In Vitro Production of Alkaloids

  • Chapter
  • First Online:
Nutraceuticals Production from Plant Cell Factory

Abstract

Plants are considered as a potent source of a wide variety of bioactive molecules that can be used for the development of the various pharmaceutical drugs. Alkaloids are the important class of secondary metabolites, known to exhibit therapeutic properties including anti-tumor, anti-viral, anti-inflammatory, and anti-malarial activities. Alkaloids are able to prevent various degenerative diseases by binding with the oxidative reaction catalyst or free radicals. The commercial extraction of alkaloids is reported from some major families like Apocynaceae, Papaveraceae, Rubiaceae, and Solanaceae. By this system, the yield of alkaloids is inconsistent due to genetic and geographical variations. Chemical synthesis is still not feasible system due to complex molecular structure of various metabolites. Therefore, in vitro system for production of alkaloids has become a promising biotechnological approach from a range of medicinal plants. Some of the medicinal plants such as Nicotiana tobaccum (nicotine), Erythroxylum coca (cocaine), Cinchona officinalis (quinine and quinidine), Rauwolfia serpentina (reserpine), and Pilocarpine microphyllus (pilocarpine) have been explored for in vitro production of their respective alkaloids. The present chapter provides brief information on various in vitro production systems and scale-up techniques used for alkaloid production.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 139.09
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 181.89
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 181.89
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdelrazik E, El-hamahmy M, Eltamany EE, Abuseidah A (2019) Enhancement of growth and alkaloids accumulation in Hyoscyamus muticus L. Callus cultures by high salt concentration. Rec Pharmaceut Biomed Sci 3(1):26–37

    Google Scholar 

  • Achan AO, Talisuna AE, Yeka A, Tibenderana JK, Baliraine FN, Rosenthal PJ, D’Alessandro U (2011) Quinine, an old anti-malarial drug in a modern world: role in the treatment of malaria. Malar J 10:144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alam MM, Naeem M, Khan MMA, Uddin M (2017) Vincristine and vinblastine anticancer catharanthus alkaloids: pharmacological applications and strategies for yield improvement. In: Naeem M, Aftab T, Khan M (eds) Catharanthus roseus. Springer, Cham, pp 277–307

    Chapter  Google Scholar 

  • Amritpal S, Sanjiv D, Navpreet K, Jaswinder S (2010) Berberine: alkaloid with wide spectrum of pharmacological activities. J Nat Prod (India) 3:64–75

    Google Scholar 

  • Atlabachew M, Chandravanshi BS, Redi-Abshiro M (2017) Preparative HPLC for large scale isolation, and salting-out assisted liquid–liquid extraction based method for HPLC–DAD determination of khat (Catha edulis Forsk) alkaloids. Chem Cent J 11(1):1–10

    Article  CAS  Google Scholar 

  • Bagnères AG, Hossaert-McKey M (eds) (2016) Chemical ecology. ISTE Limited

    Google Scholar 

  • Baque MA, Moh SH, Lee EJ, Zhong JJ, Paek KY (2012) Production of biomass and useful compounds from adventitious roots of high-value added medicinal plants in bioreactor. Biotechnol Adv 30:1255–1267

    Article  CAS  PubMed  Google Scholar 

  • Beaudoin GA, Facchini PJ (2014) Benzylisoquinoline alkaloid biosynthesis in opium poppy. Planta 240:19–32

    Article  CAS  PubMed  Google Scholar 

  • Benowitz NL (2009) Pharmacology of nicotine: addiction, smoking-induced disease, and therapeutics. Annu Rev Pharmacol Toxicol 49:57–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhatia S, Bera T (2015) Classical and nonclassical techniques for secondary metabolite production in plant cell culture. In: Bhatia S, Bera T, Dahiya R, Bera T (eds) Modern applications of plant biotechnology in pharmaceutical sciences. Springer-Verlag, pp 231–291

    Chapter  Google Scholar 

  • Bunkar AR (2017) Therapeutic uses of Rauwolfia serpentina. Int J Adv Sci Res 2:23–26

    Google Scholar 

  • Çaksen H, Odabas D, Akbayram S, Cesur Y, Arslan S, Üner A, Oner AF (2003) Deadly nightshade (Atropa belladonna) intoxication: an analysis of 49 children. Hum Exp Toxicol 22:665–668

    Article  PubMed  Google Scholar 

  • Campos MM, Fernandes ES, Ferreira J, Santos AR, Calixto JB (2005) Antidepressant-like effects of Trichilia catigua (Catuaba) extract: evidence for dopaminergic-mediated mechanisms. Psychopharmacology (Berl) 182:45–53

    Article  CAS  Google Scholar 

  • Cappelletti S, Daria P, Sani G, Aromatario M (2015) Caffeine: cognitive and physical performance enhancer or psychoactive drug? Curr Neuropharmacol 13:71–88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cardillo AB, Otálvaro AÁM, Busto VD, Talou JR, Velásquez LME, Giulietti AM (2010) Scopolamine, anisodamine and hyoscyamine production by Brugmansia candida hairy root cultures in bioreactors. Process Biochem 45(9):1577–1581

    Article  CAS  Google Scholar 

  • Cardillo AB, Talou JR, Giulietti AM (2016) Establishment, culture, and scale-up of Brugmansia candida hairy roots for the production of tropane alkaloids. In: Jain S (ed) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, 2nd edn. Humana Press, New York, pp 173–186

    Google Scholar 

  • Chashmi NA, Sharifi M, Karimi F, Rahnama H (2010) Differential production of tropane alkaloids in hairy roots and in vitro cultured two accessions of Atropa belladonna L. under nitrate treatments. Z Naturforsch C 65(5–6):373–379

    Article  CAS  PubMed  Google Scholar 

  • Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A (2016) Conservation and sustainable use of medicinal plants: problems, progress, and prospects. Chin Med 11(1):1–10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cohen PA, Wang YH, Maller G, DeSouza R, Khan IA (2016) Pharmaceutical quantities of yohimbine found in dietary supplements in the USA. Drug Test Anal 8(3–4):357–369

    Article  CAS  PubMed  Google Scholar 

  • Corbin KD, Zeisel SH (2012) Choline metabolism provides novel insights into nonalcoholic fatty liver disease and its progression. Curr Opin Gastroenterol 28:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das S, Sharangi AB (2017) Madagascar periwinkle (Catharanthus roseus L.): diverse medicinal and therapeutic benefits to humankind. J Pharmacogn Phytochem 6(5):1695–1701

    CAS  Google Scholar 

  • Davies KM, Deroles SC (2014) Prospects for the use of plant cell cultures in food biotechnology. Curr Opin Biotechnol 26:133–140

    Article  CAS  PubMed  Google Scholar 

  • Debnath B, Singh WS, Das M, Goswami S, Singh MK, Maiti D, Manna K (2018) Role of plant alkaloids on human health: a review of biological activities. Mater Today Chem 9:56–72

    Article  CAS  Google Scholar 

  • Dehghan E, Hosseini B, Naghdi BH, Shahriari AF (2010) Application of conventional and new biotechnological approaches for improving of morphinane alkaloids production. J Med Plants 9(35):33–50

    CAS  Google Scholar 

  • Desgagné-Penix I (2020) Biosynthesis of alkaloids in Amaryllidaceae plants: a review. Phytochem Rev:1–23

    Google Scholar 

  • Diaz G, Miranda IL, Diaz MAN (2015) Quinolines, isoquinolines, angustureine, and congeneric alkaloids—occurrence, chemistry, and biological activity. In: Phytochemicals—isolation, characterisation and role in human health. Intech, pp 141–162

    Google Scholar 

  • Filova A (2014) Production of secondary metabolities in plant tissue cultures. Res J Agric Sci 46(1):236–245

    Google Scholar 

  • Frick KM, Kamphuis LG, Siddique KH, Singh KB, Foley RC (2017) Quinolizidine alkaloid biosynthesis in lupins and prospects for grain quality improvement. Front Plant Sci 8:87

    Article  PubMed  PubMed Central  Google Scholar 

  • Fulzele DP, Namdeo AG (2018) Cost effective pilot-scale ajmalicine production by Catharanthus roseus cell suspension cultures in a 100 lit bioreactor. Biotechnol J Int:1–15

    Google Scholar 

  • Georgiev V, Ivanov I, Berkov S, Pavlov A (2011) Alkaloids biosynthesis by Pancratium maritimum L. shoots in liquid culture. Acta Physiol Plant 33(3):927–933

    Article  CAS  Google Scholar 

  • Georgiev V, Ivanov I, Berkov S, Ilieva M, Georgiev M, Gocheva T, Pavlov A (2012) Galanthamine production by Leucojum aestivum L. shoot culture in a modified bubble column bioreactor with internal sections. Eng Life Sci 12(5):534–543

    Article  CAS  Google Scholar 

  • Gupta A, Naraniwal M, Kothari V (2012) Modern extraction methods for preparation of bioactive plant extracts. Int J Appl Nat Sci 1(1):8–26

    Google Scholar 

  • Habibi P, Piri K, Deljo A, Moghadam YA, Ghiasvand T (2015) Increasing scopolamine content in hairy roots of Atropa belladonna using bioreactor. Braz Arch Biol Technol 58(2):166–174

    Article  CAS  Google Scholar 

  • Hamilton AC (2004) Medicinal plants, conservation and livelihoods. Biodivers Conserv 13(8):1477–1517

    Article  Google Scholar 

  • Han X, Qi Y (2012) Mechanisms involved in the cytotoxic effects of berberine on human colon cancer HCT-8 cells. Biocell 36:113e12

    Google Scholar 

  • Hashemi SM, Naghavi MR (2016) Production and gene expression of morphinan alkaloids in hairy root culture of Papaver orientale L. using abiotic elicitors. Plant Cell Tiss Org Cult 125(1):31–41

    Article  CAS  Google Scholar 

  • Hatti-Kaul R (2010) Downstream processing in industrial biotechnology. In: Vandamme EJ, Soetaert W (eds) Industrial biotechnology. Wiley, pp 279–322

    Chapter  Google Scholar 

  • He SM, Liang YL, Cong K, Chen G, Zhao X, Zhao QM, Zhang JJ, Wang X, Dong Y, Yang JL, Zhang GH (2018) Identification and characterization of genes involved in benzylisoquinoline alkaloid biosynthesis in Coptis species. Front Plant Sci 9:731

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang P, **a L, Liu W et al (2018) Hairy root induction and benzylisoquinoline alkaloid production in Macleaya cordata. Sci Rep 8(1):1–9

    Google Scholar 

  • Hussain A, Qarshi IA, Nazir H, Ullah I (2012) Plant tissue culture: current status and opportunities. In: Leva A, Rinaldi L (eds) Recent advances in plant in vitro culture, pp 1–28

    Google Scholar 

  • Jaremicz Z, Luczkiewicz M, Kokotkiewicz A, Krolicka A, Sowinski P (2014) Production of tropane alkaloids in Hyoscyamus niger (black henbane) hairy roots grown in bubble-column and spray bioreactors. Biotechnol Lett 36(4):843–853

    Article  CAS  PubMed  Google Scholar 

  • Jeet A, Singh Y, Singh P, Nimoriya R, Bilung CJ, Kanojiya S, Mishra DK (2020) Strategies for indole alkaloids enrichment through callus culture from Alstonia scholaris (L.) R. Br. Plant Growth Regul 90(2):383–392

    Article  CAS  Google Scholar 

  • Kandar CC (2021) Secondary metabolites from plant sources. In: Pal D, Nayak AK (eds) Bioactive natural products for pharmaceutical applications, Advanced structured materials, vol vol 140. Springer, Cham, pp 329–377. https://doi.org/10.1007/978-3-030-54027-2_10

    Chapter  Google Scholar 

  • Kim N, Estrada O, Chavez B, Stewart C, D’Auria JC (2016) Tropane and granatane alkaloid biosynthesis: a systematic analysis. Molecules 21(11):1510

    Article  PubMed Central  CAS  Google Scholar 

  • Koleva II, van Beek TA, Soffers AE, Dusemund B, Rietjens IM (2012) Alkaloids in the human food chain–natural occurrence and possible adverse effects. Mol Nutr Food Res 56(1):30–52

    Article  CAS  PubMed  Google Scholar 

  • Lee KT, Suzuki T, Yamakawa T, Kodama T, Igarashi Y, Shimomura K (1999) Production of tropane alkaloids by transformed root cultures of Atropa belladonna in stirred bioreactors with a stainless steel net. Plant Cell Rep 18(7–8):567–571

    Article  CAS  Google Scholar 

  • Ma G, Bavadekar SA, Davis YM, Lalchandani SG, Nagmani R, Schaneberg BT, Khan IA, Feller DR (2007) Pharmacological effects of ephedrine alkaloids on human a1-and a2-adrenergic receptor subtypes. J Pharmacol Exp Ther 322:214–221

    Article  CAS  PubMed  Google Scholar 

  • Ma YZ, Qiang GF, Du GH (2018) Ergometrine and ergotamine. In: Du GH (ed) Natural small molecule drugs from plants. Springer, Singapore, pp 237–242

    Chapter  Google Scholar 

  • Maciel EVS, de Toffoli AL, Lanças FM (2019) Current status and future trends on automated multidimensional separation techniques employing sorbent-based extraction columns. J Sep Sci 42(1):258–272

    Article  CAS  PubMed  Google Scholar 

  • Manna K, Debnath B, Singh WS (2020) Major metabolites of certain marketed plant alkaloids. Front Nat Prod Chem 6(6):124–150

    Article  Google Scholar 

  • Marchev A, Georgiev V, Ivanov I, Pavlov A (2012) Cultivation of diploid and tetraploid hairy roots of Datura stramonium L in stirred tank bioreactor for tropane alkaloids production. J BioSci Biotechnol 1(3)

    Google Scholar 

  • Matsuura HN, Fett-Neto AG (2015) Plant alkaloids: main features, toxicity, and mechanisms of action. Plant Toxins 2(7):1–15

    Google Scholar 

  • Mehrotra S, Goel MK, Srivastava V, Rahman LU (2015a) Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids. Biotechnol Lett 37(2):253–263

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Srivastava V, Rahman LU, Kukreja AK (2015b) Hairy root biotechnology—indicative timeline to understand missing links and future outlook. Protoplasma 252(5):1189–1201

    Article  CAS  PubMed  Google Scholar 

  • Mehrotra S, Mishra S, Srivastava V (2018) Hairy root cultures for monoterpene indole alkaloid pathway: investigation and biotechnological production. In: Mehrotra S, Mishra S, Srivastava V (eds) Hairy roots. Springer, Singapore, pp 95–121

    Chapter  Google Scholar 

  • Mekky H, Al-Sabahi J, Abdel-Kreem MFM (2018) Potentiating biosynthesis of the anticancer alkaloids vincristine and vinblastine in callus cultures of Catharanthus roseus. S Afr J Bot 114:29–31

    Article  CAS  Google Scholar 

  • Miao GP, Zhu CS, Feng JT, Han J, Song XW, Zhang X (2013) Aggregate cell suspension cultures of Tripterygium wilfordii Hook. f. for triptolide, wilforgine, and wilforine production. Plant Cell Tiss Org Cult 112(1):109–116

    Article  CAS  Google Scholar 

  • Moharrami F, Hosseini B, Sharafi A, Farjaminezhad M (2017) Enhanced production of hyoscyamine and scopolamine from genetically transformed root culture of Hyoscyamus reticulatus L. elicited by iron oxide nanoparticles. In Vitro Cell Dev Biol Plant 53(2):104–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murty HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tiss Org Cult 118:1–16

    Article  CAS  Google Scholar 

  • Naik PM, Al-Khayri JM (2016) Abiotic and biotic elicitors–role in secondary metabolites production through in vitro culture of medicinal plants. In: Shanker AK, Shanker C (eds) Abiotic and biotic stress in plants-recent advances and future perspectives. IntechOpen, pp 247–277

    Google Scholar 

  • Nielsen E, Temporiti MEE, Cella R (2019) Improvement of phytochemical production by plant cells and organ culture and by genetic engineering. Plant Cell Rep 38(10):1199–1215

    Article  CAS  PubMed  Google Scholar 

  • Pang X, Liu L, Ngolab J, Zhao-Shea R, McIntosh JM, Gardner PD, Tapper AR (2016) Habenula cholinergic neurons regulate anxiety during nicotine withdrawal via nicotinic acetylcholine receptors. Neuropharmacology 107:294–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pathak S, Agarwal AV, Agarwal P, Trivedi PK (2019) Secondary metabolite pathways in medicinal plants: approaches in reconstruction and analysis. In: Singh S, Upadhyay S, Pandey A, Kumar S (eds) Molecular approaches in plant biology and environmental challenges. Energy, environment, and sustainability. Springer, Singapore, pp 339–364. https://doi.org/10.1007/978-981-15-0690-1_16

    Chapter  Google Scholar 

  • Paulke A, Kremer C, Wunder C, Achenbach J, Djahanschiri B, Elias A, Schwed JS, Hübner H, Gmeiner P, Proschak E, Toennes SW (2013) Argyreia nervosa (Burm. f.): receptor profiling of lysergic acid amide and other potential psychedelic LSD-like compounds by computational and binding assay approaches. J Ethnopharmacol 148(2):492–e497

    Article  CAS  PubMed  Google Scholar 

  • Pavlov A (2012) Cultivation of diploid and tetraploid hairy roots of Datura stramonium L. in stirred tank bioreactor for tropane alkaloids production. J BioSci Biotechnol 1(3):211–216

    Google Scholar 

  • Perez EG, Endez-Galvez CM, Cassels BK (2012) Cytisine: a natural product leads for the development of drugs acting at nicotinic acetylcholine receptors. Nat Prod Rep 29:555e567

    Article  CAS  Google Scholar 

  • Ptak A, Simlat M, Kwiecień M, Laurain-Mattar D (2013) Leucojum aestivum plants propagated in in vitro bioreactor culture and on solid media containing cytokinins. Eng Life Sci 13(3):261–270

    Article  CAS  Google Scholar 

  • Raj D, Kokotkiewicz A, Drys A, Luczkiewicz M (2015a) Effect of plant growth regulators on the accumulation of indolizidine alkaloids in Securinega suffruticosa callus cultures. Plant Cell Tiss Org Cult 123(1):39–45

    Article  CAS  Google Scholar 

  • Raj D, Kokotkiewicz A, Luczkiewicz M (2015b) Production of therapeutically relevant indolizidine alkaloids in Securinega suffruticosa in vitro shoots maintained in liquid culture systems. Appl Biochem Biotechnol 175(3):1576–1587

    Article  CAS  PubMed  Google Scholar 

  • Ramawat KG (2021) An introduction to the process of cell, tissue, and organ differentiation, and production of secondary metabolites. In: Ramawat KG, Ekiert HM, Goyal S (eds) Plant cell and tissue differentiation and secondary metabolites, Reference series in phytochemistry. Springer, Cham, pp 1–22. https://doi.org/10.1007/978-3-030-30185-9_35

    Chapter  Google Scholar 

  • Ramawat KG, Goyal S (2019) Co-evolution of secondary metabolites during biological competition for survival and advantage: an overview. In: Mérillon JM, Ramawat KG (eds) Co-evolution of secondary metabolites, Reference series in phytochemistry. Springer, Berlin/Heidelberg, Germany, pp 3–17. https://doi.org/10.1007/978-3-319-76887-8_45-1

    Chapter  Google Scholar 

  • Ramawat KG, Mérillon JM (eds) (2013) Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Springer, Heidelberg, pp 1541–2662

    Google Scholar 

  • Ramawat KG, Dass S, Mathur M (2009) The chemical diversity of bioactive molecules and therapeutic potential of medicinal plants. In: Ramawat K (ed) Herbal drugs: ethnomedicine to modern medicine. Springer, Berlin, pp 7–32. https://doi.org/10.1007/978-3-540-79116-4_2

    Chapter  Google Scholar 

  • Reyes-Escogido MD, Gonzalez-Mondragon EG, Vazquez-Tzompantzi E (2011) Chemical and pharmacological aspects of capsaicin. Molecules 16:1253–e1270

    Article  CAS  PubMed Central  Google Scholar 

  • Rohini MR (2020) Biotechnological interventions for conservation and multiplication of threatened medicinal plants. In: Rajasekharan P, Wani S (eds) Conservation and utilization of threatened medicinal plants. Springer, Cham, pp 135–158

    Chapter  Google Scholar 

  • Rosser J, Thomas DJ (2018) Bioreactor processes for maturation of 3D bioprinted tissue. In: Thomas DJ, Jessop ZM, Whitaker IS (eds) 3D bioprinting for reconstructive surgery. Woodhead publishing, pp 191–215

    Chapter  Google Scholar 

  • Ruffoni B, Pistelli L, Bertoli A, Pistelli L (2010) Plant cell cultures: bioreactors for industrial production. In: Giardi MT, Rea G, Berra B (eds) Bio-Farms for Nutraceuticals, Advances in experimental medicine and biology, vol 698. Springer, Boston, pp 203–221

    Chapter  Google Scholar 

  • Rusconi M, Conti A (2010) Theobroma cacao L., the food of the gods: a scientific approach beyond myths and claims. Pharmacol Res 61(1):5–13

    Article  CAS  PubMed  Google Scholar 

  • Santos AP, Moreno PR (2004) Pilocarpus spp.: a survey of its chemical constituents and biological activities. Rev Bras Ciencias Farm 40(2004):116–137

    Article  Google Scholar 

  • Sasidharan S, Chen Y, Saravanan D, Sundram KM, Latha LY (2011) Extraction, isolation and characterization of bioactive compounds from plants’ extracts. Afr J Tradit Complement Altern Med 8(1)

    Google Scholar 

  • Schumann A, Berkov S, Claus D, Gerth A, Bastida J, Codina C (2012) Production of galanthamine by Leucojum aestivum shoots grown in different bioreactor systems. Appl Biochem Biotechnol 167(7):1907–1920

    Article  CAS  PubMed  Google Scholar 

  • Shimizu K, Yoshihara E, Takahashi M, Gotoh K, Orita S, Urakawa N, Nakajyo S (2000) Mechanism of relaxant response to papaverine on the smooth muscle of non-pregnant rat uterus. J Smooth Muscle Res 36:83–91

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Srivastava M, Misra A, Pandey G, Rawat AK (2015) A review on biological and chemical diversity in Berberis (Berberidaceae). EXCLI J 14:247–267

    PubMed  PubMed Central  Google Scholar 

  • Thakore D, Srivastava AK, Sinha AK (2017) Mass production of Ajmalicine by bioreactor cultivation of hairy roots of Catharanthus roseus. Biochem Eng J 119:84–91

    Article  CAS  Google Scholar 

  • Titova MV, Reshetnyak OV, Osipova EA, Osip’yants AI, Shumilo NA, Oreshnikov AV, Nosov AM (2012) Submerged cultivation of Stephania glabra (Roxb.) Miers cells in different systems: specific features of growth and accumulation of alkaloid stepharine. Appl Biochem Microbiol 48(7):645–649

    Article  CAS  Google Scholar 

  • Trejo-Tapia G, Cerda-García-Rojas CM, Rodríguez-Monroy M, Ramos-Valdivia AC (2005) Monoterpenoid oxindole alkaloid production by Uncaria tomentosa (Willd) DC cell suspension cultures in a stirred tank bioreactor. Biotechnol Prog 21(3):786–792

    Article  CAS  PubMed  Google Scholar 

  • Trejo-Tapia G, Sepúlveda-Jiménez G, Trejo-Espino JL, Cerda-García-Rojas CM, De La Torre M, Rodríguez-Monroy M, Ramos-Valdivia AC (2007) Hydrodynamic stress induces monoterpenoid oxindole alkaloid accumulation by Uncaria tomentosa (Willd) DC cell suspension cultures via oxidative burst. Biotechnol Bioeng 98(1):230–238

    Article  CAS  PubMed  Google Scholar 

  • Tripathi KD (ed) (2013) Essentials of medical pharmacology, 7th edn. JP Medical Ltd, New Delhi

    Google Scholar 

  • Turner LJY, Gosby A, To SW, Cheng Z, Miyoshi H, Taketo MM, Cooney GJ, Kraegen EW, James DE, Hu LH (2008) Berberine and its more biologically available derivative, dihydroberberine, inhibit mitochondrial respiratory complex I: a mechanism for the action of berberine to activate AMPactivated protein kinase and improve insulin action. Diabetes 57:1414–1418

    Article  CAS  PubMed  Google Scholar 

  • Ullrich SF, Hagels H, Kayser O (2017) Scopolamine: a journey from the field to clinics. Phytochem Rev 16(2):333–353

    Article  CAS  Google Scholar 

  • Verma P, Mathur AK, Shanker K (2012) Growth, alkaloid production, rol genes integration, bioreactor up-scaling and plant regeneration studies in hairy root lines of Catharanthus roseus. Plant Biosyst 146(sup1):27–40

    Article  Google Scholar 

  • Verma P, Khan SA, Mathur AK, Ghosh S, Shanker K, Kalra A (2014) Improved sanguinarine production via biotic and abiotic elicitations and precursor feeding in cell suspensions of latex-less variety of Papaver somniferum with their gene expression studies and upscaling in bioreactor. Protoplasma 251(6):1359–1371

    Article  CAS  PubMed  Google Scholar 

  • Waller GR (ed) (2012) Alkaloid biology and metabolism in plants. Springer

    Google Scholar 

  • Wang GR, Qi NM (2010) Influence of mist intervals and aeration rate on growth and second metabolite production of Pseudostellaria heterophylla adventitious roots in a siphon-mist bioreactor. Biotechnol Bioprocess Eng 15(6):1059–1064

    Article  CAS  Google Scholar 

  • Wang Z, Kang D, Jia X, Zhang H, Guo J, Liu C, Liu W (2018) Analysis of alkaloids from Peganum harmala L. sequential extracts by liquid chromatography coupled to ion mobility spectrometry. J Chromatogr B 1096:73–79

    Article  CAS  Google Scholar 

  • Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for the synthesis of biomolecules. Plant Biotechnol J 10(3):249–268

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Shimada T, Motomura Y, Sato F (2017) Modulation of benzylisoquinoline alkaloid biosynthesis by heterologous expression of CjWRKY1 in Eschscholzia californica cells. PLoS One 12(10):e0186953

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yang F, Wei NN, Gao R, Piao XC, Lian ML (2015) Effect of several medium factors on polysaccharide and alkaloid accumulation in protocorm-like bodies of Dendrobium candidum during bioreactor culture. Acta Physiol Plant 37(5):94

    Article  CAS  Google Scholar 

  • Zhao B, Agblevor FA, Ritesh KC, Jelesko JG (2013) Enhanced production of the alkaloid nicotine in hairy root cultures of Nicotiana tabacum L. Plant Cell Tiss Org Cult 113(1):121–129

    Article  CAS  Google Scholar 

  • Zhu MZ, Chen GL, Wu JL, Li N, Liu ZH, Guo MQ (2018) Recent development in mass spectrometry and its hyphenated techniques for the analysis of medicinal plants. Phytochem Anal 29(4):365–374

    Article  CAS  PubMed  Google Scholar 

  • Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol 59:735–769

    Article  CAS  PubMed  Google Scholar 

  • Zou S, Wang C, Li J, He J, Gao X, Chang YX (2020) Microwave assisted solid phase microextraction for extraction and selective enrichment of four alkaloids in lotus leaf. Sustain Chem Pharm 18:100345

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Meena, S., Kanthaliya, B., Joshi, A., Khan, F., Choudhary, S., Arora, J. (2022). In Vitro Production of Alkaloids. In: Belwal, T., Georgiev, M.I., Al-Khayri, J.M. (eds) Nutraceuticals Production from Plant Cell Factory. Springer, Singapore. https://doi.org/10.1007/978-981-16-8858-4_6

Download citation

Publish with us

Policies and ethics

Navigation