Deformation and Strength of Heat-Resistant Materials Under Static and Cyclic Loading

  • Chapter
  • First Online:
Materials and Strength of Gas Turbine Parts

Part of the book series: Advanced Structured Materials ((STRUCTMAT,volume 150))

  • 448 Accesses

Abstract

When discussing the issues of material deformation, macrodeformations (i.e., deformations averaged over the length and section of the sample or part) and microdeformations (varying from grain to grain) are usually distinguished. To assess the strength and plasticity of a material, the most widely used characteristics are determined by uniaxial tensile loading of cylindrical and sometimes flat section samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Altenbach H, Naumenko K (1997) Creep bending of thin-walled shells and plates by consideration of finite deflections. Computational Mechanics 19(6):490–495

    Article  MATH  Google Scholar 

  • Altenbach H, Naumenko K (2002) Shear correction factors in creep-damage analysis of beams, plates and shells. The Japan Society of Mechanical Engineers - International Journal Series A, Solid Mechanics and Material Engineering 45:77–83

    Google Scholar 

  • Altenbach H, Skrzypek JJ (eds) (1999) Creep and Damage in Materials and Structures, CISM International Centre for Mechanical Sciences, vol 399. Springer

    Google Scholar 

  • Altenbach H, Breslavsky D, Morachkovsky O, Naumenko K (2000a) Cyclic creep damage in thin-walled structures. The Journal of Strain Analysis for Engineering Design 35(1):1–11

    Article  Google Scholar 

  • Altenbach H, Kolarow G, Morachkovsky O, Naumenko K (2000b) On the accuracy of creep-damage predictions in thinwalled structures using the finite element method. Computational Mechanics 25:87–98

    Article  MATH  Google Scholar 

  • Altenbach H, Kushnevsky V, Naumenko K (2001) On the use of solid- and shell-type finite elements in creep-damage predictions of thinwalled structures. Archive of Applied Mechanics 71:164–181

    Article  MATH  Google Scholar 

  • Altenbach H, Huang C, Naumenko K (2002) Creep-damage predictions in thin-walled structures by use of isotropic and anisotropic damage models. The Journal of Strain Analysis for Engineering Design 37(3):265–275

    Article  Google Scholar 

  • Altenbach H, Gorash Y, Naumenko K (2008a) Steady-state creep of a pressurized thick cylinder in both the linear and the power law ranges. Acta Mechanica 195(1-4):263–274

    Article  MATH  Google Scholar 

  • Altenbach H, Naumenko K, Gorash Y (2008b) Creep analysis for a wide stress range based on stress relaxation experiments. International Journal of Modern Physics B 22(31-32):5413–5418

    Article  MATH  Google Scholar 

  • Altenbach H, Bolchoun A, Kolupaev VA (2014) Phenomenological yield and failure criteria. In: Altenbach H, Öchsner A (eds) Plasticity of Pressure-sensitive Materials, Springer, Berlin, Heidelberg, pp 49–152

    Chapter  Google Scholar 

  • Altenbach H, Breslavsky D, Naumenko K, Tatarinova O (2019) Two-time-scales and time-averaging approaches for the analysis of cyclic creep based on armstrong–frederick type constitutive model. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 233(5):1690–1700

    Google Scholar 

  • Aratyunyan RA (ed) (2004) Problema deformacionnogo stareniya i dlitel’nogo razrusheniya v mekhanike materialov (in Russ., Problem of strain aging and long-term fracture in material mechanics). Publishing house SPbSU, St. Petersburg

    Google Scholar 

  • Aratyunyan RA, Vakulenko AA (1965) O mnogokratnom nagruzhenii uprugo-plasticheskoy sredy (in Russ., On multiple loading of an elastic-plastic medium). Izvestiya AN SSSR – Mekhanika Tverdogo Tela (4):93–103

    Google Scholar 

  • Armstrong PJ, Frederick CO (1966) A mathematical representation of the multiaxial bauschinger effect. Report RD/BfN 731, Central Electricity Generating Board and Berkeley Nuclear Laboratories

    Google Scholar 

  • Backhaus G (1972) Zur Analytischen Erfassung des Allgemeinen Bauschingerefekts. Acta Mechanica 14(1):31–42

    Article  MATH  Google Scholar 

  • Barlat F, Lege DJ, Brem JC (1991) A six-component yield function for anisotropic materials. International Journal of Plasticity 7(7):693–712

    Article  Google Scholar 

  • Barré de Saint-Venant AJC (1870) Sur l’établissement des équations des mouvements intérieurs opérés dans les corps solides au delà des limites où l’élasticité pourrait les ramener à leur premier état. Comptes rendus de l’Académie des sciences, Paris 70:473–480

    MATH  Google Scholar 

  • Batdorf SB, Budiansky B (1949) A mathematical theory of plasticity based on concept of slip. Technical Note 1871, NACA, Washington

    Google Scholar 

  • Benallal A, Marquis D (1987) Constitutive equations for nonproportional cyclic elastoviscoplasticity. Journal of Engineering Materials and Technology 109(4):326–336

    Article  Google Scholar 

  • Besseling JR (1959) A theory of elastic, plastic and creep deformations of an initially isotropic material showing anisotropic strain-hardening, creep recovery, and secondary creep. Transaction of the American Society of Mechanical Engineering - Journal of Applied Mechanics 25(4):529–534

    Article  MATH  Google Scholar 

  • Besson J, Cailletaud G, Chaboche JL, Forest S, Blétry M (2010) Non-Linear Mechanics of Materials, Solid Mechanics and its Applications, vol 167. Springer, Dordrecht, Heidelberg, London & New York

    Google Scholar 

  • Betten J (2001) Mathematical modelling of materials behavior under creep conditions. Applied Mechanics Review 54(2):107 – 132

    Article  Google Scholar 

  • Betten J (2008) Creep Mechanics, 3rd edn. Springer, Berlin

    MATH  Google Scholar 

  • Bik DZ (1981) Modifikatsiya sootnosheniy uprugoplasticheskikh protsessov sredney krivizny (in Russ., Modification of the relations of elastoplastic processes of middle curvature). Vestnik MGU Mathematicians and Mechanics (5):103–106

    Google Scholar 

  • Birger IA (1964) Metody uprugikh resheniy v teorii plasticheskogo techeniya (in Russ., Elastic solution methods in the theory of plastic flow). IzvestiyaANSSSR - Mekhanika i Mashinostroyeniye (2):73–78

    Google Scholar 

  • Birger IA, Shorr BF, Demyanushko IV, Dul’nev RA, Sizova RN (eds) (1975) Termoprochnost’ detaley mashin (in Russ., Heat Resistance of Machine Parts). Mashinostroenie, Moscow

    Google Scholar 

  • Bishop JFW (1953) VI.Atheoretical examination of the plastic deformation of crystals by glide. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 44(348):51–64

    Google Scholar 

  • Bodner SR, Partom Y (1975) Constitutive equation, for elastic-viscoplastic strain hardening materials. Transaction of the American Society of Mechanical Engineering - Journal of Applied Mechanics 42:385–389

    Article  Google Scholar 

  • Bondar VS, Danshin VV (2008) Plastichnost’. Proportsonal’nyye i neproportsional’nyye nagruzheniya (in Russ., Plasticity. Proportional and Non-proportional Loads). FIZMATLIT, Moscow

    Google Scholar 

  • Borzdyka AM, Getsov LB (1978) Relaksaciya napryazhenii v metallakh i splavakh (in Russ., Stress Relaxation in Metals and Alloys), 2nd edn. Metallurgiya, Moscow

    Google Scholar 

  • Brovko GL, Georgievsky DV (eds) (2016) Uprugost’ i Neuprugost’. Materialy Mezhdunarodnogo nauchnogo simpoziuma po problemam mekhaniki deformiruyemykh tel, posvyashchennogo 105-letiyu so dnya rozhdeniya A.A. Il’yushina (Moskva, 20–21 yanvarya 2016 goda) (in Russ., Elasticity and Inelasticity. Materials of the International Scientific Symposium on Problems of Mechanics of Deformable Bodies, dedicated to the 105th anniversary of the birth of A.A. Ilyushin (Moscow, January 20–21, 2016)). Moscow University Press, Moscow

    Google Scholar 

  • Cailletaud G (1992) A micromechanical approach to inelastic behaviour of metals. International Journal of Plasticity 8(1):55–73

    Article  MATH  Google Scholar 

  • Chaboche JL (1975) Viscoplastic constitutive equations for the description of cyclic and anisotropic behavior of metals. Bulletin de l’Académie Polonaise des Sciences - Série des sciences techniques 25:33–41, 42–48

    Google Scholar 

  • Chaboche JL (1989) Constitutive equations for cyclic plasticity and cyclic viscoplasticity. International Journal of Plasticity 5:247 – 302

    Article  MATH  Google Scholar 

  • Chaboche JL (2008) A review of some plasticity and viscoplasticity constitutive equations. International Journal of Plasticity 24:1642 – 1693

    Article  MATH  Google Scholar 

  • Chaboche JL, Rousselier G (1983) On the plastic and viscoplastic constitutive equations — Part I: Rules developed with internal variable concept. Journal of Pressure Vessel Technology 105(2):153–158

    Article  Google Scholar 

  • Chizhik AA (1966) Vzaimosvyaz’ relaksacii napryazheniy i yavleniy polzuchesti v metallakh (in Russ., Relationship between stress relaxation and creep phenomena in metals). In: Svoystva I primeneniye zharoprochnykh splavov, Moscow, pp 69–76

    Google Scholar 

  • Chowdhury H, Naumenko K, Altenbach H, Krüger M (2017) Rate dependent tension-compressionasymmetry of ti-61.8 at% al alloy with long period superstructures at 1050° c. Materials Science and Engineering: A 700:503–511

    Article  Google Scholar 

  • Chowdhury H, Naumenko K, Altenbach H (2018) Aspects of power law flow rules in crystal plasticity with glide-climb driven hardening and recovery. International Journal of Mechanical Sciences 146-147:486 – 496

    Article  Google Scholar 

  • Coulomb C (1773) Sur une application des règles de maximis et minimis à quelques problèmes de statique relatifs à l’architecture. Mémoires de la Mathematique et de Physique 7:343–382

    Google Scholar 

  • Dafalias YF (1986) Bounding surface plasticity. I: Mathematical foundation and hypoplasticity. Journal of Engineering Mechanics 112(9):966–987

    Google Scholar 

  • de Saxcé G (1992) Une généralisation de l’inégalitêé de fenchel et ses applications aux lois constitutives. Comptes rendus de l’Académie des sciences, Paris - Série II 314:125–129

    MATH  Google Scholar 

  • de Saxcé G, Bousshine L (2002) Implicit standard materials. In: Weichert D, Maier G (eds) Inelastic Behaviour of Structures under Variable Repeated Loads, Springer, Vienna, International Centre for Mechanical Sciences (Courses and Lectures), vol 432, pp 59–76

    Google Scholar 

  • Desmorat R, Marull R (2011) Non-quadratic kelvin modes based plasticity criteria for anisotropic materials. International Journal of Plasticity 27(3):328–351

    Article  MATH  Google Scholar 

  • Drucker DC (1949) The significance of the criterion for additional plastic deformation of metals. Journal of Colloid Science 4:299–311

    Article  Google Scholar 

  • Drucker DC, Prager W (1952) Soil mechanics and plastic analysis for limit design. Quarterly of Applied Mathematics 10(2):157–165

    Article  MathSciNet  MATH  Google Scholar 

  • Eisenträger J, Naumenko K, Altenbach H, Lenz W (2013) Approximative methods to calculate notch stresses and strains for plasticity and creep. Forschung im Ingenieurwesen 77(3):71–80

    Article  Google Scholar 

  • Eisenträger J, Naumenko K, Altenbach H (2017) Robust approaches for the assesment of stress concentration in the creep range. In: Tonti A, di Gianfrancesco A (eds) Creep & Fracture in High Temperature Components - Design & Life Assessment Issues, 3rd ECCC Creep Conference, pp 493–501

    Google Scholar 

  • Eisenträger J, Naumenko K, Altenbach H, Gariboldi E (2017) Analysis of temperature and strain rate dependencies of softening regime for tempered martensitic steel. The Journal of Strain Analysis for Engineering Design 52(4):226–238

    Article  Google Scholar 

  • Eisenträger J, Naumenko K, Altenbach H (2018a) Calibration of a phase mixture model for hardening and softening regimes in tempered martensitic steel over wide stress and temperature ranges. The Journal of Strain Analysis for Engineering Design 53(3):156–177

    Article  Google Scholar 

  • Eisenträger J, Naumenko K, Altenbach H (2018b) Numerical implementation of a phase mixture model for rate-dependent inelasticity of tempered martensitic steels. Acta Mechanica 229(7):3051–3068

    Article  MathSciNet  MATH  Google Scholar 

  • Erickson GL, Harris K (1994) Ds and sx superalloys for industrial gas turbines. In: Coutsouradis D, Davidson JH, Ewald J, Greenfield P, Khan T, Malik M, Meadowcroft DB, Regis V, Scarlin RB, Schubert F, Thornton DV (eds) Materials for Advanced Power Engineering 1994 – Proceedings of a Conference held in Liège, Belgium, 3–6 October 1994, Springer, Netherlands, vol II, pp 1055–1074

    Google Scholar 

  • Frederick CO, Armstrong PJ (2007) A mathematical representation of the multiaxial bauschinger effect. Materials at High Temperatures 24(1):1–26

    Article  Google Scholar 

  • FridmanYB (1975a) Mekhanicheskie svoistva metallov (inRuss., Mechanical Properties of Metals), vol 1. Mashinostroenie, Moscow

    Google Scholar 

  • Fridman YB (1975b) Mekhanicheskie svoistva metallov (in Russ., Mechanical Properties of Metals), vol 2. Mashinostroenie, Moscow

    Google Scholar 

  • Gadenin MM (1976) Osobennosti razvitiya deformatsiy i nakopleniya povrezhdeniy pri dvukhchastotnom malotsiklovom nagruzhenii pri povyshennykh temperaturakh (in Russ., Features of the development of deformations and damage accumulation during two-frequency low-cycle loading at elevated temperatures). Mashinovedenie (1):69–77

    Google Scholar 

  • Gariboldi E, Naumenko K, Ozhoga-Maslovskaja O, Zappa E (2016) Analysis of anisotropic damage in forged Al-Cu-Mg-Si alloy based on creep tests, micrographs of fractured specimen and digital image correlations. Materials Science and Engineering: A 652:175 – 185

    Article  Google Scholar 

  • Getsov LB (1964) Methods of evaluating deterioration in heat-resisting materials (a survey). Industrial Laboratory 30(1):1707–1716

    Google Scholar 

  • Getsov LB (1971) Soprotivlenie polzuchesti nekotorykh zharoprochnykh stalei (in Russ., Creep resistance of some heat resistant steels). Raschety na Prochnost’ (15):426–438

    Google Scholar 

  • Getsov LB (1973) Materialy i prochnost’ detalei gazovykh turbin (in Russ., Materials and Strength of Gas Turbine Parts). Mashinostroenie, Leningrad

    Google Scholar 

  • Getsov LB (1978) Strain resistance of heat-resisting alloys under complex loading program conditions. Strength of Materials 10(6):638–643

    Article  Google Scholar 

  • Getsov LB (1979) Razrabotka kriteriyev razrusheniya materialov dlya obosnovaniya nadezhnosti detalei gazovykh turbin, rabotayushchikh pri nestacionarnykh rezhimakh (in Russ., Development of criteria for the destruction of materials to justify the reliability of parts of gas turbines operating under unsteady conditions). Abstract doctoral thesis, Institute for Strength Problems, Academy of Sciences of the Ukrainian SSR, Kiev Getsov LB (1996) Materialy i prochnost’ detalei gazovykh turbin (in Russ., Materials and Strength of Gas Turbine Parts), 3rd edn. Nedra, Moscow

    Google Scholar 

  • Getsov LB (1998) Model’ deformirovaniya dlya slozhnykh programm nagruzheniya (in Russ., Deformation model for complex loading programs). In: Nauchnyye trudy 2go mezhdunarodnogo seminara Sovremennyye problemy prochnosti im. V.I. Likhacheva, Staraya Russa, vol 2, pp 35–43

    Google Scholar 

  • Getsov LB (2001) Svoystva metallicheskikh materialov i elektronnaya baza dannykh (in Russ., properties of metallic materials and electronic database). In: Trudy 4-oy mezhdunarodnoy konferencii Nauchno-tekhnicheskiye problemy prognozirovaniya nadezhnosti i dolgovechnosti konstrukciy i metody ikh resheniya, St. Petersburg, pp 75–80

    Google Scholar 

  • Getsov LB (2004a) Baza dannykh po svoystvam materialov dlya provedeniya raschetov napryazhenno-deformirovannogo sostoyaniya konstruktsiy metodom konechnykh elementov (in Russ., Database on the properties of materials for calculating the stress-strain state of structures by the finite element method). In: Trudy SPbGPU, St. Petersburg, Mechanics of materials and structural strength, vol 489, pp 128–136

    Google Scholar 

  • Getsov LB (2004b) O razlichnoy prirode zavisyashchikh i nezavisyashchikh ot vremeni neobratimykh deformatsiyakh (in Russ., On the different nature of time-dependent and timeindependent irreversible deformations). In: Trudy SPbGPU, St. Petersburg, Mechanics of materials and structural strength, vol 489, pp 94–101

    Google Scholar 

  • Getsov LB (2010) Materialy i Prochnost’ Detalei Gazovykh Turbin (in Russ., Materials and Strength of Gas Turbine Parts), vol I. Gazoturbinnye Tekhnologii, Rybinsk

    Google Scholar 

  • Getsov LB, Kabelevskii MG (1978) The question of theories of plasticity and creep in cyclic nonisothermal loading. Strength of Materials 10(6):660–666

    Article  Google Scholar 

  • Getsov LB, Pospisil B (2009) Izokhronnyye diagrammy polzuchesti i metody ikh obrabotki (in Russ., Isochronous creep diagrams and methods of their processing). In: Petreniya YK, Getsova LB (eds) Prochnost’ materialov i resurs elementov energooborudovaniya, St. Petersburg, no. 296 in Trudy CKTI, p 140–153

    Google Scholar 

  • Getsov LB, Zhitkov DB (2000) K voprosu sozdaniya universal’noy elektronnoy bazy dannykh po sostavu i svoystvam metallov i splavov (in Russ., On the issue of creating a universal electronic database on the composition and properties of metals and alloys). Tyazheloye mashinostroyeniye (12):13–15

    Google Scholar 

  • Getsov LB, Kononov KM, Rebyakov YN (1976) K opredeleniyu ciklicheskogo predela uprugosti (in Russ., Determination of the cyclic elastic limit). Zavodskaya Laboratoriya (11):1400–1403

    Google Scholar 

  • Getsov LB, Gorskii SV, Kononov KM, Rebyakov YN (1978) Special features of cyclic deformation of heat-resistant materials at elevated temperatures. Strength of Materials 10(7):781–785

    Article  Google Scholar 

  • Getsov LB, Melnikov BE, Semenov AS (2000) K voprosu vybora modeley dlya raschetov napryazhenno-deformirovannogo sostoyaniya elementov mashinostroitel’nykh konstruktcii (in Russ., On the issue of choosing models for calculating the stress-strain state of elements of engineering structures). In: Physics of the processes of deformation and fracture and prediction of the mechanical behavior of materials. Proceedings of the XXXVI International Seminar Actual Problems of Strength, Vitebsk, vol 1, pp 40–47

    Google Scholar 

  • Getsov LB, Semenov AS, Golubovsky ER, Grishchenko AI, Semenov SG (2020) Osobennosti I yedinoye opisaniye I, II i III stadiy polzuchesti monokristallicheskikh zharoprochnykh splavov (in Russ., Features and uniform description of I, II, and III stages of the creep in single-crystal superalloys). Industrial laboratory Diagnostics of materials 86(3):44–54

    Google Scholar 

  • Gokhfel’d DA, Sadakov OS (1984) Plastichnost’ i polzuchest’v elementov konstrukcii pri povtornykh nagruzheniyakh (in Russ., Plasticity and Creep in Structural Elements During Repeated Loading). Mashinostroenie, Moscow

    Google Scholar 

  • Gokhfel’d DA, Kononov KM, Sadakov OS, Chernyaskiy OF (1978) Problemy prochnosti termonapryazhennykh konstrukcii (in Russ., Problems of the Strength of Thermally Stressed Structures), Mekhanika deformiruyemogo tela, vol 12. VINITI AN SSSR, Moscow

    Google Scholar 

  • Gokhfeld DA, Getsov LB, Kononov KM (1996) Mekhanicheskiye svoystva staley i splavov pri nestatsionarnom nagruzhenii (in Russ., Mechanical Properties of Steels and Alloys under Nonstationary Loading). Ural Branch of RAS, Yekaterinburg

    Google Scholar 

  • Grishchenko AI, Semenov AS, Getsov LB (2015) Modeling inelastic deformation of single crystal superalloys with account of γ/γ’ phases evolution. Materials Physics and Mechanics 24(4):325–330

    Google Scholar 

  • Grubin AN (1970) Raschet na prochnost’ yelochnogo zamka lopatok turbin (in Russ., Calculation of the Strength of the Herringbone Lock of Turbine Blades). Mashinostroenie, Leningrad

    Google Scholar 

  • Gusenkov AP (1979) Prochnost’ pri izotermicheskikh i neizotermicheskikh malociklovom nagruzhenii (in Russ., StrengthUnder Isothermal andNon-isothermal Low-cycle Loading). Nauka, Moscow

    Google Scholar 

  • Halphen B, Nguyen QS (1974) Plastic and visco-plastic materials with generalized potential. Mechanics Research Communications 1(1):43–47

    Article  MATH  Google Scholar 

  • Hayhurst DR (1994) The use of continuum damage mechanics in creep analysis for design. The Journal of Strain Analysis for Engineering Design 25(3):233–241

    Article  Google Scholar 

  • Hencky H (1924) Zur theorie plastischer deformationen und der hierdurch im material hervorgerufenen nachspannungen. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 4(4):323–334

    Article  MATH  Google Scholar 

  • Hencky H (2020) On the theory of plastic deformations and the residual stresses caused by them in the material. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift fürAngewandte Mathematik und Mechanik 100(3):e202002019, translated from the German original: Zur Theorie plastischer Deformationen und der hierdurch im Material hervorgerufenen Nachspannungen, Z Angew Math Mech 4(1924):323-334 by O. Bruhns with kind support of B. Brechan and B. Nijboer. Certain misprints of Hencky’s and a small mistake of minor importance in Eq. (4) and the respective consequences in subsequent relationships have been tacitly corrected in our translation Hill R (1950) The Mathematical Theory of Plasticity. Clarendon Press, Oxford

    Google Scholar 

  • Huber MT (1904) Własciwa praca odkształcenia jako miara wyte¸zenia materyału. przyczynek do podstawteorii wytrzymałosci. Czasopismo Techniczne XXII(3–6):80–81, 49–50, 61–62, 80–81, translated from the original in Polish and published in Arch Mech 56, 3, pp. 173–190, Warszawa 2004

    Google Scholar 

  • Ilyushin AA (1954) O svyazi mezhdu napryazheniyami i malymi deformatsiyami v mekhanike sploshnykh sred (in Russ. On the relationship between stresses and small deformations in continuum mechanics). Prikladnaya Matematika i Mekhanika 18(6):641–666

    Google Scholar 

  • Ilyushin AA (1971) Resheniye zadach mekhaniki sploshnoy sredy s odnovremennym ispol’zovaniyem EVM i SN (in Russ., Solving problems of continuum mechanics with the simultaneous use of computers and SN). In: Uprugost’ i neuprugost’ (in Russ., Elasticity and Inelasticity), Moscow State University Publishing House, Moscow

    Google Scholar 

  • Ilyushin AA (2016) Plastichnost’: osnovy obshchey matematicheskoy teorii (in Russ., Plasticity: Foundations of General Mathematical Theory), 2nd edn. URSS-LENAND, Moscow

    Google Scholar 

  • Ilyushin AA, Lensky VS (1959) Soprotivleniye materialov (in Russ., Resistance of Materials). Fizmatgiz, Moscow

    Google Scholar 

  • Ishlinsky AY (1954) Obshchaya teoriya plastichnosti s lineynym uprochneniyem (in Russ., General theory of plasticity with linear hardening). Ukrainskiy matematicheskiy zhurnal 6(3):314–325

    Google Scholar 

  • Ishlinsky AY, Ivlev DD (2003) Matematicheskaya teoriya plastichnosti (in Russ., Mathematical Theory of Plasticity). FIZMATLIT, Moscow

    Google Scholar 

  • Ivlev DD, Bykovtsev GI (1971) Teoriya uprochnyayushchegosya plasticheskogo tela (in Russ., The Theory of a Hardening Plastic Body). Nauka, Moscow

    Google Scholar 

  • Izotov IN, Kuznetsov NP, Melnikov BE, Mityukov AG, Musienko AY (2000) New variants of the multisurface theory of plasticity: comparison with the experimental data. In: Melker AI (ed) Third International Workshop on Nondestructive Testing and Computer Simulations in Science and Engineering, International Society for Optics and Photonics, SPIE, vol 4064, pp 362–367

    Google Scholar 

  • Kabelevsky MG (1972) Ciklicheskoye nestatsionarnoye nagruzheniye turbinnogo diska (in Russ., cyclic unsteady loading of a turbine disk). Izvestiya AN SSSR - Mekhanika Tverdogo Tela (1):169–174

    Google Scholar 

  • Kachanov LM (1949) Hekotorye voprosy teorii polzuchesti (in Russ., Some Questions of Creep Theory). Gostekhizdat, Moscow

    Google Scholar 

  • Kachanov LM (1950) K teorii neustanovivsheisya polzuchesti (in Russ., On the theory of transient creep). Prikladnaya Matematika i Mekhanika XIII(4):381–390

    Google Scholar 

  • Kachanov LM (1958) O vremeni razrusheniya v usloviyakh polzuchesti (in Russ., On the time to rupture under creep conditions). Izvestiya AN SSSR Otdelenie Tekhnicheskikh Nauk (8):26–31

    Google Scholar 

  • Kachanov LM (1971a) Foundations of the Theory of Plasticity, North-Holland Series in Applied Mathematics and Mechanics, vol 12. North-Holland, Doordrecht

    Google Scholar 

  • Kachanov LM (1971b) K voprosu ob eksperimental’nom postroyenii poverkhnostey tekuchesti (in Russ., On the question of the experimental construction of yield surfaces). Izvestiya AN SSSR - Mekhanika Tverdogo Tela (4):177–179

    Google Scholar 

  • Kachanov LM (1979) Teoriya polzuchesti (in Russ., Creep Theory). Fizmatgiz, Moscow

    Google Scholar 

  • Kachanov LM (1986) Introduction to Continuum Damage Mechanics. Martinus Nijhoff, Dorddrecht

    Book  MATH  Google Scholar 

  • Kachanov LM, Kac SN (1949) O teoriyakh polzuchesti (in Russ., On the creep theories). Kotlostroenie (1)

    Google Scholar 

  • Kadashevich Y, Pomytkin S (2009) Endokhronnaya teoriya neuprugosti dlya razuprochnyayushchikhsya materialov s uchetom bol’shikh deformatsiy (in Russ., Endochronic theory of inelasticity for softening materials taking into account large deformationsy). In: Sovremennyye problemy resursa materialov i konstrukciy. Trudy 3ey shkoly-seminara MAMI, Moscow, pp 158–165

    Google Scholar 

  • Kadashevich YI (1967) Obobshchennaya teoriya plasticheskogo techeniya (in Russ., Generalized theory of plastic flow). In: Issledovaniya po uprugosti i plastichnosti, vol 6, Izdate’stvo Leningradskogo Gosudarstvennogo universiteta, Leningrad, pp 25–38

    Google Scholar 

  • Kadashevich YI, Mosolov AB (1989) Endokhronnyye teorii plastichnosti: osnovnyye polozheniya, perespektivy razvitiya (in Russ., Endochronic theories of plasticity: basic provisions, development prospects). Izvestiya AN SSSR - Mekhanika Tverdogo Tela (1):161–168

    Google Scholar 

  • Katanaha NA, Getsov LB (2011) Characteristics of creep in conditions of long operation. Materiali in tehnologije / Materials and technology 45(6):523–527

    Google Scholar 

  • Katanakha NA, Semenov AS, Getsov LB (2013a) Modifikatsiya modeli polzuchesti povyshennoy tochnosti prognoza pri bol’shoy dlitel’nosti nagruzheniya i identifikatsiya yeye parametrov (in Russ., Modification of creep model of higher forecast accuracy at long loading time and identification of its parameters). Deformaciya i Razrushenie Materialov (10):16–23

    Google Scholar 

  • Katanakha NA, Semenov AS, Getsov LB (2013b) Unified model of steady-state and transient creep and identification of its parameter. Strength of Materials 45(4):495–505

    Article  Google Scholar 

  • Khazhinsky GM (2011) Modeli deformirovaniya i razrusheniya metallov (in Russ., Deformation and Fracture Models of Metals). Nauchnyi Mir, Moscow

    Google Scholar 

  • Kheyn YA (1966) Ob opisanii polzuchesti metallov s uchetom uprugogo posledeystviya (in Russ., On the description of the creep of metals taking into account the elastic aftereffect). Inzhenernyi Zhurnal - Mekhanika Tverdogo Tela (2):103–105

    Google Scholar 

  • Klyushnikov VD (1979) Matematicheskaya teoriya plastichnosti (in Russ., Mathematical Theory of Plasticity). Izdatelstvo Moskovskogo Gosudarstvennogo universiteta, Moscow

    Google Scholar 

  • Klyushnikov VD (1994) Fiziko-matematicheskiye osnovy prochnosti i plastichnosti (in Russ., Physical and Mathematical Foundations of Strength and Plasticity). Izdatel’stvo Moskovskogo Gosudarstvennovogo universiteta, Moscow

    Google Scholar 

  • Koiter WT (1960) General theorems for elastic-plastic solids. In: Sneddon I, Hill R (eds) Progress in Solid Mechanics, North Holland, Dordrecht, vol VI, p 165–221

    Google Scholar 

  • Kolupaev VA (2018) Equivalent Stress Concept for Limit State Analysis, Advanced Structured Materials series, vol 86. Springer, Cham

    MATH  Google Scholar 

  • Korotkikh YG (1981) Uravneniya teorii termovyazkoplastichnosti s kombinirovannym uprochneniyem (in Russ., Equations of the theory of thermoviscoplasticity with combined hardening). In: Makhutov NA, Gadenin MM, Gokhfeld DA (eds) Uravneniya sostoyaniya pri malociklovom nagruzhenii, Nauka, Moscow, pp 129–167

    Google Scholar 

  • Kostenko Y, Naumenko K (2017) Prediction of stress relaxation in power plant components based on a constitutive model. In: Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, vol 50954, p V008T29A017

    Google Scholar 

  • Kostenko Y, Almstedt H, Naumenko K, Linn S, Scholz A (2013) Robust methods for creep fatigue analysis of power plant components under cyclic transient thermal loading. In: ASME Turbo Expo 2013: Turbine Technical Conference and Exposition, The American Society of Mechanical Engineers, p V05BT25A040

    Google Scholar 

  • Kowalewski ZL, Hayhurst DR, Dyson BF (1994) Mechanisms-based creep constitutive equations for an aluminium alloy. The Journal of Strain Analysis for Engineering Design 29(4):309–316

    Article  Google Scholar 

  • Krempl E (1999) Creep-plasticity interaction. In: Altenbach H, Skrzypek J (eds) Creep and Damage in Materials and Structures, CISM Lecture Notes, vol 399, Springer, Wien, New York, pp 285–348

    Chapter  Google Scholar 

  • Krivtsov AM (2007) Deformirovaniye i razrusheniye tverdykh tel s mikrostrukturoy (in Russ., Deformation and Fracture of Microstructured Solids). FIZMATLIT, moscow

    Google Scholar 

  • Kuznecov BA (1964) Izuchenie nachal’noi stadii plasticheskoi deformacii metallicheskikh polikristallov polyarizacionno-opticheskim metodom (in Russ., Study of the initial stage of plastic deformation of metal polycrystals by the polarization-optical method. Metallovedenie (8):35–42

    Google Scholar 

  • Lamba HS, Sidebottom OM (1978) Cyclic plasticity for nonproportional paths: Part 1 — Cyclic hardening, erasure of memory, and subsequent strain hardening experiments. Journal of Engineering Materials and Technology 100(1):96–103

    Article  Google Scholar 

  • Längler F, Naumenko K, Altenbach H, Ievdokymov M (2014) A constitutive model for inelastic behavior of casting materials under thermo-mechanical loading. The Journal of Strain Analysis for Engineering Design 49(6):421–428

    Article  Google Scholar 

  • Lanin AA, Balina VS (2006) Zharoprochnye metally i splavy: Spravochnye materialy (in Russ., Heat Resistant Metals and Alloys: Reference Materials). Energotekh, St. Petersburg

    Google Scholar 

  • Leckie FA, Hayhurst DR (1977) Constitutive equations for creep rupture. Acta Metallurgica 25:1059–1070

    Article  Google Scholar 

  • Lemaitre J (1972) Viscoplastic models. In: Proceedings of the Conference of the Polish Academy of science, Warsaw, pp 1089–1098

    Google Scholar 

  • Lepin GF (1976) Polzuchest’ metallov i kriterii zharoprochnosti (in Russ., Creep of Metals and Criteria for Heat Resistance). Metallurgiya, Moscow

    Google Scholar 

  • Levy M (1870) Mémoire sur les équations générales des mouvements intérieurs des corps solides ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état. Comptes rendus de l’Académie des sciences, Paris 70:1323–1325

    MATH  Google Scholar 

  • Levy M (1871) Extrait du mémoire sur les équations générales des mouvements intérieurs des corps solides ductiles au delà des limites où l’élasticité pourrait les ramener à leur premier état; présenté le 20 juin 1870. Journal de Mathématiques Pures et Appliquées 2e série 16:369–371

    Google Scholar 

  • Likhachev VA (1966) Issledovaniya polzuchesti pri peremennykh temperaturakh (in Russ., Creep studies at variable temperatures). Zavodskaya Laboratoriya (1):70–86

    Google Scholar 

  • Likhachev VA, Malinin VG (1993) Strukturno-analiticheskaya teoriya prochnosti (in Russ., Structural-analytical Theory of Strength). Nauka, St. Petersburg

    Google Scholar 

  • Lin TH (1957) Analysis of elastic and plastic strains of a face-centred cubic crystal. Journal of the Mechanics and Physics of Solids 5(2):143–149

    Article  MathSciNet  MATH  Google Scholar 

  • Lin TH (1971) Physical theory of plasticity. In: Yih CS (ed) Advances in Applied Mechanics, vol 11, Elsevier, pp 255–311

    Google Scholar 

  • Lode W (1926) Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel. Zeitschrift für Physik 36(11-12):913–939

    Article  Google Scholar 

  • Lokoshchenko AM (ed) (2016) Polzuchest’ i dlitel’naya prochnost’ metallov (in Russ., Creep and Long-term Strength of Metals). FIZMATLIT, Moscow

    Google Scholar 

  • Ludwik P (1909) Elemente der Technologischen Mechanik. Springer, Berlin/Heidelberg Makhutov NA (1981) Deformacionnye kriterii razrusheniya i raschet elementov konstrukcii na prochnost’ (in Russ., Deformation Criteria of Fracture and Structural Strength Analysis). Mashinostroenie, Moscow

    Google Scholar 

  • Malinin NN (1975) Prikladnaya teoriya plastichnosti i polzuchesti (in Russ., Applied Theory of Plasticity and Creep). Mashinostroenie, Moscow

    Google Scholar 

  • Malinin NN, Khad**sky GM (1972) Theory of creep with anisotropic hardening. International Journal of Mechanical Sciences 14(4):235–246

    Article  MATH  Google Scholar 

  • Malinin NN, Khazhinsky GK (1969) K postroyeniyu teorii polzuchesti s anizotropnym uprochneniyem (in Russ., On the construction of creep theory with anisotropic hardening). Izvestiya AN SSSR - Mekhanika Tverdogo Tela (3):148–152

    Google Scholar 

  • Malmeister AK (1957) Uprugost’ i neuprugost’ betona (in Russ., Elasticity and Inelasticity of Concrete). Izdatelstvo AN Latviskoi SSR, Riga

    Google Scholar 

  • McMahon, Jr CJ (ed) (1968) Microplasticity. Interscience, New York

    Google Scholar 

  • Melan E (1938) Zur Plastizität des räumlichen Kontinuums. Ingenieur-Archiv 9(2):116–126

    Article  Google Scholar 

  • Melnikov BE, Semenov AS (1991) Mnogopoverkhnostnaya teoriya plastichnosti s odnoy aktivnoy poverkhnost’yu plasticheskoy podatlivosti (in Russ., The multisurface theory of plasticity with one active surface of plastic compliance). In: Proceedings of LSTU Strength of Metals and Structures, Leningrad, 441, pp 26–31

    Google Scholar 

  • Melnikov BE, Semenov AS (1995a) Multimodel analysis as strategy of reliable description of elastic-plastic deformation processes. In: Computational Plasticity: Fundamentals and Applications. Proceedings of the Fourth International Congress, Barcelona, pp 133–139

    Google Scholar 

  • Melnikov BE, Semenov AS (1995b) Strategy of multimodel analysis of elastic-plastic stress-strain state. In: Proceedings of 6th International Conference on Computing in Civil and Building Engineering., Berlin, pp 1073–1079

    Google Scholar 

  • Melnikov BE, Getsov LB, Semenov AS (2001a) Metod avtomatizirovannogo vybora modeley termovyazkouprugoplastichnosti, obespechivayushchikh adekvatnoye opredeleniye napryazhenno-deformirovannogo sostoyaniya konstrukcii pri proizvol’nykh programmakh nagruzheniya (in Russ., A method for the automated selection of thermoviscoelasticity models providing an adequate determination of the stress-strain state of a structure with arbitrary loading programs). In: Trudy 4oy mezhdunarodnoy konferencii Nauchno-tekhnicheskiye problemy prognozirovaniya nadezhnosti i dolgovechnosti konstrukciy i metody ikh resheniya, St. Petersburg, pp 213–215

    Google Scholar 

  • Melnikov BE, Getsov LB, Semenov AS (2001b) Metod avtomatizirovannogo vybora modeley termovyazkouprugoplastichnosti, obespechivayushchikh adekvatnoye opredeleniye napryazhenno-deformirovannogo sostoyaniya konstruktsii pri proizvol’nykh programmakh nagruzheniya. soobshcheniya 1–4 (in Russ., A method for the automated selection of thermoviscoelasticity models providing an adequate determination of the stress-strain state of a structure with arbitrary loading programs. Part 1–4). In: Nauchnyye trudy 5go mezhdunarodnogo seminara Sovremennyye problemy prochnosti im. V.I. Likhacheva, Velikiy Novgorod, pp 266–287

    Google Scholar 

  • Melnikov BE, Semenov AS, Getsov LB (2009) Mnogomodel’noe modelirovanie termouprugovyazkoplasticheskogo deformirovaniya (in Russ., Multimodel modeling of thermoelastic visco-plastic deformation). In: Petreniya YK, Getsova LB (eds) Prochnost’ materialov i resurs elementov energooborudovaniya, St. Petersburg, no. 296 in Trudy CKTI, p 307–354

    Google Scholar 

  • Mel’nikov OB, Izotov II, Kuznetsov NP (1990) Calculation and experimental examination of complex modes of elastoplastic deformation. Strength of Materials 22(8):1122–1127

    Google Scholar 

  • Miller A (1976a) An inelastic constitutive model for monotonic, cyclic, and creep deformation: Part I — Equations development and analytical procedures. Journal of Engineering Materials and Technology 98(2):97–105

    Article  Google Scholar 

  • Miller A (1976b) An inelastic constitutive model for monotonic, cyclic, and creep deformation: Part II — Application to type 304 stainless steel. Journal of Engineering Materials and Technology 98(2):106–112

    Article  Google Scholar 

  • Mohel AN, Salganik RL, Khristianovich SA (1983) O plasticheskom deformirovanii uprochnyayushchikhsya metallov i splavov. Opredelyayushchiye uravneniya i raschety po nim (in Russ., On plastic deformation of hardening metals and alloys. Governing equations and calculations for them). Izvestiya AN SSSR - Mekhanika Tverdogo Tela (4):119–141

    Google Scholar 

  • Mohr CO (1900)Welche Umstände bedingen die Elastizitätsgrenze und den Bruch eines Materials? Zeitschrift des Vereins Deutscher Ingenieure 24:1524–1530, 1572–1577

    MATH  Google Scholar 

  • Moroz LS, Khesin YD, Marinec TK (1962) Issledovanie polzuchesti i dlitel’noi prochnosti zheleza pri nizkikh temperaturakh (in Russ., Study of creep and long-term strength of iron at low temperatures). Metallovedenie (6):145–153

    Google Scholar 

  • Moskvitin VV (1965) Plastichnost’ pri peremennykh nagruzheniyakh (in Russ., Plasticity Under Variable Loads). Moskovskii Gosudarsvennyi universitet, Moscow

    Google Scholar 

  • Mróz Z (1967) On the description of anisotropic workhardening. Journal of the Mechanics and Physics of Solids 15(3):163–175

    Article  Google Scholar 

  • Murakami S (1983) Notion of continuum damage mechanics and its application to anisotropic creep damage theory. Journal of Engineering Materials and Technology 105:99 – 105

    Article  Google Scholar 

  • Murakami S (2012) Continuum Damage Mechanics, Solid Mechanics and its Applications, vol 185. Springer, Dordrecht et al.

    Book  Google Scholar 

  • Murakami S, Ohno N (1981) A continuum theory of creep and creep damage. In: Ponter ARS, Hayhurst DR (eds) Creep in Structures, Springer, Berlin, pp 422 – 444

    Chapter  Google Scholar 

  • Murakami S, Sanomura Y (1985) Creep and creep damage of copper under multiaxial states of stress. In: Sawczuk A, Bianchi B (eds) Plasticity Today - Modelling, Methods and Applications, Elsevier, London, New York, pp 535–551

    Google Scholar 

  • Nádai A (1931) Plasticity. Mc Graw–Hill, New York–London

    MATH  Google Scholar 

  • Nadai A (1938) The influence of time upon creep. the hyperbolic sine creep law. In: Contributions to the Mechanics of Solids dedicated to Stephen Timoshenko by his friends on the occasion of his sixties birthday anniversary, MacMillian, New York, pp 155–170

    Google Scholar 

  • Naumenko K, Altenbach H (2005) A phenomenological model for anisotropic creep in a multi-pass weld metal. Archive of Applied Mechanics 74:808 – 819

    Article  MATH  Google Scholar 

  • Naumenko K, Altenbach H (2007) Modeling of creep for structural analysis. Springer Science & Business Media

    Google Scholar 

  • Naumenko K, Altenbach H (2016) Modeling High Temperature Materials Behavior for Structural Analysis: Part I: Continuum Mechanics Foundations and Constitutive Models, Advanced Structured Materials, vol 28. Springer

    Google Scholar 

  • Naumenko K, Gariboldi E (2014) A phase mixture model for anisotropic creep of forged Al-Cu-Mg-Si alloy. Materials Science and Engineering: A 618:368 – 376

    Article  Google Scholar 

  • Naumenko K, Kostenko Y (2009) Structural analysis of a power plant component using a stressrange-dependent creep-damage constitutive model. Materials Science and Engineering: A 510:169–174

    Article  Google Scholar 

  • Naumenko K, Altenbach H, Gorash Y (2009) Creep analysis with a stress range dependent constitutive model. Archive of Applied Mechanics 79(6-7):619–630

    Article  MATH  Google Scholar 

  • Naumenko K, Altenbach H, Kutschke A (2011a) A combined model for hardening, softening, and damage processes in advanced heat resistant steels at elevated temperature. International Journal of Damage Mechanics 20(4):578–597

    Article  Google Scholar 

  • Naumenko K, Kutschke A, Kostenko Y, Rudolf T (2011b) Multi-axial thermo-mechanical analysis of power plant components from 9-12%Cr steels at high temperature. Engineering Fracture Mechanics 78:1657–1668

    Article  Google Scholar 

  • Naumenko K, Gariboldi E, Nizinkovskyi R (2020) Stress-regime-dependence of inelastic anisotropy in forged age-hardening aluminium alloys at elevated temperature: Constitutive modeling, identification and validation. Mechanics of Materials 141:103262

    Article  Google Scholar 

  • Nejescu-Cleja S (1976) Issledovaniye krayevykh zadach teorii uprugo-plasticheskikh protsessov s tochkoy izloma (in Russ., Research of boundary value problems of the theory of elastic-plastic processes with a break point). Avtoref. diss. cand. phys.-math. sciences, MGU. Mekhanikomatematicheskii fakul’tet, Moscow

    Google Scholar 

  • Neuber H (1961) Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. Transaction of the American Society of Mechanical Engineering -Journal of Applied Mechanics 28(4):544–550

    Article  MathSciNet  MATH  Google Scholar 

  • Neuber H (2001) Kerbspannungslehre, 4th edn. Springer, Berlin, Heidelberg

    Book  MATH  Google Scholar 

  • Nikitin VI (1967) Parametricheskii metod opredeleniya kharakteristik polzuchesti metallov (in. Russ., Parametric method for determining the creep characteristics of metals). Zavodskaya Laboratoriya (11):1428–1420

    Google Scholar 

  • NN (1981) Rukovodyashchie ukazaniya CKTI, vyp. 43. Sluzhebnye svoistva kotel’nykh materialov (in Russ., CKTI Guidelines, vol. 43. Service properties of boiler materials). CKTI, Leningrad

    Google Scholar 

  • NN (1989) Pravila i normy v atomnoi energetike. Normy rascheta na prochnost’ oborudovaniya I truboprovodov atomnykh energeticheskikh ustanovok. PNAE G-7–002–86 (in Russ., Rules and Regulations in Nuclear Energy. Standards for Calculating the Strength of Equipment and Pipes of Nuclear Power Plants). Energoatomizdat, Moscow

    Google Scholar 

  • Nordmann J, Thiem P, Cinca N, Naumenko K, Krüger M (2018) Analysis of iron aluminide coated beams under creep conditions in high-temperature four-point bending tests. The Journal of Strain Analysis for Engineering Design 53(4):255–265

    Article  Google Scholar 

  • Norton FH (1929) Creep of Steel at high Temperatures. McGraw-Hill, New York

    Google Scholar 

  • Novozhilov VV, Kadashevich YI (1990) Mikronapryazheniya v konstrukcionnykh materialakh (in Russ., Microstresses in Structural Materials). Mashinostroenie, Leningrad

    Google Scholar 

  • Odqvist FKG (1974) Mathematical Theory of Creep and Creep Rupture. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Ohno N, Wang JD (1991) Transformation of a nonlinear kinematic hardening rule to a multisurface form under isothermal and nonisothermal conditions. International Journal of Plasticity 7(8):879–891

    Article  MATH  Google Scholar 

  • Othman AM, Hayhurst DR, Dyson BF (1993) Skeletal point stresses in circumferentially notched tension bars undergoing tertiary creep modelled with physically based constitutive equations. Proceedings of the Royal Society of London Series A: Mathematical and Physical Sciences 441(1912):343–358

    Google Scholar 

  • Ozhoga-Maslovskaja O, Naumenko K, Altenbach H, Prygorniev O (2015) Micromechanical simulation of grain boundary cavitation in copper considering non-proportional loading. Computational Materials Science 96:178–184

    Article  Google Scholar 

  • Paley IZ (1968) K postroyeniyu neatermicheskoy teorii tsiklicheskikh nagruzhenii (in Russ., On the construction of a non-thermal theory of cyclic loading). Izvestiya AN SSSR – Mekhanika Tverdogo Tela (1):130–134

    Google Scholar 

  • Palmov VA (1998) Vibrations of Elasto-plastic Bodies. Foundations of Engineering Mechanics, Springer, Berlin

    Book  MATH  Google Scholar 

  • Palmov VA (2014) Nelineynaya mekhanika deformiruyemykh tel (in Russ., Nonlinear Mechanics of Deformable Bodies). Izdatelstvo SPbPU, St. Petersburg

    Google Scholar 

  • Parshin AM (1972) Struktura, prochnost’ i plastichnost’ nerzhaveyushchikh i zharoprochnykh stalei i splavov, primenyaemykh v sudostroenii (in Russ., Structure, Strength and Plasticity of Stainless and Heat-resistant Steels and Alloys used in Shipbuilding). Sudostroenie, Leningrad

    Google Scholar 

  • Pavlov PA, Kurilovich NN (1978) Predel’noye soprotivleniye konstruktsionnykh staley v usloviyakh vysokotemperaturnoy polzuchesti (in Russ., Ultimate resistance of structural steels under conditions of high-temperature creep). In: Prochnost’i ustoychivost’ inzhenernykh konstruktsiy, Izdatel’stvo Altayskogo politekhnicheskogo instituta, Barnaul, pp 39–49

    Google Scholar 

  • Perrin IJ, Hayhurst DR (1994) Creep constitutive equations for a 0.5Cr-0.5Mo-0.25V ferritic steel in the temperature range 600–675_C. The Journal of Strain Analysis for Engineering Design 31(4):299–314

    Google Scholar 

  • Perzyna P (1966) Fundamental problems in viscoplasticity. In: Chernyi GG, Dryden HL, Germain P, Howarth L, OlszakW, PragerW, Probstein RF, Ziegler H (eds) Advances in Applied Mechanics, vol 9, Elsevier, pp 243–377

    Google Scholar 

  • Petrenya YK (1997) Fiziko-mekhanicheskie osnovy kontinual’noi mekhaniki povrezhdaemosti (in Russ., Physico-mechanical Foundations of the Continuum Damage Mechanics). NPO CKTI, St. Petersburg

    Google Scholar 

  • Petrenya YK, Chizhik AA (1980) Defects and long-term strength of materials with low deformability. Metal Science and Heat Treatmen 22(12):877–879

    Article  Google Scholar 

  • Popova IP, Oryschenko AC, Getsov LB (2011) A computational method to determine creep characteristics of first and second deformation stage using limited number of isochronal creep curves. Inorganic Materials: Applied Research 2(6):640–650

    Article  Google Scholar 

  • Pospisil B, Kvitka AL, Tretyachenko GN, Kravchuk LV, Kuriat RI, Semenov GR, Voroshko PP (1987) Prochnost’ i dolgovechnost’ elementov energeticheskogo oborudovaniya (in Russ., Strength and Durability of Elements of Power Equipment). Naukova Dumka, Kiev

    Google Scholar 

  • Prager W (1955a) Probleme der Plastizitätstheorie. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  • Prager W (1955b) The theory of plasticity: A survey of recent achievements. Proceedings of the Institution of Mechanical Engineers 169(1):41–57

    Article  MathSciNet  Google Scholar 

  • Prager W, Hodge Jr PG (1951) Theory of Perfectly Plastic Solids. John Wiley & Sons, New York

    MATH  Google Scholar 

  • Prandtl L (1925) Spannungsverteilung in plastischen Körpern. In: Biezeno CB, Burgers JM (eds) Proceedings of the 1st International Congress for Applied Mechanics, J.Waltman, Jr., Delft, pp 43–46

    Google Scholar 

  • Qin Q, Bassani JL (1992) Non-schmid yield behavior in single crystals. Journal of the Mechanics and Physics of Solids 40(4):813–833

    Article  MathSciNet  Google Scholar 

  • Rabinovich VP (1966) Prochnost’ turbinnykh diskov (in Russ., Turbine Disk Strength). Mashinostroenie, Moscow

    Google Scholar 

  • Rabotnov YN (1959) O mechanizme dlitel’nogo razrusheniya (in Russ., A mechanism of the long term fracture). In: Voprosy Prochnosti Materialov i Konstruktsii, AN SSSR, pp 5–7

    Google Scholar 

  • Rabotnov YN (1969) Creep Problems in Structural Members. North-Holland, Amsterdam

    MATH  Google Scholar 

  • Rabotnov YN (1980) Elements of Hereditary Solid Mechanics. Mir Publisher, Moscow

    MATH  Google Scholar 

  • Rabotnov YN, Mileiko ST (1970) Kratkovremennaya polzuchest’ (in Russ., Short-term Creep). Nauka, Moscow

    Google Scholar 

  • Reiner M (1960) Deformation, Strain and Flow: an Elementary Introduction to Rheology. H. K. Lewis, London

    Book  Google Scholar 

  • Reuss A (1930) Berücksichtigung der elastischen Formänderung in der Plastizitätstheorie. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik 10(3):266–274

    Article  MATH  Google Scholar 

  • Robinson DN, Binienda WK, Ruggles MB (2003) Creep of polymer matrix composites. I: Norton/Bailey Creep Law for transverse isotropy. Journal of Engineering Mechanics 129(3):310 –317

    Google Scholar 

  • Rovinsky BI, Lutzau VG (1957) Relaksaciya oriyentrovannykh mikronapryazheniy (in Russ., Relaxation of oriented microstresses). Zhurnal Tekhnicheskoi Fiziki 27(2):345–351

    Google Scholar 

  • Rozenblyum VI, Vinogradov NN (1973) Calculation of the creep of structures with low stress levels. Strength of Materials 5(12):1464–1465

    Article  Google Scholar 

  • Rtishchev VV (1992) Perspektivnye anizotropnye materialy lopatok stacionarnykh gu so stolbchattoi i monokristallicheskimi strukturami (in Russ., Promising anisotropic materials of blades of stationary gi with columnar and single-crystal structures). Trudy CKTI 270:104–119

    Google Scholar 

  • Sanders Jr JL (1955) Plastic stress–strain relations based on linear loading functions. In: Naghdi PM (ed) Proceedings of Second U.S. National Congress Applied Mechanics, American Society of Mechanical Engineers, New York, pp 455–460

    Google Scholar 

  • Schmicker D, Naumenko K, Strackeljan J (2013) Arobust simulation of direct drive friction welding with a modified carreau fluid constitutive model. Computer Methods in Applied Mechanics and Engineering 265:186–194

    Article  MathSciNet  MATH  Google Scholar 

  • Schmid E, Boas W (1935) Kristallplastizität: Mit Besonderer Berücksichtigung der Metalle, Struktur und Eigenschaften der Materie in Einzeldarstellungen, vol 17. Springer, Berlin, Heidelberg

    Book  Google Scholar 

  • Semenov A, Melnikov B (2016) Interactive rheological modeling in elasto-visco-plastic finite element analysis. Procedia Engineering 165:1748–1756, 15th International scientific conference “Underground Urbanisation as a Prerequisite for Sustainable Development” 12–15 September 2016, St. Petersburg, Russia

    Google Scholar 

  • Semenov AS (2003) PANTOCRATOR – konechno-elementnyy programmnyy kompleks, oriyentirovannyy na resheniye nelineynykh zadach mekhaniki (in Russ., PANTOCRATOR – finite element software package focused on solving non-linear problems of mechanics). In: Trudy V Mezhdunarodnoy konferentsii Nauchno-tekhnicheskiye problemy prognozirovaniya nadezhnosti i dolgovechnosti konstruktsiy i metody ikh resheniya, Publishing house SPbSPU, St. Petersburg, pp 466–480

    Google Scholar 

  • Semenov AS (ed) (2008) Vychislitel’nyye metody v teorii plastichnosti: Uchebnoye posobiye (in Russ., Computational Methods in the Theory of Plasticity: A Training Manual). Publishing house of Polytechnic University, St. Petersburg

    Google Scholar 

  • Semenov AS (2014) Identifikatsiya parametrov anizotropii fenomenologicheskogo kriteriya plastichnosti monokristallov na osnove mikromekhanicheskoy modeli (in Russ., Identification of the anisotropy parameters of the phenomenological criterion of plasticity of single crystals based on the micromechanical model). Nauchno-tekhnicheskiye vedomosti SPbGPU – Fizikomatematicheskiye nauki 194(2):15–29

    Google Scholar 

  • Semenov AS (2016) Dvukhinvariantnyy stepennoy kriteriy plastichnosti dlya monokristallov kubicheskoy simmetrii (in Russ., Two-invariant power-law plasticity criterion for single crystals of cubic symmetry). In: Uprugost’ i Neuprugost’. Materialy Mezhdunarodnogo nauchnogo simpoziuma po problemam mekhaniki deformiruyemykh tel, posvyashchennogo 105-letiyu so dnya rozhdeniya A.A. Il’yushina (Moskva, 20–21 yanvarya 2016 goda) (in Russ., Elasticity and Inelasticity. Materials of the International Scientific Symposium on Problems of Mechanics of Deformable Bodies, dedicated to the 105th anniversary of the birth of A.A. Ilyushin (Moscow, January 20–21, 2016)), Moscow University Press, Moscow, pp 250–256

    Google Scholar 

  • Semenov AS, Melnikov BE (1994) Multimodel numerical analysis of the elasto-plastic deformation of constructions. In: Internationales Kolloquium über Anwendungen der Informatik und der Mathematik in Architectur und Bauwesen, Weimar, pp 336–341

    Google Scholar 

  • Semenov AS, Melnikov BE (1997a) Multimodel analysis of the elasto-plastic and elasto-viscoplastic deformation processes in material and structures. In: Rie KT, Portella PD (eds) Proceedings of 4th International Conference Low Cycle Fatigue and Elasto-Plastic Behavior of Materials, Elsevier, pp 659–664

    Google Scholar 

  • Semenov AS, Melnikov BE (1997b) Multimodel numerical analysis of the elasto-visco-plastic deformation of materials and constructions. In: Internationales Kolloquium über Anwendungen der Informatik und der Mathematik in Architectur und Bauwesen, Weimar, p 6

    Google Scholar 

  • Semenov AS, Getsov LB, Semenov SG, Grishchenko AI (2014) Deformation and fracture strength of single-crystal superalloys under static and cyclic loading. Vestnik Samarskogo gosudarstvennogo aerokosmicheskogo universiteta (5, part 3):66–75

    Google Scholar 

  • Semenov SG, Semenov AS, Melnikov BE (2008) Modelirovaniye protsessov neuprugogo deformirovaniya na osnove endokhronnoy teorii (in russ., modeling of inelastic deformation pro cesses based on endochronous theory). In: Nauchno-tekhnicheskiye problemy prognozirovaniya nadezhnosti i dolgovechnosti konstruktsiy i metody ikh resheniya. RELMAS’2008, Publishing house of Polytechnic University, St. Petersburg, vol 2, pp 309–317

    Google Scholar 

  • Semenov SG, Getsov LB, Semenov AS, Petrushin NV, Ospennikova OG, Zhivushkin AA (2016a) Increasing the lifetime of gas-turbine engine nozzle blades using a new monocrystalline alloy. Journal of Machinery Manufacture and Reliability 45(4):316–323

    Article  Google Scholar 

  • Semenov SG, Getsov LB, Tikhomirova EA, Semenov AS (2016b) Special features of creep and longterm strength of single-crystal refractory nickel-base alloys. Metal Science and Heat Treatment 57(11):731–738

    Article  Google Scholar 

  • Shesterikov SA (ed) (1983) Zakonomernosti polzuchesti i dlitel’noi prochnosti (in Russ., Laws of Creep and Long-term Strength). Mashinostroenie, Moscow

    Google Scholar 

  • Shesterikov SA (2007) Izbrannyye trudy (in Russ., Selected Works). Moscow State University, Moscow

    Google Scholar 

  • Shevchenko YN, Babeshko ME (1999) Method of approximately describing the lag of scalar properties of isotropic materials. International Applied Mechanics 35(7):671–677

    Article  MATH  Google Scholar 

  • Shevchenko YN, Terekhov RG (1982) Fizicheskiye uravneniya termovyazkoplastichnosti (in Russ., Physical Equations of Thermoviscoplasticity). Naukova Dumka, Kiev

    Google Scholar 

  • Shevchenko YN, Babeshko ME, Terekhov RG (1992) Termovyazkouprugoplasticheskiye process slozhnogo slozhnogo deformirovaniya elementov konstruktsii (in Russ., Thermo-viscoelasticplastic Processes of Complex Deformation of Structural Elements. Naukova Dumka, Kiev

    Google Scholar 

  • Shevchenko YN, Terekhov RG, Braikovskaya NS, Tormakhov NN (1997) Constitutive equations of thermoelastovisco-plastic processes of material deformation along three-dimensional load paths with orthogonal segments. International Applied Mechanics 33(12):966–974

    Article  Google Scholar 

  • Shevchenko YN, Terekhov RG, Braikovskaya NS, Tormakhov NN (1998) Complex loading beyond the elastic limit on three-dimensional trajectories. International Applied Mechanics 34(12):1573–8582

    Article  MATH  Google Scholar 

  • Shneiderovich RM (1968) Prochnost’ pri staticheskom i povtorno-staticheskom nagruzheniyakh (in Russ., Strength Under Static and Repeated-static Loading). Mashinostroenie, Moscow

    Google Scholar 

  • Sidoroff F (1973) The geometrical concept of intermediate configuration and elastic-plastic finite strain. Archives of Mechanics 25(2):299–308

    MathSciNet  MATH  Google Scholar 

  • Sobotka Z (1984) Rheology of Materials and Engineering Structures, Rheology series, vol 2. Elsevier

    Google Scholar 

  • Soderberg CR (1936) The interpolation of creep tests for machine design. Transaction of the American Society of Mechanical Engineering 58:733–743

    Google Scholar 

  • Taira S, Otani R (1986) Teoriya vysokotemperaturnoi prochnosti materialov (in Russ., Theory of High Temperature Strength of Materials). Metallurgiya, Moscow

    Google Scholar 

  • Taylor G (1938) Plastic strains in metals. Journal of the Institute of Metals 62:307–324

    Google Scholar 

  • Tresca HE (1864) Mémoire sur l’écoulement des corps solides soumis à de fortes pressions. Comptes rendus de l’Académie des sciences 59:754–758

    Google Scholar 

  • Troshchenko VT (1971) Ustalost’ i neuprugost’ metallov (in Russ., Fatigue and Inelasticity of Metals). Naukova Dumka, Kiev

    Google Scholar 

  • Trunin II (1965) Kriterii prochnosti v usloviyakh polzuchesti pri slozhnom napryazhennom sostoyanii (in Russ., Creep strength criteria for complex stress conditions). Prikladnaya Mekhanika 1(7):77–83

    Google Scholar 

  • Trunin II (1976) A mechanical equation of the condition of metal materials and prediction of high-temperature strength characteristics. Strength of Materials 8(9):1007–1012

    Article  Google Scholar 

  • Trusov PV, Shveikin AI (2019) Mnogourovnevyye modeli mono- i polikristallicheskikh materialov: teoriya, algoritmy, primery primeneniya (in Russ., Multilevel Models of Mono- and Polycrystalline Materials: Theory, Algorithms, Application Examples). Izdatelstvo SO RAN, Novosibirsk

    Google Scholar 

  • Ugodchikov AG, Short YG (1971) Nekotoryye metody resheniya na ECVM fizicheski nelineynykh zadach teorii obolochek i plastin (in Russ., Some methods for solving physically nonlinear problems in the theory of shells and plates on a digital computer). Naukova Dumka, Kiev

    Google Scholar 

  • Valanis KC (1971) A theory of viscoplasticity without a yield surface. Archiwum Mechaniki Stosowanej 23(4):517–551

    MathSciNet  MATH  Google Scholar 

  • Vasin RA (1990) Opredelyayushchiye sootnosheniya teorii plastichnosti (in russ., constitutive relations in the theory of plasticity. In: Itogi Nauki i Tekhniki, VINITI AN SSSR, Moscow, Mekhanika Deformiruyemogo Tverdogo Tela, vol 21, pp 3–75

    Google Scholar 

  • Volkov IA, Korotkikh YG (2008) Uravneniya sostoyaniya vyazkouprugoplasticheskikh sred s povrezhdeniyami (in Russ., Equations of state for damaged viscoelastoplastic media). FIZMATLIT, Moscow

    Google Scholar 

  • von Mises R (1913) Mechanik der festen Körper im plastisch deformablen Zustand. Nachrichten Königlichen Gesellschaft der Wississenschaften, Mathematisch-Physikalische Klasse, Göttingen pp 582–592

    Google Scholar 

  • Watanabe O, Atluri SN (1985) A New Endochronic Approach to Computational Elastoplasticity: Example of a Cyclically Loaded Cracked Plate. Transaction of the American Society of Mechanical Engineering - Journal of Applied Mechanics 52(4):857–864

    Article  MATH  Google Scholar 

  • Zhilin PA (2012) Racional’naya mekhanika sploshnykh sred (in Russ., Rational Mechanics of Continuous Nedia). Izdatelstvo SPbPU, St. Petersburg

    Google Scholar 

  • Ziegler H (1958) An attempt to generalize Onsager’s principle, and its significance rheological problems. Zeitschrift für angewandte Mathematik und Physik 9(5-6):748–763

    Article  MathSciNet  MATH  Google Scholar 

  • Zubchaninov VG (ed) (2000) Mekhanika sploshnykh deformiruyemykh sred (in Russ., Mechanics of Continuous Deformable Media), 2nd edn. ChuDo, Tver

    Google Scholar 

  • Zyczkowski M (1981) Combined Loadings in the Theory of Plasticity. PWN-Polish Scientific Publishers, Warszawa

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonid Borisovich Getsov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Getsov, L.B. (2021). Deformation and Strength of Heat-Resistant Materials Under Static and Cyclic Loading. In: Altenbach, H., Naumenko, K. (eds) Materials and Strength of Gas Turbine Parts. Advanced Structured Materials, vol 150. Springer, Singapore. https://doi.org/10.1007/978-981-16-0534-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0534-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0533-8

  • Online ISBN: 978-981-16-0534-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation