvement of 90° direct bends of metal-insulator-siliconin-sulator-metal waveguides. IEEE Photonics Journal, 2013, 5(5): 6601909-1–6601909-5

    MathSciNet  Google Scholar 

  71. Dai D, Shi Y, He S, Wosinski L, Thylen L. Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides. Optics Express, 2011, 19(24): 23671–23682

    Google Scholar 

  72. Chu H S, Akimov Y, Bai P, Li E P. Submicrometer radius and highly confined plasmonic ring resonator filters based on hybrid metal-oxide-semiconductor waveguide. Optics Letters, 2012, 37(21): 4564–4566

    Google Scholar 

  73. Zhu S, Lo G Q, Kwong D L. Performance of ultracompact coppercapped silicon hybrid plasmonic waveguide-ring resonators at telecom wavelengths. Optics Express, 2012, 20(14): 15232–15246

    Google Scholar 

  74. Zhu S, Lo G, Kwong D L. Towards athermal nanoplasmonic resonators based on Cu-TiO2-Si hybrid plasmonic waveguide. In: Proceedings of Optical Fiber Communication Conference/National Fiber Optic Engineers Conference. Anaheim, 2013

    Google Scholar 

  75. Zhu S, Lo G Q, Kwong D L. Experimental demonstration of horizontal nanoplasmonic slot waveguide-ring resonators with submicrometer radius. IEEE Photonics Technology Letters, 2011, 23(24): 1896–1898

    Google Scholar 

  76. Lou F, Thylen L, Wosinski L. Hybrid plasmonic microdisk resonators for optical interconnect applications. In: Integrated Optics: Physics and Simulations. Prague: Society of Photo-Optical Instrumentation Engineers, 2013

    Google Scholar 

  77. Song Y, Wang J, Yan M, Qiu M. Subwavelength hybrid plasmonic nanodisk with high Q factor and Purcell factor. Journal of Optics, 2011, 13(7): 075001-1–075001-5

    Google Scholar 

  78. Xu P, Huang Q, Shi Y. Silicon hybrid plasmonic Bragg grating reflectors and high Q-factor micro-cavities. Optics Communications, 2013, 289: 81–84

    Google Scholar 

  79. Yang X, Ishikawa A, Yin X, Zhang X. Hybrid photonic-plasmonic crystal nanocavities. ACS Nano, 2011, 5(4): 2831–2838

    Google Scholar 

  80. Yu P, Qi B, Xu C, Hu T, Jiang X Q, Wang M H, Yang J Y. An improved surface-plasmonic nanobeam cavity for higher Q and smaller V. Chinese Science Bulletin, 2012, 57(25): 3371–3374

    Google Scholar 

  81. Alam M, Aitchsion J S, Mojahedi M. Compact hybrid TM-pass polarizer for silicon-on-insulator platform. Applied Optics, 2011, 50(15): 2294–2298

    Google Scholar 

  82. Guan X W, Xu P P, Shi Y C, Dai D X. Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating. In: Proceedings of Asia Communications and Photonics Conference. Bei**g, 2013, ATh4A

    Google Scholar 

  83. Guan X W, Xu P P, Shi Y C, Dai D X. Ultra-compact and ultrabroadband TE-pass polarizer with a silicon hybrid plasmonic waveguide. In: Proceedings of SPIE Photonics West. San Francisco, 2014, 8988

    Google Scholar 

  84. Alam M Z, Aitchison J S, Mojahedi M. Compact and silicon-oninsulator-compatible hybrid plasmonic TE-pass polarizer. Optics Letters, 2012, 37(1): 55–57

    Google Scholar 

  85. Huang Y, Zhu S, Zhang H, Liow T Y, Lo G Q. CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform. Optics Express, 2013, 21(10): 12790–12796

    Google Scholar 

  86. Sun X, Alam M Z, Wagner S J, Aitchison J S, Mojahedi M. Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform. Optics Letters, 2012, 37(23): 4814–4816

    Google Scholar 

  87. Chee J, Zhu S, Lo G Q. CMOS compatible polarization splitter using hybrid plasmonic waveguide. Optics Express, 2012, 20(23): 25345–25355

    Google Scholar 

  88. Gao L F, Hu F F, Wang X J, Tang L X, Zhou Z P. Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling. Applied Physics. B, Lasers and Optics, 2013, 113(2): 199–203

    Google Scholar 

  89. Guan X W, Wu H, Shi Y C, Wosinski L, Dai D X. Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire. Optics Letters, 2013, 38(16): 3005–3008

    Google Scholar 

  90. Lou F, Dai D X, Wosinski L. Ultracompact polarization beam splitter based on a dielectric-hybrid plasmonic-dielectric coupler. Optics Letters, 2012, 37(16): 3372–3374

    Google Scholar 

  91. Sun B, Chen M Y, Zhang Y K, Zhou J. An ultracompact hybrid plasmonic waveguide polarization beam splitter. Applied Physics B, Lasers and Optics, 2013, 113(2): 179–183

    Google Scholar 

  92. Guan XW, Wu H, Shi Y C, Dai D X. Extremely small polarization beam splitter based on a multimode interference coupler with a silicon hybrid plasmonic waveguide. Optics Letters, 2014, 39(2): 259–262

    Google Scholar 

  93. Caspers J N, Alam M Z, Mojahedi M. Compact hybrid plasmonic polarization rotator. Optics Letters, 2012, 37(22): 4615–4617

    Google Scholar 

  94. Caspers J N, Aitchison J S, Mojahedi M. Experimental demonstration of an integrated hybrid plasmonic polarization rotator. Optics Letters, 2013, 38(20): 4054–4057

    Google Scholar 

  95. Gao L, Huo Y, Harris J S, Zhou Z. Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide. IEEE Photonics Technology Letters, 2013, 25(21): 2081–2084

    Google Scholar 

  96. Song Y, Wang J, Li Q, Yan M, Qiu M. Broadband coupler between silicon waveguide and hybrid plasmonic waveguide. Optics Express, 2010, 18(12): 13173–13179

    Google Scholar 

  97. Zhu S, Lo G, Kwong D. Analysis of ultracompact silicon electrooptic modulator based on Cu-insulator-Si hybrid plasmonic donut resonator. In: Proceedings of Photonics Global Conference. Singapore, 2012

    Google Scholar 

  98. Ooi K J A, Bai P, Chu H, Ang L K. Vandium dioxide active plasmonics. In: Proceedings of Photonics Global Conference. Singapore, 2012

    Google Scholar 

  99. Sun XM, Zhou L J, Li X W, Hong Z H, Liu S, Chen J P. Miniature intensity modulator based on a silicon-polymer hybrid plasmonic waveguide. In: Proceedings of SPIE Photonics and Optoelectronics Meetings. Shanghai, 2011, 8333

    Google Scholar 

  100. Lou F, Dai D X, Thylen L, Wosinski L. Design and analysis of ultra-compact EO polymer modulators based on hybrid plasmonic microring resonators. Optics Express, 2013, 21(17): 20041–20051

    Google Scholar 

  101. Dalton L R, Robinson B, Jen A, Ried P, Eichinger B, Sullivan P, Akelaitis A, Bale D, Haller M, Luo J, Liu S, Liao Y, Firestone K, Bhatambrekar N, Bhattacharjee S, Sinness J, Hammond S, Buker N, Snoeberger R, Lingwood M, Rommel H, Amend J, Jang S H, Chen A, Steier W. Electro-optic coefficients of 500 pm/V and beyond for organic materials. In: Proceeding of SPIE 5935, Linear and Nonlinear Optics of Organic Materials V. 2005

    Google Scholar 

  102. Sun X M, Zhou L J, Li X W, Hong Z H, Chen J P. Design and analysis of a phase modulator based on a metal-polymer-silicon hybrid plasmonic waveguide. Applied Optics, 2011, 50(20): 3428–3434

    Google Scholar 

  103. Zhou G, Wang T, Su Y. Broadband optical parametric amplifier in ultra-compact plasmonic waveguide. In: Proceedings of Asia Communications and Photonics Conference. Shanghai, 2010, 79870A

  104. Bahrami F, Alam M Z, Aitchison J S, Mojahedi M. Dual polarization measurements in the hybrid plasmonic biosensors. Plasmonics, 2013, 8(2): 465–473

    Google Scholar 

  105. Kwon M S. Theoretical investigation of an interferometer-type plasmonic biosensor using a metal-insulator-silicon waveguide. Plasmonics, 2010, 5(4): 347–354

    Google Scholar 

  106. Zhou L J, Sun X M, Li X W, Chen J P. Miniature microring resonator sensor based on a hybrid plasmonic waveguide. Sensors (Basel, Switzerland), 2011, 11(7): 6856–6867

    Google Scholar 

  107. Zhang L, Shu Y. Modified hybrid plasmonic waveguides as tunable optical tweezers. Chinese Physics Letters, 2013, 30(3): 034208-1–034208-4

    Google Scholar 

  108. Yang X, Liu Y, Oulton R F, Yin X, Zhang X. Optical forces in hybrid plasmonic waveguides. Nano Letters, 2011, 11(2): 321–328

    Google Scholar 

  109. Guan X, Wu H, Dai D. Silicon hybrid surface plasmonic nanooptics-waveguide and integrated devices. Chinese Journal of Optics and Applied Optics, 2014, 7(2): 181–196

    Google Scholar 

  110. Liang D, Fiorentino M, Okumura T, Chang H H, Spencer D T, Kuo Y H, Fang A W, Dai D, Beausoleil R G, Bowers J E. Electricallypumped compact hybrid silicon microring lasers for optical interconnects. Optics Express, 2009, 17(22): 20355–20364

    Google Scholar 

  111. Dong P, Feng N N, Feng D, Qian W, Liang H, Lee D C, Luff B J, Banwell T, Agarwal A, Toliver P, Menendez R, Woodward T K, Asghari M. GHz-bandwidth optical filters based on high-order silicon ring resonators. Optics Express, 2010, 18(23): 23784–23789

    Google Scholar 

  112. Xu Q, Schmidt B, Pradhan S, Lipson M. Micrometre-scale silicon electro-optic modulator. Nature, 2005, 435(7040): 325–327

    Google Scholar 

  113. Wang J W, Dai D X. Highly sensitive Si nanowire-based optical sensor using a Mach-Zehnder interferometer coupled microring. Optics Letters, 2010, 35(24): 4229–4231

    Google Scholar 

  114. Dekker R, Usechak N, Forst M, Driessen A. Ultrafast nonlinear alloptical processes in silicon-on-insulator waveguides. Journal of Physics D, 2007, 40(14): R249–R271

    Google Scholar 

  115. Dai D X, Liu L, Gao S M, Xu D X, He S L. Polarization management for silicon photonic integrated circuits. Laser Photonics Review, 2013, 7(3): 303–328

    Google Scholar 

  116. Dai D, Tang Y, Bowers J E. Mode conversion in tapered submicron silicon ridge optical waveguides. Optics Express, 2012, 20(12): 13425–13439

    Google Scholar 

  117. Wang Z W, Dai D X. Ultrasmall Si-nanowire based polarization rotator. Journal of the Optical Society of America. B, Optical Physics, 2008, 25(5): 747–753

    Google Scholar 

  118. Cardenas J, Poitras C B, Robinson J T, Preston K, Chen L, Lipson M. Low loss etchless silicon photonic waveguides. Optics Express, 2009, 17(6): 4752–4757

    Google Scholar 

  119. Mote R G, Chu H S, Bai P, Li E P. Compact and efficient coupler to interface hybrid dielectric-loaded plasmonic waveguide with silicon photonic slab waveguide. Optics Communications, 2012, 285(18): 3709–3713

    Google Scholar 

  120. Choi S E, Kim J T. Vertical coupling characteristics between hybrid plasmonic slot waveguide and Si waveguide. Optics Communications, 2012, 285(18): 3735–3739

    Google Scholar 

  121. Shi P, Zhou G, Chau F S. Enhanced coupling efficiency between dielectric and hybrid plasmonic waveguides. Journal of the Optical Society of America. B, Optical Physics, 2013, 30(6): 1426–1431

    Google Scholar 

  122. De Leon I, Berini P. Amplification of long-range surface plasmons by a dipolar gain medium. Nature Photonics, 2010, 4(6): 382–387

    Google Scholar 

  123. Noginov M A, Zhu G, Mayy M, Ritzo B A, Noginova N, Podolskiy V A. Stimulated emission of surface plasmon polaritons. Physical Review Letters, 2008, 101(22): 226806

    Google Scholar 

  124. Ambati M, Nam S H, Ulin-Avila E, Genov D A, Bartal G, Zhang X. Observation of stimulated emission of surface plasmon polaritons. Nano Letters, 2008, 8(11): 3998–4001

    Google Scholar 

  125. van den Hoven G N, Koper R J I M, Polman A, van Dam C, van Uffelen JWM, Smit M K. Net optical gain at 1.53 μm in Er-doped Al2O3 waveguides on silicon. Applied Physics Letters, 1996, 68(14): 1886–1888

    Google Scholar 

  126. Grandidier J, des Francs G C, Massenot S, Bouhelier A, Markey L, Weeber J C, Finot C, Dereux A. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Letters, 2009, 9(8): 2935–2939

    Google Scholar 

  127. Nezhad M, Tetz K, Fainman Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Optics Express, 2004, 12(17): 4072–4079

    Google Scholar 

  128. Plum E, Fedotov V A, Kuo P, Tsai D P, Zheludev N I. Towards the lasing spaser: controlling metamaterial optical response with semiconductor quantum dots. Optics Express, 2009, 17(10): 8548–8551

    Google Scholar 

  129. Bolger P M, Dickson W, Krasavin A V, Liebscher L, Hickey S G, Skryabin D V, Zayats A V. Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length. Optics Letters, 2010, 35(8): 1197–1199

    Google Scholar 

  130. Seidel J, Grafström S, Eng L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Physical Review Letters, 2005, 94(17): 177401

    Google Scholar 

  131. Radko I, Nielsen M G, Albrektsen O, Bozhevolnyi S I. Stimulated emission of surface plasmon polaritons by lead-sulphide quantum dots at near infra-red wavelengths. Optics Express, 2010, 18(18): 18633–18641

    Google Scholar 

  132. Pavesi L, Dal Negro L, Mazzoleni C, Franzò G, Priolo F. Optical gain in silicon nanocrystals. Nature, 2000, 408(6811): 440–444

    Google Scholar 

  133. Gather MC, Meerholz K, Danz N, Leosson K. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photonics, 2010, 4(7): 457–461

    Google Scholar 

  134. Rao R J, Tang T T. Study of an active hybrid gap surface plasmon polariton waveguide with nanoscale confinement size and low compensation gain. Journal of Physics. D, Applied Physics, 2012, 45(24): 245101

    Google Scholar 

  135. Zhang J, Cai L, Bai W L, Xu Y, Song G F. Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement. Optics Letters, 2011, 36(12): 2312–2314

    Google Scholar 

  136. Zhu N, Mei T. Study of an SPP mode with gain medium based on a hybrid plasmonic structure. In: Proceedings of Asia Communications and Photonics Conference (ACP). Guangzhou, 2012, AF4A.17

    Google Scholar 

  137. Gao L F, Tang L X, Hu F F, Guo RM, Wang X J, Zhou Z P. Active metal strip hybrid plasmonic waveguide with low critical material gain. Optics Express, 2012, 20(10): 11487–11495

    Google Scholar 

  138. Ma R M, Oulton R F, Sorger V J, Bartal G, Zhang X. Roomtemperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Materials, 2011, 10(2): 110–113

    Google Scholar 

  139. Zhu S, Lo G Q, Kwong D L. Theoretical investigation of ultracompact and athermal Si electro-optic modulator based on Cu-TiO2-Si hybrid plasmonic donut resonator. Optics Express, 2013, 21(10): 12699–12712

    Google Scholar 

  140. Zhou G, Wang T, Su Y. Broadband optical parametric amplifier in ultra-compact plasmonic waveguide. In: Proceedings of Asia Communications and Photonics Conference. Shanghai, 2010, 79870A

  141. Zhang J, Cassan E, Zhang X. Efficient second harmonic generation from mid-infrared to near-infrared regions in silicon-organic hybrid plasmonic waveguides with small fabrication-error sensitivity and a large bandwidth. Optics Letters, 2013, 38(12): 2089–2091

    Google Scholar 

  142. Aldawsari S, West B R. Hybrid plasmonic waveguides for nonlinear applications. In: Proceedings of Photonics Global Conference. Singapore, 2012

    Google Scholar 

  143. Pitilakis A, Kriezis E E. Highly nonlinear hybrid silicon-plasmonic waveguides: analysis and optimization. Journal of the Optical Society of America. B, Optical Physics, 2013, 30(7): 1954–1965

    Google Scholar 

  144. Perron D, Wu M, Horvath C, Bachman D, Van V. All-plasmonic switching based on thermal nonlinearity in a polymer plasmonic microring resonator. Optics Letters, 2011, 36(14): 2731–2733

    Google Scholar 

  145. Lu C C, Hu X Y, Yue S, Fu Y L, Yang H, Gong Q H. Ferroelectric hybrid plasmonic waveguide for all-optical logic gate applications. Plasmonics, 2013, 8(2): 749–754

    Google Scholar 

  146. Li F, Xu M, Hu X F, Wu J Y, Wang T, Su Y K. Monolithic siliconbased 16-QAM modulator using two plasmonic phase shifters. Optics Communications, 2013, 286: 166–170

    Google Scholar 

  147. Luo Y, Chamanzar M, Eftekhar A A, Adibi A. Dual structures for ultra-compact on-chip plasmonic light concentration on silicon platforms. In: Proceedings of IEEE Photonics Conference, Burlingame, 2012, 682–683

    Google Scholar 

  148. Zhu N, Mei T. Focusing and demultiplexing of an in-plane hybrid plasmonic mode based on the planar concave grating. Optics Communications, 2013, 298–299: 120–124

    Google Scholar 

  149. Ketzaki D A, Tsilipakos O, Yioultsis T V, Kriezis E E. Electromagnetically induced transparency with hybrid siliconplasmonic traveling-wave resonators. Journal of Applied Physics, 2013, 114(11): 11317-1–11317-8

    Google Scholar 

  150. Zhu N, Mei T. Analysis of an ultra-compact wavelength filter based on hybrid plasmonic waveguide structure. Optics Letters, 2012, 37(10): 1751–1753

    Google Scholar 

  151. Akimov Y A, Chu H S. Plasmon-plasmon interaction: controlling light at nanoscale. Nanotechnology, 2012, 23(44): 444004

    Google Scholar 

  152. Hu Y W, Li B B, Liu Y X, **. Optics Communications, 2013, 291: 380–385

    Google Scholar 

  153. Lanzillotti-Kimura N D, Zentgraf T, Zhang X. Control of plasmon dynamics in coupled plasmonic hybrid mode microcavities. Physical Review B: Condensed Matter and Materials Physics, 2012, 86(4): 045309-1–045309-6

    Google Scholar 

  154. Zhang T, Chen L, Li X. Reduction of propagation loss by introducing hybrid plasmonic model in graded-grating based “trapped rainbow” system. Optics Communications, 2013, 301–302: 116–120

    Google Scholar 

  155. Zhu S, Lo G Q, Kwong D L. Theoretical investigation of silicide Schottky barrier detector integrated in horizontal metal-insulatorsilicon-insulator-metal nanoplasmonic slot waveguide. Optics Express, 2011, 19(17): 15843–15854

    Google Scholar 

  156. He X Y, Wang Q J, Yu S F. Numerical study of gain-assisted terahertz hybrid plasmonic waveguide. Plasmonics, 2012, 7(3): 571–577

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoxin Dai.

Additional information

**aowei Guan received the B.Eng. degree from the Department of Electronic Science and Engineering, Southeast University, Nan**g, China, in 2009. He is currently working toward the Ph.D. degree in the Department of Optical Engineering, Zhejiang University, Hangzhou, China. His research interests include the design and fabrication of silicon-based nanophotonic/nanoplasmonic waveguides and devices.

Hao Wu received the B.Eng. degree from the Department of Optical Engineering, Zhejiang University, Hangzhou, China, in 2013. He is currently working toward the Ph.D. degree in the same department of Zhejiang University. His research interests include silicon nanophotonic integrated waveguides and the applications.

Daoxin Dai received the B. Eng. degree from Department of Optical Engineering, Zhejiang University (China), and the Ph.D. degree from Royal Institute of Technology (Sweden), in 2000 and 2005, respectively. He joined Zhejiang University as an assistant professor in 2005 and became an associate professor in 2007, a full professor in 2011. He visited the Chinese University of Hong Kong in 2005, and Inha University (Korea) in 2007. Dr. Dai worked at the University of California, Santa Barbara as a visiting scholar from the end of 2008 until 2011. His current research interests include silicon nanophotonics for optical interconnections and optical sensing. He has published about 110 refereed international journals papers (including 6 invited review papers), and holds 9 patents. Dr. Dai has been invited to give more than 10 invited talks and served as the program committee member or session chair for some top international conferences. He is serving as the Associate Editor of the Journals of “Optical and Quantum Electronics” and “Photonics Research”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guan, X., Wu, H. & Dai, D. Silicon hybrid nanoplasmonics for ultra-dense photonic integration. Front. Optoelectron. 7, 300–319 (2014). https://doi.org/10.1007/s12200-014-0435-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12200-014-0435-1

Keywords

Navigation