Log in

Preparation of carbon molecular sieve membrane derived from phenolic resin over macroporous clay-alumina based support for hydrogen separation

  • Published:
Journal of Porous Materials Aims and scope Submit manuscript

Abstract

An asymmetric carbon membrane was prepared by coating alcoholic solution of industrial grade phenol formaldehyde novolac resin (PFNR) directly over indigenously prepared macroporous clay-alumina based ceramic support without using any microporous intermediate layer. The initial three coatings of 40 wt% PFNR solution was carried out using vacuum assisted dip coating method followed by fourth coating of same solution by normal dip coating method and final fifth coating of 60 wt% PFNR solution also by normal dip coating method. After each coating, the coated support was air dried in room temperature for 24 h and was subjected to pinhole test with nitrogen gas, failing which the coating process was repeated. The finally coated support was carbonized at 780 °C in nitrogen atmosphere to obtain a layer of carbon molecular sieve membrane (CMSM) over the support. FESEM and EDX analysis confirmed the formation of CMSM membrane directly over the support. HK method of pore size analysis revealed the presence of ultramicropores in the range of 4Å–8Å in the prepared CMSM. Single gas permeation test through the CMSM showed that it exhibits selectivities of 9.00, 14.28 and 10.21 for H2/N2, H2/CO2 and H2/CH4 systems respectively with H2 permeability of 27 × 10−9 mol.m−2.s−1.Pa−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. M. Kiyono, Carbon molecular sieve membranes for natural gas separations. Georgia Institute of Technology, PhD Thesis, (2010)

  2. S. Lagorsse, F.D. Magalhães, A. Mendes, Carbon molecular sieve membranes Sorption, kinetic and structural characterization. J. Membr. Sci. 241, 275–287 (2004)

    Article  CAS  Google Scholar 

  3. T.A. Centeno, A.B. Fuertes, Supported carbon molecular sieve membranes based on a phenolic resin. J. Membr. Sci. 160, 201–211 (1999)

    Article  CAS  Google Scholar 

  4. D. Grainger, Development of carbon membranes for hydrogen recovery. Norwegian University of Science and Technology, PhD Thesis, 2007

  5. B. Zhang, Y. Wu, Y. Lu, T. Wang, X. Jian, J. Qiu, Preparation and characterization of carbon and carbon/zeolite membranes from ODPA–ODA type polyetherimide. J. Membr. Sci. 474, 114–121 (2015)

    Article  CAS  Google Scholar 

  6. M.Y. Wey, H.H. Tseng, C.K. Chiang, Improving the mechanical strength and gas separation performance of CMS membranes by simply sintering treatment of α–Al2O3 support. J. Membr. Sci. 453, 603–613 (2014)

    Article  CAS  Google Scholar 

  7. W. Wei, G. Qin, H. Hu, L. You, G. Chen, Preparation of supported carbon molecular sieve membrane from novolac phenol–formaldehyde resin. J. Membr. Sci. 303, 80–85 (2007)

    Article  CAS  Google Scholar 

  8. A.S. Damle, S.K. Gangwal, V.K. Venkataraman, Carbon membranes for gas separation: developmental studies. Gas Sep. Purif. 8, 137–147 (1994)

    Article  CAS  Google Scholar 

  9. M.B. Rao, S. Sircar, Performance and pore characterization of nanoporous carbon membranes for gas separation. J. Membr. Sci. 110, 109–118 (1996)

    Article  CAS  Google Scholar 

  10. W. Wei, H. Hu, L. You, G. Chen, Preparation of carbon molecular sieve membrane from phenol–formaldehyde Novolac resin. Carbon 40, 445–467 (2002)

    Article  Google Scholar 

  11. X. Zhang, H. Hu, Y. Zhu, S. Zhu, Effect of carbon molecular sieve on phenol formaldehyde novolac resin based carbon membranes. Sep. Purif. Technol. 52, 261–265 (2006)

    Article  CAS  Google Scholar 

  12. H. Kita, H. Maeda, K. Tanaka, K. Okamoto, Carbon molecular sieve membrane prepared from phenolic resin. Chem. Lett. 26, 179–180 (1997)

    Article  Google Scholar 

  13. T.A. Centeno, A.B. Fuertes, Carbon molecular sieve membranes derived from a phenolic resin supported on porous ceramic tubes. Sep. Purif. Technol. 25, 379–384 (2001)

    Article  CAS  Google Scholar 

  14. N. Kishore, S. Sachan, K.N. Rai, A. Kumar, Synthesis and characterization of a nanofiltration carbon membrane derived from phenol–formaldehyde resin. Carbon 41, 2961–2972 (2003)

    Article  CAS  Google Scholar 

  15. N. Tahri, I. Jedidi, S. Ayadi, S. Cerneaux, M. Cretin, R.B. Amar, Preparation of an asymmetric microporous carbon membrane for ultrafiltration separation: application to the treatment of industrial dyeing effluent. Desalination and Water Treatment. doi: 10.1080/19443994.2015.1135826

  16. S. Ayadi, I. Jedidi, S. Lacour, S. Cerneaux, M. Cretin, R.B. Amar, Preparation and characterization of carbon microfiltration membrane applied to the treatment of textile industry effluents. Sep. Sci. Technol. 51, 1022–1029 (2016)

    Article  CAS  Google Scholar 

  17. M.A.L. Tanco, D.A.P. Tanaka, S.C. Rodrigues, M. Texeira, A. Mendes, Composite-alumina-carbon molecular sieve membranes prepared from novolac resin and boehmite. Part I: preparation, characterization and gas permeation studies. Int. J. Hydrogen Energy 40, 5653–5663 (2015)

    Article  Google Scholar 

  18. S. Sarkar, S. Bandyopadhyay, A. Larbot, S. Cerneaux, New clay–alumina porous capillary supports for filtration application. J. Membr. Sci. 392–393, 130–136 (2012)

    Article  Google Scholar 

  19. S.M. Saufi, A.F. Ismail, Fabrication of carbon membranes for gas separation—a review. Carbon 42, 241–259 (2004)

    Article  CAS  Google Scholar 

  20. C. Liang, G. Sha, S. Guo, Carbon membrane for gas separation derived from coal tar pitch. Carbon 37, 1391–1397 (1999)

    Article  CAS  Google Scholar 

  21. L.M. Robeson, The upper bound revisited. J. Membr. Sci. 320, 390–400 (2008)

    Article  CAS  Google Scholar 

  22. G. Polotskaya, M. Goikhman, I. Podeshvo, V. Kudryavtsev, Z. Pientka, L. Brozova, M. Bleha, Gas transport properties of polybenzoxazinoneimides and theirprepolymers. Polymer 46, 3730–3736 (2005)

    Article  CAS  Google Scholar 

  23. M.E. Rezac, B. Schoberl, Transport and thermal properties of poly (ether imide)/acetylene-terminated monomer blends. J. Membr. Sci. 156, 211–222 (1999)

    Article  CAS  Google Scholar 

  24. K. Tanaka, M.N. Islam, M. Kido, H. Kita, K.I. Okamoto, Gas permeation and separation properties of sulfonated polyimide membranes. Polymer 47, 4370–4377 (2006)

    Article  CAS  Google Scholar 

  25. D. Fritsch, N. Avella, Highly gas permeable poly(amide imide)s, in 36th IUPAC International Symposium on Macromolecules, August 4–9, Seoul, Korea, (1996), pp. 411

  26. M. Teraguchi, T. Masuda, Poly(diphenylacetylene) membranes with high gas permeability and remarkable chiral memory. Macromolecules 35, 1149–1151 (2002)

    Article  CAS  Google Scholar 

  27. K. Nagai, A. Higuchi, T. Nakagawa, Gas permeability and stability of poly(1-trimethylsilyl-1-propyne-co-1-phenyl-1-propyne) membranes. J. Polym. Sci. Part B Polym. Phys. 33, 289–298 (1995)

    Article  CAS  Google Scholar 

  28. D.H. Weinkauf, D.R. Paul, Gas transport properties of thermotropic liquidcrystalline copolyesters. II. The effects of copolymer composition. J. Polym. Sci. Part B Polym. Phys. 30, 837–849 (1992)

    Article  CAS  Google Scholar 

  29. G. Illing, K. Hellgardt, M. Schonert, R.J. Wakeman, A. Jungbauer, Towards ultrathin polyaniline films for gas separation. J. Membr. Sci. 253, 199–208 (2005)

    Article  CAS  Google Scholar 

  30. K. Nagai, A. Higuchi, T. Nakagawa, Bromination and gas permeability of poly (1-trimethylsilyl-1-propyne) membrane. J. Appl. Polym. Sci. 54, 1207–1217 (1994)

    Article  CAS  Google Scholar 

  31. A.C. Savoca, A.D. Surnamer, C.-F. Tien, Gas transport in poly (silylpropynes): the chemical structure point of view. Macromolecules 26, 6211–6216 (1993)

    Article  CAS  Google Scholar 

  32. K. Tanaka, M. Okano, H. Toshino, H. Kita, K.I. Okamoto, Effect of methyl substituents on permeability and permselectivity of gases in polyimides prepared from methyl-substituted phenylenediamines. J. Polym. Sci. Part B Polym. Phys. 30, 907–914 (1992)

    Article  CAS  Google Scholar 

  33. L. Yang, J. Fang, N. Meichin, K. Tanaka, H. Kita, K. Okamoto, Gas permeation properties of thianthrene-5,5,10,10-tetraoxide-containing polyimides. Polymer 42, 2021–2029 (2001)

    Article  CAS  Google Scholar 

  34. M. Macchione, J.C. Jansen, G. De Luca, E. Tocci, M. Longeri, E. Drioli, Experimental analysis and simulation of the gas transport in dense Hyflon AD60X membranes: influence of residual solvent. Polymer 48, 2619–2635 (2007)

    Article  CAS  Google Scholar 

  35. I. Pinnau, L.G. Toy, Gas and vapor transport properties of amorphous perfluorinated copolymer membranes based on 2,2-bistrifluoromethyl-4,5-difluoro-1,3-dioxole/tetrafluoroethylene. J. Membr. Sci. 109, 125–133 (1996)

    Article  CAS  Google Scholar 

  36. L.G. Toy, K. Nagai, B.D. Freeman, I. Pinnau, Z. He, T. Masuda, M. Teraguchi, Y.P. Yampolskii, Pure-gas and vapor permeation and sorption properties of poly[1-phenyl-2 [p(trimethylsilyl)phenyl] acetylene](PTMSDPA). Macromolecules 33, 2516–2524 (2000)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work has been jointly funded by CSIR 12th five year plan project (Project No.—CSC0115 & ESC 0104) and DST, GoI, project No. GAP0341. The authors thank Dr. Anshu Nanoti, Mr. Swapnil Divekar and Mrs. Pushpa Gupta, CSIR-Indian Institute of Petroleum, Dehradun—248 005, India for their kind help and valuable suggestions during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandeep Sarkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Das, R., Gagrai, M.K. et al. Preparation of carbon molecular sieve membrane derived from phenolic resin over macroporous clay-alumina based support for hydrogen separation. J Porous Mater 23, 1653–1662 (2016). https://doi.org/10.1007/s10934-016-0226-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10934-016-0226-8

Keywords

Navigation