Log in

Enhanced physical and chemical adsorption of carbon dioxide using bimetallic copper–magnesium oxide/carbon nanocomposite

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Mixed Cu and Mg oxides on nitrogen-rich activated carbon (AC) from Nypha fruticans biomass were characterized and their CO2 adsorption performance was measured. Highly dispersed CuO and MgO nanoparticles on AC was obtained using an ultrasonic-assisted impregnation method. The optimum adsorbent is 5%CuO–25%MgO/AC having good surface properties of high surface area, pores volume and low particles agglomeration. The higher content of MgO of 5%CuO–25%MgO/AC adsorbent contributes to less metal carbide formation which increases their porosity, surface area and surface basicity. XPS analysis showed some amount of nitrogen content on the surface of the adsorbent which increased their surface basicity towards selective CO2 adsorption. The presence of moisture accelerated the CO2 chemisorption to form a hydroxyl layer on the surfaces. The 5%CuO–25%MgO/AC adsorbent successfully adsorbed CO2 via physisorption and chemisorption of 14.8 and 36.2 wt%, respectively. It was significantly higher than fresh AC with better selectivity to CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. M. McGee. Earth CO2 homepage. https://www.CO2.earth/. Accessed 20 Jan 2017

  2. T. Ramesh, S. Su, X.X. Yu, B. Jun-Seok, Int. J. Greenh. Gas Control 13, 191 (2014)

    Google Scholar 

  3. W.N.R.W. Isahak, M.W.M. Hisham, M.A. Yarmo, J. Chem. 620346, 1 (2013)

    Article  Google Scholar 

  4. W.N.R.W. Isahak, N. Hamzah, N.A.M. Nordin, M.W.M. Hisham, M.A. Yarmo, Adv. Mater. Res. 620, 491 (2013)

    Article  Google Scholar 

  5. K.K. Han, Y. Zhou, Y. Chun, J.H. Zhu, J. Hazard. Mater. 203, 341 (2012)

    Article  Google Scholar 

  6. M.C. Almazàn-Almazàn, J.I. Paredes, M. Perez-Mendoza, M. Domingo-Garcia, I. Fernandez- Morales, A. Martinez-Alonso, F.J. Lopez-Garzon, J. Phys. Chem. B 110, 11327 (2006)

    Article  Google Scholar 

  7. S.C. Lee, B.Y. Choi, T.J. Lee, C.K. Ryu, Y.S. Ahn, J.C. Kim, Catal. Today 111, 385–390 (2006)

    Article  CAS  Google Scholar 

  8. S.C. Lee, H.J. Chae, S.J. Lee, B.Y. Choi, C.K. Yi, J.B. Lee, C.K. Ryu, J.C. Kim, Environ. Sci. Technol. 42, 2736 (2008)

    Article  CAS  Google Scholar 

  9. J. Baltrusaitis, J. Schuttlefield, E. Zeitler, V.H. Grassian, Chem. Eng. J. 170, 471 (2011)

    Article  CAS  Google Scholar 

  10. A. Hakim, T.S. Marliza, N.M.A. Tahari, R.W.N.W. Isahak, R.M. Yusop, W.M.M. Hisham, A.M. Yarmo, Ind. Eng. Chem. Res. 55, 7888 (2016)

    Article  CAS  Google Scholar 

  11. J. Baltrusaitis, V.H. Grassian, J. Phys. Chem. B 109, 12227 (2005)

    Article  CAS  Google Scholar 

  12. W.N.R.W. Isahak, Z.A.C. Ramli, M.W. Ismail, K. Ismail, M.R. Yusop, M.W.M. Hisham, M.A. Yarmo, J. CO2 Util. 2, 8 (2013)

    Article  CAS  Google Scholar 

  13. W.N.R.W. Isahak, Z.A.C. Ramli, M.W.M. Hisham, M.A. Yarmo, in AIP Conference Proceedings. vol. 1571, (2013), p. 882

  14. W.N.R.W. Isahak, Z.A.C. Ramli, W.Z. Samad, M.A. Yarmo, J. Teknol. 77, 105 (2015)

    Google Scholar 

  15. Z.-X. Li, K.-Y. Zou, X. Zhang, T. Han, Y. Yang, Inorg. Chem. 55, 6552 (2016)

    Article  CAS  Google Scholar 

  16. K.V. Kumar, K. Preuss, L. Lu, Z.X. Guo, M.M. Titirici, J. Phys. Chem. C 119, 22310 (2015)

    Article  CAS  Google Scholar 

  17. W.N.R.W. Isahak, Z.A.C. Ramli, M.W.M. Hisham, M.A. Yarmo, Renew. Sust. Energy Rev. 47, 93 (2015)

    Article  Google Scholar 

  18. J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, in Handbook of X-ray Photoelectron Spectroscopy, A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, ed. by J. Chastain (Physical Electronics Division, Perkin-Elmer Corporation Publisher, Minnesota, 1992)

    Google Scholar 

  19. A. Aroux, A. Gervasini, J. Phys. Chem. 94, 6371 (1990)

    Article  Google Scholar 

  20. A. Yasukawa, K. Kandori, T. Ishikawa, Calcif. Tissue Int. 72, 243 (2003)

    Article  CAS  Google Scholar 

  21. F.G. Pacheco, G.P. Voga, G.M. De Lima, J.C. Belchior, Fuel 106, 827 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank the Universiti Kebangsaan Malaysia for funding this project under research Project Code: GUP-2016-056 and DIP-2016-010. Appreciations are given to the Centre of Research and Innovation Management (CRIM) and Department of Chemical and Process Engineering, UKM for the instruments facilities support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wan Nor Roslam Wan Isahak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Isahak, W.N.R.W., Hasan, S.Z., Ramli, Z.A.C. et al. Enhanced physical and chemical adsorption of carbon dioxide using bimetallic copper–magnesium oxide/carbon nanocomposite. Res Chem Intermed 44, 829–841 (2018). https://doi.org/10.1007/s11164-017-3138-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-017-3138-6

Keywords

Navigation