Atmospheric Pressure Plasma Therapy for Wound Healing and Disinfection: A Review

  • Chapter
  • First Online:
Wound Healing Research

Abstract

In the past two decades, usage of non-thermal, cold atmospheric pressure (CAP) plasmas for medical application are widely studied as it can be used at room temperature and pressures without damaging the human skin. There are a lot of prospective applications of CAP plasma in various health-related applications like wound healing, cancer treatment, disinfection, dental, and many others. Cold atmospheric plasma has been explored for its use in dermatology, particularly for wound disinfection and as a curative remedy for skin diseases caused by pathogens, due to its antimicrobial properties. The cellular mechanisms involved in CAP plasma for wound healing have been well studied. Various plasma-based sources for wound healing have been developed. In this chapter, in the beginning, a brief overview of plasma and plasma sources along with its interaction with living cells is presented. In vitro and in vivo investigations for wound disinfection by various researchers along with clinical trials for wound healing have also been summarized. As this technology is novel, a lot of research and clearances are yet to be obtained for the medical community to be convinced of its safety and efficiency compared to the traditional and conventional therapeutic methods for wound healing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
GBP 19.95
Price includes VAT (United Kingdom)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
GBP 159.50
Price includes VAT (United Kingdom)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
GBP 199.99
Price includes VAT (United Kingdom)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abuzairi T, Okada M, Bhattacharjeeb S, Nagatsu M (2016) Surface conductivity dependent dynamic behaviour of an ultrafine atmospheric pressure plasma jet for micro scale surface processing. Appl Surf Sci 390:489–496

    Article  CAS  Google Scholar 

  • Amento EP, Beck LS (1991) TGF-beta and wound healing. Ciba Found Symp 157:115–123

    CAS  PubMed  Google Scholar 

  • Arjunan KP (2011) Ph. D Thesis on Plasma produced reactive oxygen and nitrogen species in angiogenesis. Drexel University, http://hdl.handle.net/1860/3763

  • Arndt S, Schmidt A, Karrera S, von Woedtke T (2018) Comparing two different plasma devices kINPen and Adtec SteriPlas regarding their molecular and cellular effects on wound healing. Clinical Plasma Medicine 9:24–33

    Article  Google Scholar 

  • Arndt S, Unger P, Wacker E, Shimizu T, Heinlin J, Li YF, Thomas HM, Morfill GE, Zimmermann JL, Bosserhoff AK, Karrer S (2013) Cold atmospheric plasma (CAP) changes gene expression of key molecules of the wound healing machinery and improves wound healing in-vitro and in-vivo. PLoS One 8(11):e79325–e79333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Attinger C, Wolcott R (2012) Clinically addressing biofilm in chronic wounds. Adv Wound Care 1(3):127–132

    Article  Google Scholar 

  • Babayan SE, Jeong JY, Tu VJ, Park J, Selwyn GS, Hicks RF (1998) Deposition of silicon dioxide films with an atmospheric-pressure plasma jet. Plasma Sources Sci Technol 7:286–288

    Article  CAS  Google Scholar 

  • Becker KH, Kogelschatz U, Schoenbach KH, Barker RJ (2005) Non-equilibrium air plasmas at atmospheric pressure. IOP Publishing Ltd

    Google Scholar 

  • Boudam MK, Moisan M, Saoudi B, Popodivici C, Gherardi N, Massines F (2006) Bacterial spore inactivation by atmospheric-pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. J Phys D Appl Phys 39:3494–3507

    Article  CAS  Google Scholar 

  • Bryant RA, Nix DP (2011) Acute & chronic wounds: current management concept, 4th edn. Mosby Elsevier, Missouri, pp 270–278

    Google Scholar 

  • Canard JM, Védrenne B (2001) Clinical application of argon plasma coagulation in gastrointestinal endoscopy: has the time come to replace the laser? Endoscopy 33:353–357

    Article  CAS  PubMed  Google Scholar 

  • Chatraie M, Torkaman G, Khani M, Salehi H, Shokr B (2018) In vivo study of non-invasive effects of non-thermal plasma in pressure ulcer treatment. Sci Rep 48(1):5621–5632

    Article  CAS  Google Scholar 

  • Chau TT, Kao KC, Blank G, Madrid F (1996) Microwave plasmas for low-temperature dry sterilization. Biomaterials 17:1273–1277

    Article  CAS  PubMed  Google Scholar 

  • Conrads H, Schmidt M (2000) Plasma generation and plasma sources, plasma sources Sci. Technol 9(2000):441–445

    CAS  Google Scholar 

  • Daeschlein G, Napp M, Lutze S, Arnold A, von Podewils S, Guembel D, Junger M (2015) Skin and wound decontamination of multidrug-resistant bacteria by cold atmospheric plasma coagulation. J Dtsch Dermatol Ges 13(2):143–150

    PubMed  Google Scholar 

  • Daeschlein G, Scholz S, Ahmed R, Majumdar A, Von Woedtke T, Haase H, Niggemeier M, Kindel E, Brandenburg R, Weltmann KD, Junger M (2012) Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. J Dtsch Dermatol Ges 10:509–515

    PubMed  Google Scholar 

  • Darmawati S, Rohmani A, Nuranic LH, Prastiyanto ME, Dewi SS, Salsabila N, Wahyuningtyas ES, Murdiya F, Sikumbang IM, Rohmah RN, Fatimah YA, Widiyanto A, Ishijima T, Sugama J, Nakatani T, Nasruddin N (2019) When plasma jet is effective for chronic wound bacteria inactivation, is it also effective for wound healing? Clin Plasma Med 14:100085–100094

    Article  Google Scholar 

  • Duchesne C, Frescaline N, Lataillade JJ, Rousseau A (2018) Comparative study between direct and indirect treatment with cold atmospheric plasma on in-vitro and in vivo models of wound healing. Plasma Med 8(4):379–401

    Article  Google Scholar 

  • Dunnill C, Patton T, Brennan J, Barrett J, Dryden M, Cooke J, Leaper D, Georgopoulos NT (2017) Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process. Int Wound J 14(1):89–96

    Article  PubMed  Google Scholar 

  • Duval A, Marinov I, Bousquet G, Gapihan G, Starikovskaia SM, Rousseau A, Janin A (2013) Cell death induced on cell cultures and nude mouse skin by non-thermal, nanosecond-pulsed generated plasma. PLoS One 8(12):e83001–e83012

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ehlbeck J, Schnabel U, Polak M, Winter J, Von Woedtke T, Brandenburg R, von dem Hagen T, Weltmann K-D (2011) Low temperature atmospheric pressure plasma sources for microbial decontamination. J Phys D Appl Phys 44:013002–013020

    Article  CAS  Google Scholar 

  • Eliasson B, Kogelschatz U (1991) Modelling and applications of silent discharge plasmas. IEEE Trans Plasma Sci 19(2):309–323

    Article  Google Scholar 

  • Emmert S, Brehmer F, Hänßle H, Helmke A, Mertens N, Ahmed R, Simon D, Wandke D, Maus-Friedrichs W, Däschlein G, Schön MP, Viölb W (2013) Atmospheric pressure plasma in dermatology: ulcus treatment and much more. Clin Plasma Med 1(1):24–29

    Article  Google Scholar 

  • Enoch S, Price P, Cellular, molecular and biochemical differences in the pathophysiology of healing between acute wounds, chronic wounds and wounds in the elderly., Article in World Wide Wounds, (2004)

    Google Scholar 

  • Ermolaeva SA, Varfolomeev AF, Chernukha MY, Yurov DS, Vasiliev MM, Kaminskaya AA, Moisenovich MM, Romanova JM, Murashev AN, Selezneva II, Shimizu T, Sysolyatina EV, Shaginyan IA, Petrov OF, Mayevsky EI, Fortov VE, Morfill GE, Naroditsky BS, Gintsburg AL (2011) Bactericidal effects of non-thermal argon plasma in-vitro, in biofilms and in the animal model of infected wounds. J Med Microbiol 60(1):75–83

    Article  CAS  PubMed  Google Scholar 

  • Fathollah S, Mirpour S, Mansouri P, Dehpour AR, Ghoranneviss M, Rahimi N, Naraghi ZS, Chalangari R, Chalangari KM (2016) Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats. Sci Rep 6:19144–19152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Folkman J (2006) Angiogenesis. Annu Rev Med 57:1–18

    Article  CAS  PubMed  Google Scholar 

  • Foster KW, Moy RL, Fincher EL (2008) Advances in plasma skin regeneration. J Cosmet Dermatol 7(3):169–179

    Article  PubMed  Google Scholar 

  • Fridman A, Freidman G (2013) Plasma Medicine, ISBN 978–0–470-68969-1. Plasma Medicine (1st Edition) Published by Wiley ISBN-13: 978–0–470-68969-1, ISBN: 0–470–68969-2

    Google Scholar 

  • Fridman G, Gutsol A, Shekhter AB, Vasilets VN, Fridman A (2008) Applied plasma medicine. Plasma Process Polym 5(6):503–533

    Article  CAS  Google Scholar 

  • Fritsch P (1998) Dermatologie und Venerologie. Springer, Berlin

    Book  Google Scholar 

  • Graves DB (2012) The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J Phys D Appl Phys 45:263001–263043

    Article  CAS  Google Scholar 

  • Haertel B, von Woedtke T, Weltmann KD, Lindequist U (2014) Non-thermal atmospheric pressure plasma possible application in wound healing. Biomol Ther 22(6):477–490

    Article  CAS  Google Scholar 

  • Haertel B, Wende K, von Woedtke T, Weltmann KD, Lindequist U (2011) Non-thermal atmospheric-pressure plasma can influence cell adhesion molecules on HaCaT-keratinocytes. Exp Dermatol 20(3):282–284

    Article  PubMed  Google Scholar 

  • Heinlin J, Morfill G, Landthaler M, Stolz W, Isbary G, Zimmermann JL, Shimizu T, Karrer S (2010) Plasma medicine: possible applications in dermatology. J Dtsch Dermatol Ges 8(12):968–976

    PubMed  Google Scholar 

  • Helmke A, Hoffmeister D, Berge F, Emmert S, Laspe P, Mertens N, Vioel W, Weltmann K-D (2011) Physical and microbiological characterization of Staphylococcus epidermidis inactivation by dielectric barrier discharge, Plasma Processes and Polymers b8:278–286

    Google Scholar 

  • Hinz B (2016) The role of myofibroblasts in wound healing. Curr Res Trans Med 64:171–177

    CAS  Google Scholar 

  • Hort K, Beier O, Wiegand C, Laaouina A, Fink S, Pfuch A, SchimanskiA GB, Hipler UC (2017) Screening test of a new pulsed plasma jet for medical application. Plasma Med 7(2):133–145

    Article  Google Scholar 

  • Hsu YC, Hsiao M, Wang LF, Chien YW, Lee WR (2006) Nitric oxide produced by iNOS is associated with collagen synthesis in keloid scar formation. Nitric Oxide-Biol Chem 14:327–334

    Article  CAS  Google Scholar 

  • Hunt TK, Hopf H, Hussain Z (2000) Physiology of wound healing. Adv Skin Wound Care 13:6–11

    CAS  PubMed  Google Scholar 

  • Isbary G, Heinlin J, Shimizu T, Zimmermann JL, Morfill G, Schmidt HU, Monetti R, Steffes B, Bunk W, Li Y, Klaempfl T, Karrer S, Landthaler M, Stolz W (2012) Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol 167(2):404–410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isbary G, Morfill G, Schmidt HU, Georgi M, Ramrath K, Heinlin J, Karrer S, Landthaler M, Shimizu T, Steffes B, Bunk W, Monetti R, Zimmermann JL, Pompl R, Stolz W (2010) A first prospective randomized controlled trial to decrease bacterial load using cold atmospheric argon plasma on chronic wounds in patients. Br J Dermatol 163(1):78–82

    Article  CAS  PubMed  Google Scholar 

  • Isbary G, Stolz W, Shimizu T, Monetti R, Bunk W, Schmidt H-U, Morfill GE, Klämpfl TG, Thomas HM, Heinlin J, Karrer S, Landthaler M, Zimmermann JL (2013) Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: results of an open retrospective randomized controlled study in vivo. Clin Plasma Med 1(2):25–30

    Article  Google Scholar 

  • Jeong JY, Babayan SE, Tu VJ, Park J, Henins I, Hicks RF, Selwyn GS (1998) Etching materials with atmospheric pressure plasma jet. Plasma Sources Sci Technol 7:282–285

    Article  CAS  Google Scholar 

  • Kalghatgi S, Friedman G, Fridman A, Clyne AM (2010) Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann Biomed Eng 38(3):748–757

    Article  PubMed  Google Scholar 

  • Kalghatgi S, Kelly CM, Cerchar E, Torabi B, Alekseev O, Fridman A, Gary Friedman G, Azizkhan-Clifford J (2011) Effects of non-thermal plasma on mammalian cells. PLoS One 6(1):e16270–e16280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang SU, Cho JH, Chang JW, Shin YS, Kim KI, Park JK, Yang SS, Lee JS, Moon E, Lee K, Kim CH (2014) Non thermal plasma induces head and neck cancer cell death: the potential involvement of mitogen activated protein kinase-dependent mitochondrial reactive oxygen species. Cell Death and Disease-Nature 13(5):1056–1066

    Article  CAS  Google Scholar 

  • Kim SJ, Chung TH, Bae SH (2010) Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet. Appl Phys Lett 97:23702–23706

    Article  CAS  Google Scholar 

  • Klämpfl TG, Isbary G, Shimizu T, Li Y, Zimmermann JL, Stolz W, Schlegel J, Morfill GE, Schmidt HU (2012) Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol 78(15):5077–5082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kogelschatz U (2003) Dielectric-barrier discharges: their history, discharge physics, and industrial applications. Plasma Chem Plasma Process 23:1–46

    Article  CAS  Google Scholar 

  • Kong MG, Kroesen G, Morfill G, Nosenko T, Shimizu T, van Dijk J, Zimmermann JL (2009) Plasma medicine: an introductory review. New J Phys 11:115012–115047

    Article  Google Scholar 

  • Kubinova S, Zaviskova K, Uherkova L, Zablotskii V, Churpita O, Lunov O, Dejneka A (2017) Non-thermal air plasma promotes the healing of acute skin wounds in rats. Sci Rep 7:45183–45193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurahashi T, Fujii J (2015) Roles of Antioxidative enzymes in wound healing. J Develop Biol 3(2):57–70

    Article  CAS  Google Scholar 

  • Lademann O, Kramer A, Richter H, Patzelt A, Meinke MC, Czaika V, Weltmann KD, Hartmann B, Koch S (2011) Skin disinfection by plasma-tissue interaction: comparison of the effectivity of tissue-tolerable plasma and a standard antiseptic. Skin Pharmacol Physiol 24:284–288

    Article  CAS  PubMed  Google Scholar 

  • Lademann J, Ulrich C, Patzelt A, Richter H, Kluschke F, Klebes M, Lademann O, Kramer A, Weltmann KD, Lange-Asschenfeldt B (2013) Risk assessment of the application of tissue-tolerable plasma on human skin. Clin Plasma Med 1:5–10

    Article  Google Scholar 

  • Laroussi M (2018) Plasma medicine: a brief introduction. Plasma 1:47–60

    Article  CAS  Google Scholar 

  • Laroussi M, Tendero C, Lu X, Alla S, Hynes WL (2006) Inactivation of bacteria by the plasma pencil. Plasma Process Polym 3:470–473

    Article  CAS  Google Scholar 

  • Lee OJ, Ju HW, Khang G, Sun PP, Rivera J, Cho JH, Park SJ, Eden JG, Park CH (2016) An experimental burn wound-healing study of non-thermal atmospheric pressure micro plasma jet arrays. J Tissue Eng Regen Med 10:348–357

    Article  CAS  PubMed  Google Scholar 

  • Lerouge S, Guignot C, Tabrizian M, Ferrier D, Yagoubi N, Yahia L (2000) Plasma-based sterilization: effect on surface and bulk properties and hydrolytic stability of reprocessed polyurethane electrophysiology catheters. J Biomed Mater Res 52:774–782

    Article  CAS  PubMed  Google Scholar 

  • Léveillé V, Coulombe S (2005) Design and preliminary characterization of a miniature pulsed RF APGD torch with downstream injection of the source of reactive species. Plasma Sources Sci Technol 14:467–476

    Article  CAS  Google Scholar 

  • Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing, 2nd edn. Wiley, New York

    Book  Google Scholar 

  • Lin A, Chernets N, Han J, Alicea Y, Dobrynin D, Fridman G, Freeman TA, Fridman A, Miller V (2015) Non-equilibrium di electrical barrier discharge treatment of mesenchymal stem cells: charges and reactive oxygen species play the major role in cell death. Plasma Process Polym 12:1117–1127

    Article  CAS  Google Scholar 

  • Liu M, Duan XP, Li YM, Yang DP, Long YZ (2017) Electrospun nano fibers for wound healing. Materials Sci Eng C: Materials Biol Appl 76:1413–1423

    Article  CAS  Google Scholar 

  • Lloyd G, Friedman G, Jafri S, Schulz G, Fridman A, Harding K (2010) Gas plasma: medical uses and developments in wound care. Plasma Process Polym 7(3–4):194–211

    Article  CAS  Google Scholar 

  • Lu X (2008) The roles of the various plasma agents in the inactivation of bacteria. J Appl Phys 104(5):53309–53313

    Article  CAS  Google Scholar 

  • Lu X (2009) An RC plasma device for sterilization of root canal of teeth. IEEE Trans Plasma Sci 37(5):668–673

    Article  CAS  Google Scholar 

  • Lu XP, Jiang ZH, **ong Q, Tang ZY, Hu XW, Pan Y (2008) An 11cm long atmospheric pressure cold plasma plume for applications of plasma medicine. Appl Phys Lett 92:081502–081504

    Article  CAS  Google Scholar 

  • Majumdar A, Sangole P (2016) Alternative approaches to wound healing, Chapter from: wound Healing - New insights into Ancient Challenges, ISBN: 978–953–51-2678-2

    Google Scholar 

  • Mohd Nasir N, Lee BK, Yap SS, Thong KL, Yap SL (2016) Cold plasma inactivation of chronic wound bacteria. Arch Biochem Biophys 605(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • Moisan M, Barbeau J, Moreau S, Pelletier J, Tabrizian M, Yahia LH (2001) Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. Int J Pharm 226:1–21

    Article  CAS  PubMed  Google Scholar 

  • Mone Y, Monnin D, Kremer N (2014) The oxidative environment: a mediator of interspecies communication that drives symbiosis evolution. Proc R Soc B Biol Sci. 22 281(1785):20133112–20133121

    Article  CAS  Google Scholar 

  • Nasruddina YN, Kanae M, Heni S, Rahayu E, Nur M, Ishijima T, Enomotod H, Uesugi Y, Sugama J, Nakatani T (2014) Cold plasma on full-thickness cutaneous wound accelerates healing through promoting inflammation, re-epithelialization and wound contraction. Clin Plasma Med 2(1):28–35

    Article  Google Scholar 

  • Nguyen DT, Orgill DP, Murphy GT (2009) The pathophysiologic basis for wound healing and cutaneous regeneration. In: Orgill DP, Blanco C (eds) Biomaterials for treating skin loss. Elsevier, pp 25–57

    Google Scholar 

  • Nugent M, Iozzo R (2000) Fibroblast growth Factor-2. Int J Biochem Cell Biol 32:115–120

    Article  CAS  PubMed  Google Scholar 

  • O’Connell D, Cox LJ, Hyland WB, McMahon SJ, Reuter S, Graham WG, Gans T, Currell FJ (2011) Cold atmospheric pressure plasma jet interactions with plasmid DNA. Appl Phys Lett 98(4):43701–43703

    Article  CAS  Google Scholar 

  • O'Connor N, Cahill O, Daniels S, Galvin S, Humphreys H (2014) Cold atmospheric pressure plasma and decontamination. Can it contribute to preventing hospital-acquired infections? J Hosp Infect 88(2):59–65

    Article  CAS  PubMed  Google Scholar 

  • Pan J (2010) A novel method of tooth whitening using cold plasma microjet driven by direct current in atmospheric-pressure air. IEEE Trans Plasma Sci 38(11):3143–3151

    Article  CAS  Google Scholar 

  • Patenall BL, Hathaway H, Sedgwick AC, Thet NT, Williams GT, Young AE, Allinson SL, Short RD, Jenkins ATA (2018) Limiting Pseudomonas aeruginosa biofilm formation using cold atmospheric pressure plasma. Plasma Med 8:269–277

    Article  Google Scholar 

  • Pereira-Lima JC, Busnello JV, Saul C (2000) High power setting argon plasma coagulation for the eradication of Barrett’s esophagus. Am J Gastroenterol 95:1661–1668

    Article  CAS  PubMed  Google Scholar 

  • Rieger S, Zhao H, Martin P, Abe K, Lisse TS (2015) The role of nuclear hormone receptors in cutaneous wound repair. Cell Biochem Funct 33(1):1–13

    Article  CAS  PubMed  Google Scholar 

  • Robson MC (1997) Wound infection. A failure of wound healing caused by an imbalance of bacteria. Surg Clin North Am 77(3):637–650

    Article  CAS  PubMed  Google Scholar 

  • Roth JR (1995) Industrial Plasma Engineering, Vol-1 Principles, IOP publishing Ltd.

    Google Scholar 

  • Salehi S, Shokri A, Khani MR, Bigdeli M, Shokri B (2015) Investigating effects of atmospheric-pressure plasma on the process of wound healing. Biointerphases 10:029504–029512

    Article  PubMed  CAS  Google Scholar 

  • Schmidt A, Bekeschus S, Wende K, Vollmar B, von Woedtke T (2017) A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol 26(2):156–162

    Article  CAS  PubMed  Google Scholar 

  • Scholz V, Pazlarova J, Souskova H, Khun J, Julak J (2015) Nonthermal plasma? A tool for decontamination and disinfection. Biotechnol Adv 33(6):1108–1119

    Article  CAS  Google Scholar 

  • Sen CK, Khanna S, Babior BM, Hunt TK, Ellison EC, Roy S (2002) Oxidant-induced vascular endothelial growth factor expression in human keratinocytes and cutaneous wound healing. J Biol Chem 277:33284–33290

    Article  CAS  PubMed  Google Scholar 

  • Shashurin A, Shneider MN, Dogariu A, Miles RB, Keidar M (2009) Temporal behavior of cold atmospheric plasma jet. Appl Phys Lett 94:231504–231507

    Article  CAS  Google Scholar 

  • Shekhter AB, Serezhenkov V, Rudenk T, Pekshev A, Vanin A (2005) Beneficial effect of gaseous nitric oxide on the healing of skin wounds. Nitric Oxide-Biol Chem 12(4):210–219

    Article  CAS  Google Scholar 

  • Stallmeyer B, Kampfer H, Kolb N, Pfeilschifter J, Frank S (1999) The function of nitric oxide in wound repair: inhibition of inducible nitric oxide-synthase severely impairs wound re epithelialization. J Investig Dermatol 113(6):1090–1098

    Article  CAS  PubMed  Google Scholar 

  • Stoffels E, Kieft IE, Sladek REJ (2003) Superficial treatment of mammalian cells using plasma needle. J Phys D Appl Phys 36:2908–2913

    Article  CAS  Google Scholar 

  • Stoffels E, Sakiyama Y, Graves B (2008) Cold atmospheric plasma: charged species and their interactions with cells and tissues. IEEE Trans Plasma Sci 36:1441–1457

    Article  CAS  Google Scholar 

  • Stojadinovic A, Carlson JW, Schultz GS, Davis TA, Elster EA (2008) Topical advances in wound care. Gynecol Oncol 111:S70–S80

    Article  PubMed  Google Scholar 

  • Theinkom F, Singer L, Cieplik F, Cantzler S, Weilemann H, Cantzler M, Hiller K-A, Maisch IDT, Zimmermann JL (2019) Antibacterial efficacy of cold atmospheric plasma against enterococcus faecalis planktonic cultures and biofilms in-vitro. PLoS One 26:1–15

    Google Scholar 

  • Ulrich C, Kluschke F, Patzelt A, Vandersee S, Czaika VA, Richter H, Bob A, Hutten J, Painsi C, Huge R, Kramer A, Assadian O, Lademann J, Lange-Asschenfeldt B (2015) Clinical use of cold atmospheric pressure argon plasma in chronic legulcers: a pilot study. J Wound Care 24(5):196–203

    Article  CAS  PubMed  Google Scholar 

  • Vandamme M, Robert E, Lerondel S, Sarron V, Ries D, Dozias S, Sobilo J, Gosset D, Kieda C, Legrain B, Pouvesle JM, Pape AL (2012) ROS implication in a new antitumor strategy based on non-thermal plasma. Int J Cancer 130(9):2185–2194

    Article  CAS  PubMed  Google Scholar 

  • Vasilets VN, Gutsol A, Shekhter AB, Fridman A (2009) Plasma medicine. High Energy Chem 43:229–233

    Article  CAS  Google Scholar 

  • Vasilets VN, Shekhter AB, Guller AE, Pekshev AU (2015) Air plasma generated nitric oxide in treatment of skin scars and articular musculoskeletal disorders: preliminary review of observations. Clin Plasma Med 3(1):32–39

    Article  Google Scholar 

  • Weltmann KD, von Woedtke T (2017) Plasma medicine — current state of research and medical application. Plasma Physics and Controlled Fusion 59(1):14031–14043

    Article  CAS  Google Scholar 

  • Wende K, Landsberg K, Lindequist U, Weltmann KD, von Woedtke T (2010) Distinctive activity on thermal atmospheric-pressure plasma jet on eukaryotic and prokaryotic cells in a cocultivation approach of keratinocytes and microorganisms. IEEE Trans Plasma Sci 38:2479–2485

    Article  CAS  Google Scholar 

  • Wiegand C, Fink S, Beier O, Horn K, Pfuch A, Schimanski A, Grünler B, Hipler UC, Elsner P (2016) Dose and time-dependent cellular effects of cold atmospheric pressure plasma evaluated in 3D skin models. Skin Pharmacol Physiol 29:257–265

    Article  CAS  PubMed  Google Scholar 

  • Woedtke TV, Emmert S, Metelmann HR, Stefan Rupf S, Weltmann KD (2013) Perspectives on cold atmospheric plasma (CAP) applications in medicine. Phy Plasmas. 27, 070501 (2020) 27:324–331

    Google Scholar 

  • Woo K, Ayello EA, Sibbald RG (2007) The edge effect: current therapeutic options to advance the wound edge. Adv Skin Wound Care 20:99–117

    Article  PubMed  Google Scholar 

  • **ong Z (2018) Cold Atmospheric Pressure Plasmas (CAPs) for skin wound healing, Chapter from plasma medicine–concepts and clinical applications TY - ISBN: 978–1–78923-112-0

    Google Scholar 

  • Xu Z, Shen J, Zhang Z, Ma J, Ma R, Zhao Y, Sun Q, Qian S, Zhang H, Ding L (2015) Inactivation effects of non-thermal atmospheric-pressure helium plasma jet on staphylococcus aureus biofilms. Plasma Process Polym 12:827–835

    Article  CAS  Google Scholar 

  • Xu MS, Shi XM, Cai JF, Chen SL, Li P, Yao CW (2015a) Dual effects of atmospheric pressure plasma jet on skin wound healing of mice. Wound Repair Regen 23:878–884

    Article  PubMed  Google Scholar 

  • Xu GM, Shi XM, Cai JF, Chen SL, Li P, Yao CW, Chang ZS, Zhang GJ (2015b) Dual effects of atmospheric pressure plasma jet on skin wound healing of mice. Wound Repair Regen 23:878–884

    Article  PubMed  Google Scholar 

  • Yao S, Wu Z, Han J, Tang X, Jiang B, Lu H, Yamamoto S, Kodama S (2015) Study of ozone generation in an atmospheric dielectric barrier discharge reactor. J Electrost 75:35–42

    Article  CAS  Google Scholar 

  • Zhang JP, Ling G, Chen QL, Zhang KY, Wang T, An GZ, Zhang X-F, Li HP, Ding GR (2019) Effects and mechanisms of cold atmospheric plasma on skin wound healing of rats. Contrib Plasma Physics 59:92–101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alphonsa Joseph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Joseph, A., Rane, R., Vaid, A. (2021). Atmospheric Pressure Plasma Therapy for Wound Healing and Disinfection: A Review. In: Kumar, P., Kothari, V. (eds) Wound Healing Research. Springer, Singapore. https://doi.org/10.1007/978-981-16-2677-7_19

Download citation

Publish with us

Policies and ethics

Navigation