Carbon-Based Materials for Carbon Capture and Storage

  • Living reference work entry
  • First Online:
Handbook of Energy Materials

Abstract

This chapter discusses the importance of carbon capture and the need for develo** materials that can cover the disadvantages held by current conventional substances for carbon capture. Furthermore, evaluations are made for more environmentally friendly responses and to lower the end costs of a process by using carbon-based materials. Carbon capture and sequestration include several phases, which begin with capturing the carbon and then separating it from the system before further operations. Carbon-based materials can successfully be implemented in different stages of CO2 sequestration, which is due to their tunable nature. Nevertheless, this chapter primarily focuses on separation stage since it allows for novelty in terms of applied materials. Specifically, two of the most used processes for CO2 separation including adsorption and membrane systems could be well enhanced by implementing such materials. Materials such as activated carbon, biochar, graphene, and carbon nanotubes have gained attention over the last two decades, and their large-scale application is growing gradually. Technical evaluations of using such materials in these systems are considered from different aspects as a pre-requirement in a large-scale application. Finally, despite carbon capture strategies using carbon-based materials are theoretically proving to be efficient in different aspects, their actual benefits when seen in a larger framework should be assessed carefully. Carbon capture by nature can be a big step toward climate change actions that are set for the upcoming years; however, as for a short time solution, they cannot guarantee a robust response. In addition, the environmental costs for setting up the carbon capture equipment need to be studied in comparison to the existing power plants before decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  • A.A. Abd, S.Z. Naji, A.S. Hashim, M.R. Othman, Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous adsorbents: a review. J. Environ. Chem. Eng. 8(5) (2020) Article 104142

    Google Scholar 

  • N. Abuelnoor et al., Activated carbons from biomass-based sources for CO2 capture applications. Chemosphere 282 (2021) Article 131111

    Google Scholar 

  • R. Ahmed et al., Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation-a review. J. Clean. Prod. 242 (2020) Article 118409

    Google Scholar 

  • H.A. Alalwan, A.H. Alminshid, CO2 capturing methods: chemical loo** combustion (CLC) as a promising technique. Sci. Total Environ. 788, 147850 (2021). https://doi.org/10.1016/j.scitotenv.2021.147850

    Article  CAS  Google Scholar 

  • T. Araújo, G. Bernardo, A. Mendes, Cellulose-based carbon molecular sieve membranes for gas separation: a review. Molecules 25(15), 1–33 (2020)

    Article  Google Scholar 

  • R. Baciocchi, G. Storti, M. Mazzotti, Process design and energy requirements for the capture of carbon dioxide from air. Chem. Eng. Process. Process Intensif. 45(12), 1047–1058 (2006)

    Article  CAS  Google Scholar 

  • R. Baker, R.W. Baker, Membrane Technology and Applications. Wiley. (2004) https://books.google.no/books?id=ccZTAAAAMAAJ

  • D.A. Bell, B.F. Towler, M. Fan, Gasification fundamentals, in Coal gasification and its applications, (2011), pp. 35–71. https://doi.org/10.1016/B978-0-8155-2049-8.10003-8

    Chapter  Google Scholar 

  • R. Ben-Mansour et al., Carbon capture by physical adsorption: materials, experimental investigations and numerical modeling and simulations – a review. Appl. Energy 161, 225–255 (2016)

    Article  CAS  Google Scholar 

  • P. Bhanja, S.K. Das, A.K. Patra, A. Bhaumik, Functionalized graphene oxide as an efficient adsorbent for CO2 capture and support for heterogeneous catalysis. RSC Adv. 6(76), 72055–72068 (2016). https://doi.org/10.1039/C6RA13590K

    Article  CAS  Google Scholar 

  • M.E. Boot-Handford et al., Carbon capture and storage update. Energy Environ. Sci. 7(1), 130–189 (2014)

    Article  CAS  Google Scholar 

  • R. Borgohain, Perspectives for chitosan-based membranes in CO2/N2 separation: structure-property relationship. GHG: Sci. Technol. 11(2), 394–408 (2021)

    CAS  Google Scholar 

  • R. Borgohain, U. Pattnaik, B. Prasad, B. Mandal, A review on chitosan-based membranes for sustainable CO2 separation applications: mechanism, issues, and the way forward. Carbohydr. Polym. 267(March), 118178 (2021). https://doi.org/10.1016/j.carbpol.2021.118178

    Article  CAS  Google Scholar 

  • M. Bui, et al., Carbon Capture and Storage (CCS): The Way Forward (n.d.). pubs.rsc.org. https://pubs.rsc.org/ko/content/articlehtml/2018/ee/c7ee02342a. 27 June 2021

  • T. Capurso, M. Stefanizzi, M. Torresi, S.M. Camporeale, Perspective of the role of hydrogen in the twenty-first century energy transition. Energy Convers. Manag. 251(October 2021), 114898 (2022). https://doi.org/10.1016/j.enconman.2021.114898

    Article  CAS  Google Scholar 

  • R.P.S. Chakradhar, G. Prasad, P. Bera, C. Anandan, Applied surface science stable Superhydrophobic coatings using PVDF – MWCNT nanocomposite. Appl. Surf. Sci. 301, 208–215 (2014)

    Article  CAS  Google Scholar 

  • Z. Dai, L. Ansaloni, L. Deng, Recent advances in multi-layer composite polymeric membranes for CO2 separation: a review. Green Energ. Environ. 1(2), 102–128 (2016). https://doi.org/10.1016/j.gee.2016.08.001

    Article  Google Scholar 

  • Y. De Vos et al., Development of stable oxygen carrier materials for chemical loo** processes–a review. Catalysts 10(8), 926 (2020). 15 Dec 2021

    Article  Google Scholar 

  • L. Ekhlasi, H. Younesi, A. Rashidi, N. Bahramifar, Populus wood biomass-derived graphene for high CO2 capture at atmospheric pressure and estimated cost of production. Process Saf. Environ. Prot. 113, 97–108 (2018). https://doi.org/10.1016/j.psep.2017.09.017

    Article  CAS  Google Scholar 

  • R.M. Firdaus, A. Desforges, M. Emo, et al., Physical and chemical activation of graphene-derived porous nanomaterials for Post-combustion carbon dioxide capture. Nano 11(9), 2419 (2021a)

    CAS  Google Scholar 

  • R.M. Firdaus, A. Desforges, A.R. Mohamed, B. Vigolo, Progress in adsorption capacity of nanomaterials for carbon dioxide capture: a comparative study. J. Clean. Prod. 328, 129553 (2021b)

    Article  CAS  Google Scholar 

  • A. Ganesan, M.M. Shaijumon, Activated graphene-derived porous carbon with exceptional gas adsorption properties. Microporous Mesoporous Mater. 220, 21–27 (2016)

    Article  CAS  Google Scholar 

  • Z. Geng et al., One-step synthesis of microporous carbon monoliths derived from biomass with high nitrogen do** content for highly selective CO2 capture. Sci. Rep. 6(March), 4–11 (2016). https://doi.org/10.1038/srep30049

    Article  CAS  Google Scholar 

  • A. Goeppert, G.K. Miklos Czaun, S. Prakash, G.A. Olah, Air as the renewable carbon source of the future: an overview of CO2 capture from the atmosphere. Energy Environ. Sci. 5(7), 7833–7853 (2012)

    Article  CAS  Google Scholar 

  • B. González, J.J. Manyà, Activated olive mill waste-based Hydrochars as selective adsorbents for CO2 capture under Postcombustion conditions. Chem. Eng. Process. – Proc. Intensif. 149(December 2019), 107830 (2020). https://doi.org/10.1016/j.cep.2020.107830

    Article  CAS  Google Scholar 

  • A. Hafizi, M.R. Rahimpour, S. Hassanajili, High purity hydrogen production via sorption enhanced chemical loo** reforming: application of 22Fe2O3/MgAl2O4 and 22Fe2O3/Al2O3 as oxygen carriers and cerium promoted CaO as CO2 sorbent. Appl. Energy 169, 629–641 (2016a)

    Article  CAS  Google Scholar 

  • A. Hafizi, M.R. Rahimpour, S. Hassanajili, Hydrogen production via chemical loo** steam methane reforming process: effect of cerium and calcium promoters on the performance of Fe2O3/Al2O3 oxygen carrier. Appl. Energy 165, 685–694 (2016b)

    Article  CAS  Google Scholar 

  • S. Haider et al., CO2 separation with carbon membranes in high pressure and elevated temperature applications. Sep. Purif. Technol. 190(June 2017), 177–189 (2018). https://doi.org/10.1016/j.seppur.2017.08.038

    Article  CAS  Google Scholar 

  • D. Hasse et al., CO2 capture by sub-ambient membrane operation. Energy Procedia 37, 993–1003 (2013). https://doi.org/10.1016/j.egypro.2013.05.195

    Article  CAS  Google Scholar 

  • X. He, M.B. Hägg, Optimization of carbonization process for preparation of high performance hollow fiber carbon membranes. Ind. Eng. Chem. Res. 50(13), 8065–8072 (2011)

    Article  CAS  Google Scholar 

  • H. Hu, T. Zhang, S. Yuan, S. Tang, Functionalization of multi-walled carbon nanotubes with Phenylenediamine for enhanced CO2 adsorption. Adsorption 23(1), 73–85 (2017)

    Article  CAS  Google Scholar 

  • S. Huang et al., Ultrathin carbon molecular sieve films and room-temperature oxygen functionalization for gas-sieving. ACS Appl. Mater. Interfaces 11(18), 16729–16736 (2019)

    Article  CAS  Google Scholar 

  • M.H. Ibrahim, M.H. El-Naas, Z. Zhang, B. Van Der Bruggen, CO2 capture using hollow fiber membranes: a review of membrane wetting. Energy Fuel 32(2), 963–978 (2018)

    Article  CAS  Google Scholar 

  • M. Irani, A.T. Jacobson, K.A.M. Gasem, M. Fan, Modified carbon nanotubes/Tetraethylenepentamine for CO2 capture. Fuel 206, 10–18 (2017). https://doi.org/10.1016/j.fuel.2017.05.087

    Article  CAS  Google Scholar 

  • W.N. Isahak, R. Wan, et al., Enhanced physical and chemical adsorption of carbon dioxide using bimetallic copper–magnesium oxide/carbon nanocomposite. Res. Chem. Intermed. 44(2), 829–841 (2018)

    Article  CAS  Google Scholar 

  • K.K. Jena et al., MWCNTs-ZnO-SiO2 mesoporous nano-hybrid materials for CO2 capture. J. Alloys Compd. 800, 279–285 (2019). https://doi.org/10.1016/j.jallcom.2019.06.011

    Article  CAS  Google Scholar 

  • X. Jia et al., Graphene edges: a review of their fabrication and characterization. Nanoscale 3(1), 86–95 (2011). https://pubs.rsc.org/en/content/articlehtml/2011/nr/c0nr00600a. 15 Dec 2021

    Article  CAS  Google Scholar 

  • M. Joglekar et al., Carbon molecular sieve membranes for CO2/N2 separations: evaluating subambient temperature performance. J. Membr. Sci. 569, 1–6 (2019). https://doi.org/10.1016/j.memsci.2018.10.003

    Article  CAS  Google Scholar 

  • U. Kamran, S.J. Park, Chemically modified carbonaceous adsorbents for enhanced CO2 capture: a review. J. Clean. Prod. 290, 125776 (2021). https://doi.org/10.1016/j.jclepro.2020.125776

    Article  CAS  Google Scholar 

  • A. Kongnoo, P. Intharapat, P. Worathanakul, C. Phalakornkule, Diethanolamine impregnated palm shell activated carbon for CO2 adsorption at elevated temperatures. J. Environ. Chem. Eng. 4(1), 73–81 (2016). https://doi.org/10.1016/j.jece.2015.11.015

    Article  CAS  Google Scholar 

  • S. Kumar, R. Srivastava, J. Koh, Utilization of zeolites as CO2 capturing agents: advances and future perspectives. J. CO2 Utilization. 41, 101251 (2020). https://doi.org/10.1016/j.jcou.2020.101251

  • J.Y. Lai, L.H. Ngu, S.S. Hashim, A review of CO2 adsorbents performance for different carbon capture technology processes conditions. Greenhouse Gases Sci. Technol. 11(5), 1076–1117 (2021). https://doi.org/10.1002/ghg.2112

    Article  CAS  Google Scholar 

  • H.J. Lee, H. Suda, K. Haraya, D.P. Kim, Influence of oxidation temperature on the gas permeation and separation properties in a microporous carbon membrane. Korean J. Chem. Eng. 23(3), 435–440 (2006)

    Article  CAS  Google Scholar 

  • L. Lei et al., Carbon membranes for CO2 removal: status and perspectives from materials to processes. Chem. Eng. J. 401(June), 126084 (2020). https://doi.org/10.1016/j.cej.2020.126084

    Article  CAS  Google Scholar 

  • L. Lei, P. Fengjiao, et al., Carbon hollow fiber membranes for a molecular sieve with precise-cutoff ultramicropores for superior hydrogen separation. Nat. Commun. 12(1), 1–9 (2021a). https://www.nature.com/articles/s41467-020-20628-9. 15 Dec 2021

    Article  Google Scholar 

  • L. Lei, A. LindbrÃ¥then, M. Hillestad, X. He, Carbon molecular sieve membranes for hydrogen purification from a steam methane reforming process. J. Membr. Sci. 627, 119241 (2021b)

    Article  CAS  Google Scholar 

  • Y. Liu, B. Sajjadi, W.Y. Chen, R. Chatterjee, Ultrasound assisted amine functionalized graphene oxide for enhanced CO2 adsorption. Fuel 247(February), 10–18 (2019). https://doi.org/10.1016/j.fuel.2019.03.011

    Article  CAS  Google Scholar 

  • C. Lu et al., Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energ. Fuel. 22(5), 3050–3056 (2008)

    Article  CAS  Google Scholar 

  • Y. Ma et al., Creation of well-defined ‘mid-sized’ micropores in carbon molecular sieve membranes. Angew. Chem. 131(38), 13393–13399 (2019)

    Article  Google Scholar 

  • N. MacDowell et al., An overview of CO2 capture technologies. Energy Environ. Sci. 3(11), 1645–1669 (2010)

    Article  CAS  Google Scholar 

  • E. Mehrvarz, A.A. Ghoreyshi, M. Jahanshahi, Surface modification of broom sorghum-based activated carbon via functionalization with Triethylenetetramine and urea for CO2 capture enhancement. Front. Chem. Sci. Eng. 11(2), 252–265 (2017)

    Article  CAS  Google Scholar 

  • R. Melouki, A. Ouadah, P.L. Llewellyn, The CO2 adsorption behavior study on activated carbon synthesized from olive waste. J. CO2 Util. 42(August), 101292 (2020). https://doi.org/10.1016/j.jcou.2020.101292

    Article  CAS  Google Scholar 

  • M. Mikkelsen, M. Jørgensen, F.C. Krebs, The Teraton challenge. A review of fixation and transformation of carbon dioxide. Energy Environ. Sci. 3(1), 43–81 (2010). https://pubs.rsc.org/en/content/articlehtml/2010/ee/b912904a. 27 Feb 2021

    Article  CAS  Google Scholar 

  • A. Mukhtar et al., CO2/CH2 adsorption over functionalized multi-walled carbon nanotubes; an experimental study, isotherms analysis, mechanism, and thermodynamics. Microporous Mesoporous Mater. 294, 109883 (2020). https://doi.org/10.1016/j.micromeso.2019.109883

    Article  CAS  Google Scholar 

  • P.H. Ngamou, M.E. Tchoua, O.G. Ivanova, W.A. Meulenberg, High-performance carbon molecular sieve membranes for hydrogen purification and pervaporation dehydration of organic solvents. J. Mater. Chem. A 7(12), 7082–7091 (2019)

    Article  CAS  Google Scholar 

  • N. Omidfar, A. Mohamadalizadeh, S.H. Mousavi, Carbon dioxide adsorption by modified carbon nanotubes. Asia Pac. J. Chem. Eng. 10(6), 885–892 (2015). https://onlinelibrary.wiley.com/doi/full/10.1002/apj.1925. 15 May 2022

    Article  CAS  Google Scholar 

  • F.E.C. Othman et al., Activated carbon nanofibers incorporated metal oxides for CO2 adsorption: effects of different type of metal oxides. J. CO2 Util. 45(December 2020), 101434 (2021). https://doi.org/10.1016/j.jcou.2021.101434

    Article  CAS  Google Scholar 

  • K. Rahimi, S. Riahi, M. Abbasi, Z. Fakhroueian, Modification of multi-walled carbon nanotubes by 1,3-Diaminopropane to increase CO2 adsorption capacity. J. Environ. Manag. 242(April), 81–89 (2019). https://doi.org/10.1016/j.jenvman.2019.04.036

    Article  CAS  Google Scholar 

  • S. Rajabzadeh et al., Effect of membrane structure on gas absorption performance and long-term stability of membrane contactors. Sep. Purif. Technol. 108, 65–73 (2013). https://doi.org/10.1016/j.seppur.2013.01.049

    Article  CAS  Google Scholar 

  • J.J. Roberts, L Stalker – Earth-Science Reviews, and undefined 2020. What have we learnt about CO2 leakage from CO2 release field experiments, and what are the gaps for the future? Elsevier. https://www.sciencedirect.com/science/article/pii/S0012825218304264. 27 June 2021

  • L.M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. J. Membr. Sci. 62(2), 165–185 (1991)

    Article  CAS  Google Scholar 

  • L.M. Robeson, The upper bound revisited. J. Membr. Sci. 320(1–2), 390–400 (2008)

    Article  CAS  Google Scholar 

  • S. Roy, R. Das, M.K. Gagrai, S. Sarkar, Preparation of carbon molecular sieve membrane derived from phenolic resin over macroporous clay-alumina based support for hydrogen separation. J. Porous. Mater. 23(6), 1653–1662 (2016). https://springer.longhoe.net/article/10.1007/s10934-016-0226-8. 15 Dec 2021

    Article  CAS  Google Scholar 

  • M. Rungta et al., Carbon molecular sieve structure development and membrane performance relationships. Carbon 115, 237–248 (2017). https://doi.org/10.1016/j.carbon.2017.01.015

    Article  CAS  Google Scholar 

  • M.M. Sabzehmeidani et al., Carbon based materials: a review of adsorbents for inorganic and organic compounds. Mater. Adv. 2(2), 598–627 (2021)

    Article  CAS  Google Scholar 

  • S.M. Saufi, A.F. Ismail, Fabrication of carbon membranes for gas separation – a review. Carbon 42(2), 241–259 (2004)

    Article  CAS  Google Scholar 

  • N. Sazali, A comprehensive review of carbon molecular sieve membranes for hydrogen production and purification. Int. J. Adv. Manuf. Technol. 107(5–6), 2465–2483 (2020)

    Article  Google Scholar 

  • R. Serna-Guerrero, E. Da’na, A. Sayari, New insights into the interactions of CO2 with amine-functionalized silica. Ind. Eng. Chem. Res. 47(23), 9406–9412 (2008)

    Article  CAS  Google Scholar 

  • U.W.R. Siagian et al., Membrane-based carbon capture technologies: membrane gas separation vs. membrane contactor. J. Nat. Gas Sci. Eng. 67, 172–195 (2019). https://doi.org/10.1016/j.jngse.2019.04.008

    Article  CAS  Google Scholar 

  • G. Srinivas, J. Burress, T. Yildirim, Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties. Energy Environ. Sci. 5(4), 6453–6459 (2012). https://pubs.rsc.org/en/content/articlehtml/2012/ee/c2ee21100a. 21 May 2022

    Article  CAS  Google Scholar 

  • A.M. Varghese, K.S.K. Reddy, S. Singh, G.N. Karanikolos, Performance enhancement of CO2 capture adsorbents by UV treatment: the case of self-supported graphene oxide foam. Chem. Eng. J. 386(October 2019), 124022 (2020). https://doi.org/10.1016/j.cej.2020.124022

    Article  CAS  Google Scholar 

  • D. Wu, J. Liu, Y. Yang, Y. Zheng, Nitrogen/oxygen co-doped porous carbon derived from biomass for low-pressure CO2 capture. Ind. Eng. Chem. Res. 59(31), 14055–14063 (2020)

    Article  CAS  Google Scholar 

  • R. Wu, W. Yue, Y. Li, A. Huang, Ultra-thin and high hydrogen permeable carbon molecular sieve membrane prepared by using polydopamine as carbon precursor. Mater. Lett. 295, 129863 (2021). https://doi.org/10.1016/j.matlet.2021.129863

    Article  CAS  Google Scholar 

  • Z. Yang et al., Surpassing Robeson upper limit for CO2/N2 separation with fluorinated carbon molecular sieve membranes. Chem 6(3), 631–645 (2020)

    Article  CAS  Google Scholar 

  • C. Zhang, W.J. Koros, Ultraselective carbon molecular sieve membranes with tailored synergistic sorption selective properties. Adv. Mater. 29(33), 1–6 (2017)

    Article  Google Scholar 

  • W. Zhang, G. Chen, W. Sun, J. Li, Effect of membrane structural characteristics on mass transfer in a membrane absorption process. Sep. Sci. Technol. 45(9), 1216–1227 (2010)

    Article  CAS  Google Scholar 

  • S. Zhao et al., Status and progress of membrane contactors in post-combustion carbon capture: a state-of-the-art review of new developments. J. Membr. Sci. 511, 180–206 (2016). https://doi.org/10.1016/j.memsci.2016.03.051

    Article  CAS  Google Scholar 

  • S. Zohdi, M. Anbia, S. Salehi, Improved CO2 adsorption capacity and CO2/CH4 and CO2/N2 selectivity in novel hollow silica particles by modification with multi-walled carbon nanotubes containing amine groups. Polyhedron 166, 175–185 (2019). https://doi.org/10.1016/j.poly.2019.04.001

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Hafizi .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Singapore Pte Ltd.

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Dara, A., Jafarbiglookarami, A., Hafizi, A. (2022). Carbon-Based Materials for Carbon Capture and Storage. In: Gupta, R. (eds) Handbook of Energy Materials. Springer, Singapore. https://doi.org/10.1007/978-981-16-4480-1_46-1

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-4480-1_46-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-4480-1

  • Online ISBN: 978-981-16-4480-1

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics

Navigation