Aluminum Toxicity Tolerance in Food Legumes: Mechanisms, Screening, and Inheritance

  • Chapter
  • First Online:
Legumes: Physiology and Molecular Biology of Abiotic Stress Tolerance

Abstract

Legumes are a vital food source next to cereals. Their productivity is restricted in acidic soils as most of them are sensitive to aluminum (Al) stress. Al can quickly inhibit cell division, disrupt cell structure, diminish water and nutrient uptake, and hinder root elongation in food legumes. An increase in rhizospheric pH, Al avoidance, and shift of nutrient element circulation pay to Al tolerance in food legumes. Also, exudation of organic acids and induction of antioxidant activities portray a significant part in Al stress tolerance of leguminous species. Molecular map** of Al-tolerant genes helps in designing breeding strategies to improve crop production on Al toxic soils. This chapter focuses on various aspects of Al toxicity tolerance covering mechanisms, screening techniques, genetic control, map**, and molecular advancements in legumes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abate E, Hussien S, Laing M, Mengistu F (2013) Aluminium toxicity tolerance in cereals: mechanisms, genetic control and breeding methods. Afr J Agric Res 8(9):711–722

    Google Scholar 

  • Aebi H (1984) Catalase in vitro. In: Methods in enzymology, vol 105. Academic, pp 121–126

    Google Scholar 

  • Ahlrichs JL, Karr MC, Baligar VC, Wright RJ (1990) Rapid bioassay of aluminum toxicity in soil. Plant Soil 122(2):279–285

    Article  CAS  Google Scholar 

  • An Y, Wang S, Zhou P (2020) Effects of abscisic acid on alleviation of aluminum toxicity in alfalfa. International Grassland Congress Proceedings

    Google Scholar 

  • Arunakumara KKIU, Walpola BC, Yoon M-H (2013) Aluminum toxicity and tolerance mechanism in cereals and legumes—a review. J Korean Soc Appl Biol Chem 56(1):1–9

    Article  Google Scholar 

  • Awasthi JP, Saha B, Regon P, Sahoo S, Chowra U, Pradhan A, Roy A, Panda SK (2017) Morpho-physiological analysis of tolerance to aluminum toxicity in rice varieties of North East India. PLoS One 12(4):e0176357

    Article  Google Scholar 

  • Baier AC, Somers DJ, Gusiafson JP (1995) Aluminium tolerance in wheat: correlating hydroponic evaluations with field and soil performances. Plant Breed 114(4):291–296

    Article  CAS  Google Scholar 

  • Bhalerao S, Prabhu D (2013) Aluminium toxicity in plants—a review. J Appl Chem 2(May):447–474

    CAS  Google Scholar 

  • Bianchi Hall CM, Carter TE, Bailey MA, Mian MAR, Rufty TW, Ashley DA, Boerma HR, Arellano C, Hussey RS, Parrott WA (2000) Aluminum tolerance associated with quantitative trait loci derived from soybean PI 416937 in hydroponics. Crop Sci 40(2):538–545

    Article  CAS  Google Scholar 

  • Bojórquez-Quintal E, Escalante-Magaña C, Echevarría-Machado I, Martínez-Estévez M (2017) Aluminum, a friend or foe of higher plants in acid soils. Front Plant Sci 8:1767

    Article  Google Scholar 

  • Brigham LA, Hawes MC, Miyasaka SC (2001) Avoidance of aluminium toxicity: role of root border cells. In: Plant nutrition. Springer, pp 452–453

    Chapter  Google Scholar 

  • Cai M, Wang N, **ng C, Wang F, Wu K, Du X (2013) Immobilization of aluminum with mucilage secreted by root cap and root border cells is related to aluminum resistance in Glycine max L. Environ Sci Pollut Res 20(12):8924–8933

    Article  CAS  Google Scholar 

  • Cai Z, Cheng Y, ** QTLs and the validation of candidate genes for aluminum tolerance using a high-density genetic map. Plant Soil 444(1):119–137

    Article  CAS  Google Scholar 

  • Chen X-Y, Kim JY (2009) Callose synthesis in higher plants. Plant Signal Behav 4(6):489–492

    Article  CAS  Google Scholar 

  • Choudhary AK, Singh D (2011) Screening of pigeonpea genotypes for nutrient uptake efficiency under aluminium toxicity. Physiol Mol Biol Plants 17(2):145–152

    Article  CAS  Google Scholar 

  • Choudhary AK, Singh D, Iquebal MA (2011a) Selection of pigeonpea genotypes for tolerance to aluminium toxicity. Plant Breed 130(4):492–495

    Article  CAS  Google Scholar 

  • Choudhary AK, Singh D, Kumar J (2011b) A comparative study of screening methods for tolerance to aluminum toxicity in pigeonpea [‘Cajanus cajan’ (L.) Millspaugh]. Aust J Crop Sci 5(11):1419–1426

    CAS  Google Scholar 

  • Chowra U, Yanase E, Koyama H, Panda SK (2017) Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper. Protoplasma 254(1):293–302

    Article  CAS  Google Scholar 

  • de Freitas PAF, de Carvalho HH, Costa JH, Miranda RS, Saraiva KDC, de Oliveira FDB, Coelho DG, Prisco JT, Gomes-Filho E (2019) Salt acclimation in sorghum plants by exogenous proline: physiological and biochemical changes and regulation of proline metabolism. Plant Cell Rep 38(3):403–416

    Article  Google Scholar 

  • Delhaize E, Ryan PR (1995) Aluminum toxicity and tolerance in plants. Plant Physiol 107(2):315

    Article  CAS  Google Scholar 

  • Delhaize E, Gruber BD, Ryan PR (2007) The roles of organic anion permeases in aluminium resistance and mineral nutrition. FEBS Lett 581(12):2255–2262

    Article  CAS  Google Scholar 

  • Dessureaux L (1969) Effect of aluminium on alfalfa seedlings. Plant Soil 30(1):93–98

    Article  CAS  Google Scholar 

  • Dhindsa RS, Plumb-Dhindsa P, Thorpe TA (1981) Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. J Exp Bot 32(1):93–101

    Article  CAS  Google Scholar 

  • Dong D, Peng X, Yan X (2004) Organic acid exudation induced by phosphorus deficiency and/or aluminium toxicity in two contrasting soybean genotypes. Physiol Plant 122(2):190–199

    Article  CAS  Google Scholar 

  • Eticha D, Zahn M, Bremer M, Yang Z, Rangel AF, Rao IM, Horst WJ (2010) Transcriptomic analysis reveals differential gene expression in response to aluminium in common bean (Phaseolus vulgaris) genotypes. Ann Bot 105(7):1119–1128

    Article  CAS  Google Scholar 

  • Foy CD (1984) Physiological effects of hydrogen, aluminum, and manganese toxicities in acid soil. Soil Acid Liming 12:57–97

    CAS  Google Scholar 

  • Foy CD, Gerloff GC, Gabelman WH (1973) Differential effects of aluminum on the vegetative growth of tomato cultivars in acid soil and nutrient solutions. J Am Soc Hortic Sci 98(5)

    Google Scholar 

  • Gao Z, Dong B, Cao H, He H, Yang Q, Meng D, Fu Y (2020) Time series RNA-seq in pigeonpea revealed the core genes in metabolic pathways under aluminum stress. Genes 11(4):380

    Article  CAS  Google Scholar 

  • Giaveno CD, Miranda Filho JB (2000) Rapid screening for aluminum tolerance in maize (Zea mays L.). Genet Mol Biol 23(4):847–850. https://doi.org/10.1590/S1415-47572000000400024

    Article  Google Scholar 

  • Grauer UE, Horst WJ (1990) Effect of pH and nitrogen source on aluminium tolerance of rye (Secale cereale L.) and yellow lupin (Lupinus luteus L.). Plant Soil 127(1):13–21

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts: I. Kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125(1):189–198

    Article  CAS  Google Scholar 

  • Hede AR, Skovmand B, Ribaut J, González de León D, Stølen O (2002) Evaluation of aluminium tolerance in a spring rye collection by hydroponic screening. Plant Breed 121(3):241–248

    Article  CAS  Google Scholar 

  • Hoffer GN, Carr RH (1923) Accumulation of aluminum and iron compounds in corn plants and its probable relation to root rots. J Agric Res 3(10):323–331

    Google Scholar 

  • Horst WJ, Wagner A, Marschner H (1982) Mucilage protects root meristems from aluminium injury. Z Pflanzenphysiol 105(5):435–444

    Article  CAS  Google Scholar 

  • Horst WJ, Püschel AK, Schmohl N (1997) Induction of callose formation is a sensitive marker for genotypic aluminium sensitivity in maize. Plant Soil 192(1):23–30

    Article  CAS  Google Scholar 

  • Hossain M, Zhou M, Mendham N (2005) A reliable screening system for aluminium tolerance in barley cultivars. Aust J Agric Res 56(5):475–482

    Article  CAS  Google Scholar 

  • Huang SC, Chu SJ, Guo Y-M, Ji Y-J, Hu D-Q, Cheng J, Lu G-H, Yang R-W, Tang C-Y, Qi J-L (2017) Novel mechanisms for organic acid-mediated aluminium tolerance in roots and leaves of two contrasting soybean genotypes. AoB Plants 9(6):plx064

    Article  Google Scholar 

  • Hungria M, Vargas MA (2000) Environmental factors affecting N2 fixation in grain legumes in the tropics, with an emphasis on Brazil. Field Crop Res 65(2–3):151–164

    Article  Google Scholar 

  • Jaiswal SK, Naamala J, Dakora FD (2018) Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biol Fertil Soils 54(3):309–318

    Article  CAS  Google Scholar 

  • Jung JKHM, McCouch SRM (2013) Getting to the roots of it: genetic and hormonal control of root architecture. Front Plant Sci 4:186

    Article  CAS  Google Scholar 

  • Khu DM, Reyno R, Han Y, Zhao PX, Bouton JH, Brummer EC, Monteros MJ (2013) Identification of aluminum tolerance quantitative trait loci in tetraploid alfalfa. Crop Sci 53(1):148–163

    Article  CAS  Google Scholar 

  • Kichigina NE, Puhalsky JV, Shaposhnikov AI, Azarova TS, Makarova NM, Loskutov SI, Safronova VI, Tikhonovich IA, Vishnyakova MA, Semenova EV (2017) Aluminum exclusion from root zone and maintenance of nutrient uptake are principal mechanisms of Al tolerance in Pisum sativum L. Physiol Mol Biol Plants 23(4):851–863

    Article  CAS  Google Scholar 

  • Kinraide TB (1997) Reconsidering the rhizotoxicity of hydroxyl, sulphate, and fluoride complexes of aluminium. J Exp Bot 48(5):1115–1124

    Article  CAS  Google Scholar 

  • Klimashevskii EL, Markova YA, Seregina ML, Grodzinskii DM, Kozarenko TD (1970) Specifics of the physiological activity of pea plants in connection with unequal resistance of different varieties to mobile aluminum. Soviet Plant Physiol 17(3):372–378

    Google Scholar 

  • Kochian LV (1995) Cellular mechanisms of aluminum toxicity and resistance in plants. Annu Rev Plant Biol 46(1):237–260

    Article  CAS  Google Scholar 

  • Liao H, Wan H, Shaff J, Wang X, Yan X, Kochian LV (2006) Phosphorus and aluminum interactions in soybean in relation to aluminum tolerance. Exudation of specific organic acids. from different regions of the intact root system. Plant Physiol 141(2):674–684

    Article  CAS  Google Scholar 

  • Ma JF, Zheng SJ, Li XF, Takeda K, Matsumoto H (1997) A rapid hydroponic screening for aluminium tolerance in barley. Plant Soil 191(1):133–137

    Article  CAS  Google Scholar 

  • Maphosa Y, Jideani VA (2017) The role of legumes in human nutrition. In: Functional food-improve health through adequate food, vol 1. IntechOpen, p 13

    Google Scholar 

  • Massot N, Llugany M, Poschenrieder C, Barceló J (1999) Callose production as indicator of aluminum toxicity in bean cultivars. J Plant Nutr 22(1):1–10

    Article  CAS  Google Scholar 

  • Matsumoto H (1991) Biochemical mechanism of the toxicity of aluminium and the sequestration of aluminium in plant cells. In: Plant-soil interactions at low pH. Springer, pp 825–838

    Chapter  Google Scholar 

  • Mendes P, Farina MPW, Channon P (1984) Assessment of aluminium tolerance in maize using a rapid screening procedure. South Afr J Plant Soil 1(3):83–86

    Article  CAS  Google Scholar 

  • Miftahudin M, Nurlaela N, Juliarni J (2007) Uptake and distribution of aluminum in root apices of two rice varieties under aluminum stress. HAYATI J Biosci 14(3):110

    Article  Google Scholar 

  • Miyasaka SC, Buta JG, Howell RK, Foy CD (1991) Mechanism of aluminium tolerance in snapbeans: root exudation of citric acid. Plant Physiol 96(3):737–743

    Article  CAS  Google Scholar 

  • Narasimhamoorthy B, Bouton JH, Olsen KM, Sledge MK (2007) Quantitative trait loci and candidate gene map** of aluminum tolerance in diploid alfalfa. Theor Appl Genet 114(5):901–913

    Article  CAS  Google Scholar 

  • Narayanan A, Sayamala R (1989) Response of pigeon pea (Cajanus cajan L.) genotypes to aluminium toxicity. Indian J Plant Physiol 32:17–24

    Google Scholar 

  • Ownby JD (1993) Mechanisms of reaction of hematoxylin with aluminium treated wheat roots. Physiol Plant 87(3):371–380

    Article  CAS  Google Scholar 

  • Paez-Garcia A, Motes CM, Scheible W-R, Chen R, Blancaflor EB, Monteros MJ (2015) Root traits and phenoty** strategies for plant improvement. Plants 4(2):334–355

    Article  Google Scholar 

  • Panda SK, Chaudhury I, Khan MH (2003) Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biol Plant 46(2):289–294

    Article  CAS  Google Scholar 

  • Panda SK, Baluška F, Matsumoto H (2009) Aluminum stress signaling in plants. Plant Signal Behav 4(7):592–597

    Article  CAS  Google Scholar 

  • Polle EKCF, Konzak CF, Kattrick JA (1978) Visual detection of aluminum tolerance levels in wheat by hematoxylin staining of seedling roots 1. Crop Sci 18(5):823–827

    Article  CAS  Google Scholar 

  • Qi B, Korir P, Zhao T, Yu D, Chen S, Gai J (2008) Map** quantitative trait loci associated with aluminum toxin tolerance in NJRIKY recombinant inbred line population of soybean (Glycine max). J Integr Plant Biol 50(9):1089–1095

    Article  CAS  Google Scholar 

  • Rai R (1991) Effects of soil acidity factors on interaction of chickpea (Cicer arietinum L.) genotypes and Rhizobium strains: symbiotic N-fixation, grain quality and grain yield in acid soils. In: Plant-soil interactions at low pH. Springer, pp 619–631

    Chapter  Google Scholar 

  • Rao IM, Miles JW, Beebe SE, Horst WJ (2016) Root adaptations to soils with low fertility and aluminium toxicity. Ann Bot 118(4):593–605

    Article  CAS  Google Scholar 

  • Rengel Z (1992) Role of calcium in aluminium toxicity. New Phytol 121(4):499–513

    Article  CAS  Google Scholar 

  • Ribeiro C, Cambraia J, Peixoto PHP, Fonseca Júnior ÉMD (2012) Antioxidant system response induced by aluminum in two rice cultivars. Braz J Plant Physiol 24(2):107–116

    Article  CAS  Google Scholar 

  • Rout G, Samantaray S, Das P (2001) Aluminium toxicity in plants: a review. Agronomie 21(1):3–21

    Article  Google Scholar 

  • Roy B, Bhadra S (2013) Hematoxylin staining of seedling roots is a potential phenotypic index for screening of aluminium tolerance in rice (Oryza sativa L.). Indian J Genet Plant Breed 73(2):194–198

    Article  CAS  Google Scholar 

  • Sagisaka S (1976) The occurrence of peroxide in perennial plant of Populas gelrica. Plant Physiol 57:308–309

    Article  CAS  Google Scholar 

  • Sapra VT, Mebrahtu T, Mugwira LM (1982) Soybean germplasm and cultivar aluminum tolerance in nutrient solution and Bladen clay loam soil 1. Agron J 74(4):687–690

    Article  Google Scholar 

  • Scheffer-Basso SM, Prior BC (2015) Aluminum toxicity in roots of legume seedlings assessed by topological analysis. Acta Scientiarum Agronomy 37:61–68

    Article  CAS  Google Scholar 

  • Shamsi IH, Wei K, Zhang GP, Jilani GH, Hassan MJ (2008) Interactive effects of cadmium and aluminium on growth and antioxidative enzymes in soybean. Biol Plant 52(1):165–169

    Article  CAS  Google Scholar 

  • Silva S (2012) Aluminium toxicity targets in plants. J Bot 2012:219462., 8 pages. https://doi.org/10.1155/2012/219462

    Article  CAS  Google Scholar 

  • Singh D, Choudhary AK (2010) Inheritance pattern of aluminum tolerance in pea. Plant Breed 129(6):688–692

    Article  CAS  Google Scholar 

  • Singh D, Rai AK, Sureja AK, Bhardwaj R (2007) Hematoxylin staining: a rapid method for assessment of aluminum tolerance in pea genotypes. In: Paper presented in second Indian Horticulture Congress held in ICAR Research Complex Barapani, Meghalaya, India from 18–21 April, 2007

    Google Scholar 

  • Singh D, Raje RS, Choudhary AK (2011) Genetic control of aluminium tolerance in pigeonpea (Cajanus cajan L.). Crop Pasture Sci 62(9):761–764

    Article  CAS  Google Scholar 

  • Singh D, Dikshit HK, Singh R (2012) Variation of aluminium tolerance in lentil (Lens culinaris Medik.). Plant Breed 131(6):751–761

    Article  CAS  Google Scholar 

  • Singh D, Pal M, Singh R, Singh CK, Chaturvedi AK (2015) Physiological and biochemical characteristics of Vigna species for Al stress tolerance. Acta Physiol Plant 37(4):1–13

    Article  Google Scholar 

  • Singh D, Pal M, Singh CK, Taunk J, Jain P, Chaturvedi AK, Maurya S, Karwa S, Singh R, Tomar RSS (2016) Molecular scanning and morpho-physiological dissection of component mechanism in Lens species in response to aluminium stress. PLoS One 11(7):e0160073

    Article  Google Scholar 

  • Singh D, Singh CK, Taunk J, Tomar RSS, Chaturvedi AK, Gaikwad K, Pal M (2017) Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 18(1):1–20

    Article  Google Scholar 

  • Singh CK, Singh D, Tomar RSS, Karwa S, Upadhyaya KC, Pal M (2018) Molecular map** of aluminium resistance loci based on root re-growth and Al-induced fluorescent signals (callose accumulation) in lentil (Lens culinaris Medikus). Mol Biol Rep 45(6):2103–2113

    Article  CAS  Google Scholar 

  • Singh CK, Singh D, Sharma S, Chandra S, Taunk J, Konjengbam NS, Singh D, Kumar A, Upadhyaya KC, Pal M (2021a) Morpho-physiological characterization coupled with expressional accord of exclusion mechanism in wild and cultivated lentil under aluminum stress. Protoplasma 258(5):1029–1045

    Article  CAS  Google Scholar 

  • Singh CK, Singh D, Sharma S, Chandra S, Tomar RSS, Kumar A, Upadhyaya KC, Pal M (2021b) Mechanistic association of quantitative trait locus with malate secretion in lentil (Lens culinaris Medikus) seedlings under aluminium stress. Plants 10(8):1541

    Article  CAS  Google Scholar 

  • Singh CK, Singh D, Taunk J, Chaudhary P, Chandra S, Singh D, Singh MP, Konjengbam NS, Singh MP, Singh Sengar R (2021c) Comparative inter and intra species transcriptomics revealed key differential pathways associated with aluminium stress tolerance in lentil. Front Plant Sci 12:693630

    Article  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4(1):1–13

    Article  Google Scholar 

  • Stass A, Kotur Z, Horst WJ (2007) Effect of boron on the expression of aluminium toxicity in Phaseolus vulgaris. Physiol Plant 131(2):283–290

    CAS  Google Scholar 

  • Sujkowska-Rybkowska M, Borucki W (2014) Localization of hydrogen peroxide accumulation and diamine oxidase activity in pea root nodules under aluminum stress. Micron 57:13–22

    Article  CAS  Google Scholar 

  • Tesfaye M, Temple SJ, Allan DL, Vance CP, Samac DA (2001) Overexpression of malate dehydrogenase in transgenic alfalfa enhances organic acid synthesis and confers tolerance to aluminum. Plant Physiol 127(4):1836–1844

    Article  CAS  Google Scholar 

  • Tóth B, Moloi MJ, Szőke L, Danter M, Grusak MA (2021) Cultivar differences in the biochemical and physiological responses of common beans to aluminum stress. Plants 10(10):2097

    Article  Google Scholar 

  • Villagarcia MR, Carter TE, Rufty TW, Niewoehner AS, Jennette MW, Arrellano C (2001) Genotypic rankings for aluminum tolerance of soybean roots grown in hydroponics and sand culture. Crop Sci 41(5):1499–1507

    Article  Google Scholar 

  • Vishnyakova MA, Semenova EV, Kosareva IA, Kravchuk ND, Loskutov SI, Pukhalskii IV, Shaposhnikov AI, Sazanova AL, Belimov AA (2015) Method for rapid assessment of aluminum tolerance of pea (Pisum sativum L.). Сельскохозяйственная Биология 3(eng):353–360

    Google Scholar 

  • Wang J, Raman H, Zhang G, Mendham N, Zhou M (2006) Aluminium tolerance in barley (Hordeum vulgare L.): physiological mechanisms, genetics and screening methods. J Zhejiang Univ Sci B 7(10):769–787

    Article  CAS  Google Scholar 

  • Wang X, Cheng Y, Yang C, Yang C, Mu Y, ** for aluminum tolerance in RIL population of soybean (Glycine max L.) by RAD sequencing. PLoS One 14(10):e0223674

    Article  CAS  Google Scholar 

  • Wissemeier AH, Klotz F, Horst WJ (1987) Aluminium induced callose synthesis in roots of soybean (Glycine max L.). J Plant Physiol 129(5):487–492

    Article  CAS  Google Scholar 

  • Yamamoto Y, Kobayashi Y, Matsumoto H (2001) Lipid peroxidation is an early symptom triggered by aluminum, but not the primary cause of elongation inhibition in pea roots. Plant Physiol 125(1):199–208

    Article  CAS  Google Scholar 

  • Yang Y, Zhang H (1998) Boron amelioration of aluminum toxicity in mungbean seedlings. J Plant Nutr 21(5):1045–1054

    Article  CAS  Google Scholar 

  • Yang JL, Zheng SJ, He YF, Tang CX, Zhou GD (2005) Genotypic differences among plant species in response to aluminum stress. J Plant Nutr 28(6):949–961

    Article  CAS  Google Scholar 

  • Yang ZM, Sivaguru M, Horst WJ, Matsumoto H (2000) Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol Plant 110(1):72–77

    Article  CAS  Google Scholar 

  • Yang JL, Zhang LEI, Li YY, You JF, Wu P, Zheng SJ (2006) Citrate transporters play a critical role in aluminium-stimulated citrate efflux in rice bean (Vigna umbellata) roots. Ann Bot 97(4):579–584

    Article  CAS  Google Scholar 

  • Yang Q, Lin Y, ** L, Ren X, He C, Liu Q (2021) Responses of mineral nutrient contents and transport in red clover under aluminum stress. Legum Sci 3(4):e94

    Article  CAS  Google Scholar 

  • You J, Zhang H, Liu N, Gao L, Kong L, Yang Z (2011) Transcriptomic responses to aluminum stress in soybean roots. Genome 54(11):923–933

    Article  CAS  Google Scholar 

  • Zhang X, Weir B, Wei H, Deng Z, Zhang X, Zhang Y, Xu X, Zhao C, Berger JD, Vance W (2020) Genome-wide identification and transcriptional analyses of MATE transporter genes in root tips of wild Cicer spp. under aluminium stress. BioRxiv

    Google Scholar 

  • Zhou G, Delhaize E, Zhou M, Ryan PR (2011) Biotechnological solutions for enhancing the aluminium resistance of crop plants. Abiotic stress in plants—mechanisms and adaptations. InTechOpen, Brisbane, pp 119–142

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Taunk, J., Singh, C.K., Singh, D., Tomar, R.S.S., Singh, D., Pal, M. (2023). Aluminum Toxicity Tolerance in Food Legumes: Mechanisms, Screening, and Inheritance. In: Muthu Arjuna Samy, P., Ramasamy, A., Chinnusamy, V., Sunil Kumar, B. (eds) Legumes: Physiology and Molecular Biology of Abiotic Stress Tolerance. Springer, Singapore. https://doi.org/10.1007/978-981-19-5817-5_15

Download citation

Publish with us

Policies and ethics

Navigation