kINPen® MED – The Precise Cold Plasma Jet

  • Chapter
  • First Online:
Textbook of Good Clinical Practice in Cold Plasma Therapy

Abstract

The cold atmospheric plasma (CAP) jet kINPen® MED is a CE-certified medical device class IIa, that was introduced on the European market in 2013 by neoplas med GmbH (former neoplas tools GmbH). It is an atmospheric pressure argon plasma jet, used for the treatment of infected wounds and pathogen-caused skin diseases. The cold atmospheric plasma (CAP) jet is used for the precise treatment of chronic and complex wounds that are difficult to heal with other standard wound care healing methods. The therapeutic effects of cold plasma are induced by reactive oxygen and nitrogen species, an irradiation in the UV light range, and a topical short-term increase in temperature. It results in antimicrobial, antifungal, antiviral and cell proliferation-stimulating effects on the plasma-treated surface. The safety and effectiveness of the cold atmospheric plasma (CAP) jet in antimicrobial impact and wound healing process have been confirmed in series of in vitro, in vivo and clinical studies. This chapter will outline the principles of the utmost fine jet of cold physical plasma, its intended use, successful applications in clinical trials and the future perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stratmann B, Costea T-C, Nolte C, Hiller J, Schmidt J, Reindel J, Masur K, Motz W, Timm J, Kerner W, Tschoepe D. Effect of cold atmospheric plasma therapy vs standard therapy placebo on wound healing in patients with diabetic foot ulcers. A randomized clinical trial. JAMA Network Open. 2020;3(7):e2010411.

    Google Scholar 

  2. Reuter S, von Woedtke T, Weltmann K-D. The kINPen—a review on physics and chemistry of the atmospheric pressure plasma jet and its applications. J Phys D Appl Phys. 2018;51:233001.

    Google Scholar 

  3. Isbary G, et al. Cold atmospheric plasma devices for medical issues. Expert Rev Med Devices. 2013;10:367–77.

    CAS  PubMed  Google Scholar 

  4. Heinlin J, et al. Plasma medicine: possible applications in dermatology. J Dtsch Dermatol Ges. 2010;8:968–76.

    PubMed  Google Scholar 

  5. Lackmann J-W, Bandow JE. Inactivation of microbes and macromolecules by atmospheric-pressure plasma jets. Appl Microbiol Biotechnol. 2014;98:6205–13.

    CAS  PubMed  Google Scholar 

  6. Schönebeck R. Comprehensive clinical plasma medicine. Springer; 2018.

    Google Scholar 

  7. Mann M, Tiede R, Ahmed R, et al. DIN SPEC 91315: general requirements for plasma sources in medicine. Beuth Verlag; 2014.

    Google Scholar 

  8. Bernhardt T, et al. Plasma medicine: applications of cold atmospheric pressure plasma in dermatology. Oxidative Med Cell Longev. 2019;2019:3873928.

    Google Scholar 

  9. Mann M, et al. Introduction to DIN-specification 91315 based on the characterization of the plasma jet kINPen® MED. Clin Plasma Med. 2016;4:35–45.

    Google Scholar 

  10. Lehmann A, Pietag F, Arnold T. Human health risk evaluation of a microwave-driven atmospheric plasma jet as medical device. Clin Plasma Med. 2017;7–8:16–23.

    Google Scholar 

  11. Bekeschus S, Schmidt A, Weltmann K-D, von Woedtke T. The plasma jet kINPen – a powerful tool for wound healing. Clin Plasma Med. 2016;4:19–28.

    Google Scholar 

  12. Schmidt A, et al. One year follow-up risk assessment in SKH-1 mice and wounds treated with an argon plasma jet. Int J Mol Sci. 2017;18:868.

    PubMed Central  Google Scholar 

  13. Daeschlein G, et al. Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. J Dtsch Dermatol Ges. 2012;10:509–15.

    PubMed  Google Scholar 

  14. Daeschlein G, et al. Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect. 2012;81:177–83.

    CAS  PubMed  Google Scholar 

  15. Lademann JM, et al. Risk assessment of the application of a plasma jet in dermatology. J Biomed Opt. 2009;14:1–6.

    Google Scholar 

  16. Ulrich C, et al. Clinical use of cold atmospheric pressure argon plasma in chronic leg ulcers: a pilot study. J Wound Care. 2015;24:196–203.

    CAS  PubMed  Google Scholar 

  17. Hartwig S, et al. Treatment of wound healing disorders of radial forearm free flap donor sites using cold atmospheric plasma: a proof of concept. J Oral Maxillofac Surg. 2017;75:429–35.

    PubMed  Google Scholar 

  18. Preissner S, et al. Adjuvant antifungal therapy using tissue tolerable plasma on oral mucosa and removable dentures in oral candidiasis patients: a randomised double-blinded split-mouth pilot study. Mycoses. 2016;59:467–75.

    CAS  PubMed  Google Scholar 

  19. Schultz GS, Chin GA, Moldawer L, Diegelmann RF. Principles of wound healing. In: Fitridge R, Thompson ME, editors. Mechanisms of vascular disease: a reference book for vascular specialists. Cham: Springer; 2011.

    Google Scholar 

  20. Schmidt A, Bekeschus S, Wende K, Vollmar B, von Woedtke T. A cold plasma jet accelerates wound healing in a murine model of full-thickness skin wounds. Exp Dermatol. 2017;26:156–62.

    CAS  PubMed  Google Scholar 

  21. Daeschlein G, et al. In vitro susceptibility of important skin and wound pathogens against low temperature atmospheric pressure plasma jet (APPJ) and dielectric barrier discharge plasma (DBD). Plasma Process Polym. 2012;9:380–9.

    CAS  Google Scholar 

  22. Izadjoo M, Zack S, Kim H, Skiba J. Medical applications of cold atmospheric plasma: state of the science. J Wound Care. 2018;27:S4–S10.

    PubMed  Google Scholar 

  23. Daeschlein G, et al. Skin and wound decontamination of multidrug-resistant bacteria by cold atmospheric plasma coagulation. J Dtsch Dermatol Ges. 2015;13:143–50.

    PubMed  Google Scholar 

  24. Arndt S, Schmidt A, Karrer S, von Woedtke T. Comparing two different plasma devices kINPen and Adtec SteriPlas regarding their molecular and cellular effects on wound healing. Clin Plasma Med. 2018;9:24–33.

    Google Scholar 

  25. Koban I, et al. Treatment ofCandida albicansbiofilms with low-temperature plasma induced by dielectric barrier discharge and atmospheric pressure plasma jet. New J Phys. 2010;12:73039.

    Google Scholar 

  26. Daeschlein G, Scholz S, von Woedtke T, Niggemeier M, Kindel E, Brandenburg R, Weltmann K-D, Junger M. In vitro killing of clinical fungal strains by low-temperature atmospheric-pressure plasma jet. IEEE Trans Plasma Sci. 2011;39:815–21.

    Google Scholar 

  27. Klebes M, et al. Combined antibacterial effects of tissue-tolerable plasma and a modern conventional liquid antiseptic on chronic wound treatment. J Biophotonics. 2015;8:382–91.

    CAS  PubMed  Google Scholar 

  28. Lademann J, et al. Comparison of the antiseptic efficacy of tissue-tolerable plasma and an octenidine hydrochloride-based wound antiseptic on human skin. Skin Pharmacol Physiol. 2012;25:100–6.

    CAS  PubMed  Google Scholar 

  29. Gan L, et al. Medical applications of nonthermal atmospheric pressure plasma in dermatology. J Dtsch Dermatol Ges. 2018;16:7–13.

    PubMed  Google Scholar 

  30. Häring NS. F. Behandlung einer superinfizierten Wunde mit Kaltplasma. JATROS Dermatologie Plast Chir. 2016;4:12–3.

    Google Scholar 

  31. Hilker L, von Woedtke T, Weltmann KD, Wollert H-G. Cold atmospheric plasma: a new tool for the treatment of superficial driveline infections. Eur J Cardio-thoracic Surg. 2017;51:186–7.

    Google Scholar 

  32. Barten MJ & Stratmann B. Kaltplasmatherapie zur Behandlung chronischer Wunden. Forum Sanitas – Das Inf Medizinmagazin. 2017;33–35.

    Google Scholar 

  33. Vandersee S, et al. Laser scanning microscopy as a means to assess the augmentation of tissue repair by exposition of wounds to tissue tolerable plasma. Laser Phys Lett. 2014;11:115701.

    Google Scholar 

  34. Fluhr JW, et al. In vivo skin treatment with tissue-tolerable plasma influences skin physiology and antioxidant profile in human stratum corneum. Exp Dermatol. 2012;21:130–4.

    PubMed  Google Scholar 

  35. Metelmann H-R, et al. Experimental recovery of CO2-laser skin lesions by plasma stimulation. Am J Cosmet Surg. 2012;29:52–6.

    Google Scholar 

  36. Metelmann H-R, et al. Scar formation of laser skin lesions after cold atmospheric pressure plasma (CAP) treatment: a clinical long term observation. Clin Plasma Med. 2013;1:30–5.

    Google Scholar 

  37. Blatti M, Zehnder T. Anwendung von Kaltplasma bei Patienten mit einem chronisch venösen Ulcus cruris. WUNDmanagement. 2018;12:294–6.

    Google Scholar 

  38. Schwetlick B. Kaltplasmatherapie - ein vielversprechender Therapieansatz für die Behandlung peripherer Ulcerationen und multiresistenter Erreger. Spitzenforsch. der Dermatologie - Alpha Informations-Gesellschaft mbH; 2017.

    Google Scholar 

  39. Schuster M, et al. Visible tumor surface response to physical plasma and apoptotic cell kill in head and neck cancer. J Craniomaxillofac Surg. 2016;44:1445–52.

    PubMed  Google Scholar 

  40. Schuster M, et al. Side effects in cold plasma treatment of advanced oral cancer—clinical data and biological interpretation. Clin Plasma Med. 2018;10:9–15.

    Google Scholar 

  41. Metelmann H-R, et al. Head and neck cancer treatment and physical plasma. Clin Plasma Med. 2015;3:17–23.

    Google Scholar 

  42. Metelmann H-R, et al. Clinical experience with cold plasma in the treatment of locally advanced head and neck cancer. Clin Plasma Med. 2018;9:6–13.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrike Sailer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sailer, U. (2022). kINPen® MED – The Precise Cold Plasma Jet. In: Metelmann, HR., von Woedtke, T., Weltmann, KD., Emmert, S. (eds) Textbook of Good Clinical Practice in Cold Plasma Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-87857-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87857-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87856-6

  • Online ISBN: 978-3-030-87857-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation