Abstract

Cold plasma medicine is an effective new form of physical therapy that complements anti-microbial wound treatment and can support wound healing. To make cold atmospheric plasma (CAP) therapy available in an outpatient setting as well as in clinics and at doctor’s offices, the plasma care®, a small, portable, battery-operated CAP medical device (class IIa, CE-mark approved) was developed based on the Surface Micro-Discharge (SMD) technology.

By using the SMD technology thousands of micro-discharges are generated on a thin film plasma source by applying high voltage. These discharges turn ambient air into plasma-activated air that contains long-lived reactive oxygen and nitrogen species (RONS). In the plasma care® the RONS diffuse within the enclosed volume of a sterile, disposable spacer from the plasma source to the wound surface. Here, the RONS inactivate bacteria including multidrug resistant organisms, and influence the cellular redox homeostasis, which can stimulate wound healing. The plasma care® underwent extensive preclinical testing and displayed a high level of performance regarding its anti-microbial efficacy and safe application to mammalian cells and tissues. A post-market clinical follow-up (PMCF) trial has commenced. Additionally, first case studies in veterinary and human patients provide encouraging results regarding wound treatment with the plasma care®.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References/Further Reading/Additional Resources

  1. Brehmer F, Haenssle HA, Daeschlein G, Ahmed R, Pfeiffer S, Görlitz A, Simon D, Schön MP, Wandke D, Emmert S. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm ® VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol. 2015;29:148–55.

    Article  CAS  Google Scholar 

  2. Daeschlein G, Scholz S, Ahmed R, et al. Cold plasma is well-tolerated and does not disturb skin barrier or reduce skin moisture. J Dtsch Dermatol Ges. 2012;10:509–15.

    PubMed  Google Scholar 

  3. Heinlin J, Zimmermann JL, Zeman F, et al. Randomized placebo-controlled human pilot study of cold atmospheric argon plasma on skin graft donor sites. Wound Repair Regen. 2013;21:800–7.

    Article  Google Scholar 

  4. Isbary G, Heinlin J, Shimizu T, et al. Successful and safe use of 2 min cold atmospheric argon plasma in chronic wounds: results of a randomized controlled trial. Br J Dermatol. 2012;167:404–10.

    Article  CAS  Google Scholar 

  5. Heyer K, Herberger K, Protz K, Glaeske G, Augustin M. Epidemiology of chronic wounds in Germany: analysis of statutory health insurance data: epidemiology of chronic wounds in Germany. Wound Repair Regen. 2016;24:434–42.

    Article  Google Scholar 

  6. Wunderl M, Unger, R, Kirsch J, Zimmermann JL. Plasmaeinrichtung zur Behandlung von Körperoberflächen. (DE 10 2018 209 735 A1) Deutsches Patent- und Markenamt. 2019. https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102018209735A1

  7. Shimizu T, Lachner V, Zimmermann JL. Surface microdischarge plasma for disinfection. Plasma Med. 2017;7:175–85.

    Article  Google Scholar 

  8. Morfill GE, Shimizu T, Steffes B, Schmidt H-U. Nosocomial infections—a new approach towards preventive medicine using plasmas. New J Phys. 2009;11:115019.

    Article  Google Scholar 

  9. Morfill G, Schimizu T, Li Y. Elektrodenanordnung und Plasmaquelle zur Erzeugung eines nicht-thermischen Plasmas sowie ein Verfahren zum Betreiben einer Plasmaquelle. (DE 10 2015 213 975 A1) Deutsches Patent- und Markenamt. 2018. https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102015213975A1.

  10. Sakiyama Y, Graves DB, Chang H-W, Shimizu T, Morfill GE. Plasma chemistry model of surface microdischarge in humid air and dynamics of reactive neutral species. J Phys D Appl Phys. 2012;45:425201.

    Article  Google Scholar 

  11. International Organization for Standardization. IEC 60601-1-11:2015: medical electrical equipment - part 1–11: general requirements for basic safety and essential performance - collateral standard: requirements for medical electrical equipment and medical electrical systems used in the home healthcare environment, 2nd ed. 2015.

    Google Scholar 

  12. von Woedtke T, Mann MS, Ahmed R, Dürr U, Gavenis K, Wurster S, Daeschlein G, Emmert S, Tiede R. DIN SPEC 91315: Allgemeine Anforderungen an medizinische Plasmaquellen. DIN Deutsches Institut für Normung e.V. 2014.

    Google Scholar 

  13. International Organization for Standardization. IEC 62304:2006: medical device software - software life cycle processes. International Organization for Standardization. Geneva. 1st ed; 2006.

    Google Scholar 

  14. International Organization for Standardization. ISO 10993-1:2018: biological evaluation of medical deices - part 1: evaluation and testing within a risk management process. International Organization for Standardization. Geneva. 5th ed; 2018.

    Google Scholar 

  15. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin. TROS Inkohärente Optische Strahlung - Teil 2: Messungen und Berechnungen von Expositionen gegenüber inkohärenter optischer Strahlung. 2013.

    Google Scholar 

  16. International Commission on Non-Ionizing Radiation Protection. Guidelines on limits of exposure to ultraviolet radiation of wavelengths between 180 nm and 400 nm (incoherent optical radiation). Health Phys. 2004;87:171–86.

    Article  Google Scholar 

  17. OSHA. The National Institute for Occupational Safety and Health (NIOSH) (1989) Ozone.

    Google Scholar 

  18. OSHA. The National Institute for Occupational Safety and Health (NIOSH). Nitric Oxide and Nitrogen Dioxide - Method 6014. NIOSH Man Anal Methods (NMAM) 1–4. 1994.

    Google Scholar 

  19. Theinkom F, Singer L, Cieplik F, Cantzler S, Weilemann H, Cantzler M, Hiller K-A, Maisch T, Zimmermann JL. Antibacterial efficacy of cold atmospheric plasma against Enterococcus faecalis planktonic cultures and biofilms in vitro. PLoS One. 2019;14:e0223925.

    Article  CAS  Google Scholar 

  20. Cieplik F, Späth A, Regensburger J, Gollmer A, Tabenski L, Hiller K-A, Bäumler W, Maisch T, Schmalz G. Photodynamic biofilm inactivation by SAPYR—an exclusive singlet oxygen photosensitizer. Free Radic Biol Med. 2013;65:477–87.

    Article  CAS  Google Scholar 

  21. Cieplik F, Pummer A, Regensburger J, Hiller K-A, Späth A, Tabenski L, Buchalla W, Maisch T. The impact of absorbed photons on antimicrobial photodynamic efficacy. Front Microbiol. 2015. https://doi.org/10.3389/fmicb.2015.00706.

  22. Maisch T, Bosserhoff AK, Unger P, Heider J, Shimizu T, Zimmermann JL, Morfill GE, Landthaler M, Karrer S. Investigation of toxicity and mutagenicity of cold atmospheric argon plasma. Environ Mol Mutagen. 2017;58:172–7.

    Article  CAS  Google Scholar 

  23. Bradley MO, Bhuyan B, Francis MC, Langenbach R, Peterson A, Huberman E. Mutagenesis by chemical agents in V79 Chinese hamster cells: a review and analysis of the literature. Mutat Res/Rev Genet Toxicol. 1981;87:81–142.

    Article  CAS  Google Scholar 

  24. Zimmermann J, Linner M, Cantzler S, Morfill G, Weilemann H, Cantzler M. Verfahren zum Prüfen und/oder Überwachen einer Elektrodenanordnung zur Erzeugung eines nicht-thermischen Plasmas. (DE 10 2018 209 729 A1) Deutsches Patent- und Markenamt. 2019. https://depatisnet.dpma.de/DepatisNet/depatisnet?action=bibdat&docid=DE102018209729A1.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia L. Zimmermann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zimmermann, J.L. et al. (2022). Plasma Care®. In: Metelmann, HR., von Woedtke, T., Weltmann, KD., Emmert, S. (eds) Textbook of Good Clinical Practice in Cold Plasma Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-87857-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-87857-3_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-87856-6

  • Online ISBN: 978-3-030-87857-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation