Part of the book series: Genome Map** and Molecular Breeding in Plants ((GENMAPP,volume 1))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agrama HAS, Moussa ME (1996) Map** QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica 91:89–97

    CAS  Google Scholar 

  • Agrama HA, Houssin SF, Tarek MA (2002) Cloning of AFLP markers linked to resistance to Peronosclerospora sorghi in maize. Mol Genet Genom 267:814–819

    Article  CAS  Google Scholar 

  • Ahn S, Tanksley SD (1993) Comparative linkage maps of the rice andmaize genomes. Proc Natl Acad Sci USA 90:7980–7984

    Article  PubMed  CAS  Google Scholar 

  • Ahn S, Anderson JA, Sorrells ME, Tanksley SD (1993) Homoeologous relationships of rice, wheat andmaize chromosomes. Mol Gen Genet 241:483–490

    Article  PubMed  CAS  Google Scholar 

  • Ajmone-Marsan P, Monfredini G, Ludwig WF, Melchinger AE, Franceschini P (1994) Identification of genomic regions affecting plant height and their relationship with grain yield in an elite maize cross. Maydica 39:133–139

    Google Scholar 

  • Ajmone-Marsan P, Monfredini G, Ludwig WF, Melchinger AE, Franceschini P, Pagnotto G, Motto M (1995) In an elite cross of maize, a major quantitative trait locus controls one-fourth of the genetic variation for grain yield. Theor Appl Genet 90:415–424

    Article  CAS  Google Scholar 

  • Ajmone-Marsan P, Gorni C, Chittò A, Redaelli R, van Vijk R, Stam P, Motto M (2001) Identification of QTLs for grain yield and grain-related traits of maize (Zea mays L.) using an AFLP map, different testers, and cofactor analysis. Theor Appl Genet 102:230–243

    Article  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Ashikari M, Wu, J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf1 encodes the alpha-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96:10284–10289

    Article  PubMed  CAS  Google Scholar 

  • Austin DF, Lee M (1996a) Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome 39:957–968

    CAS  PubMed  Google Scholar 

  • Austin DF, Lee M (1996b) Comparative map** in F2:3 and F6:7 generations of quantitative trait loci for grain yield and yield components in maize. Theor Appl Genet 92:817–826

    Article  CAS  Google Scholar 

  • Austin DF, Lee M, Veldboom LR, Hallaur AR (2000) Genetic map** in maize with hybrid progeny across testers and generations: grain yield and grain moisture. Crop Sci 40:30–39

    Article  Google Scholar 

  • Austin DF, Lee M, Veldboom LR (2001) Genetic map** in maize with hybrid progeny across testers and generations: plant height and flowering. Theor Appl Genet 102:163–176

    Article  CAS  Google Scholar 

  • Beal WJ (1877) Report of the professor of botany and horticulture. Michigan Board of Agriculture, Lansing, MI

    Google Scholar 

  • Beavis WD, Grant D (1991) A linkage map based on information from four F2 populations of maize (Zea mays L.). Theor Appl Genet 82:636–644

    Article  CAS  Google Scholar 

  • Beavis WD, Grant D, Albertsen M, Fincher R (1991) Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor Appl Genet 83:141–145

    Article  Google Scholar 

  • Beavis WD, Lee M, Grant D, Hallauer AR, Owens T (1992) The influence of random mating on recombination among RFLP loci. Maize Gene Coop Newslett 66:52–53

    Google Scholar 

  • Beavis WD, Smith OS, Grant D, Fincher R (1994) Identification of quantitative trait loci using a small sample of topcrossed and F4 progeny from maize. Crop Sci 34:882–896

    Article  Google Scholar 

  • Beckett JB (1991) Cytogenetic, genetic, and plant breeding applications of B-A translocations in maize. In: Gupta PK, Tsuchiya T (eds) Chromosome Engineering in Plants: Genetics, Breeding, and Evolution, Part A. Elsevier, Amsterdam, pp 493–529

    Google Scholar 

  • Benchimol LL, de Souza CL Jr, Garcia AAF, Kono PMS, Mangolin CA, Barbosa AMM et al (2000) Genetic diversity in tropical maize inbred lines: heterotic group assignment and hybrid performance determined by RFLP markers. Plant Breed 119:491–496

    Article  CAS  Google Scholar 

  • Bendahmane A, Kanyuka K, Baulcombe DC (1999) The Rx gene from potato controls separate virus resistance and cell death responses. Plant Cell 11:781–792

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Freeling M (1993) Grasses as a single genetic system: genome composition, colinearity, and compatibility. Trends Genet 9:259–261

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Chandler VL, Schnable P (2001) National Science Foundation-sponsored workshop report. Maize genome sequencing project. Plant Physiol 127:1572–1578

    Article  PubMed  CAS  Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt RL, Giraudat J et al (1994) RPS2 of Arabidopsis thaliana: a leucinerich repeat class of plant disease resistance genes. Science 265:1856–1860

    Article  PubMed  CAS  Google Scholar 

  • Bentolila S, Guitton C, Bouvet N, Sailland A, Nykaza S, Freyssinet G (1991) Identification of an RFLP marker tightly linked to the Ht1 gene in maize. Theor Appl Genet 82:393–398

    Article  CAS  Google Scholar 

  • Bentolila S, Hardy T, Guitton C, Freyssinet G (1992) Comparative genetic analyses of F2 plants and anther culture derived plants of maize. Genome 35:575–582

    Google Scholar 

  • Berke TG, Rocheford TR (1995) Quantitative trait loci for flowering, plant and ear height, and kernel traits inmaize. Crop Sci 35:1542–1549

    Article  Google Scholar 

  • Berke TG, Rocheford TR (1999) Quantitative trait loci for tassel traits in maize. Crop Sci 39:1439–1443

    Article  Google Scholar 

  • Bhattramakki D, Ching A, Morgante M, Dolan M, Register J, Smith H, Tingey S, Rafalski JA (2000) Conserved single nucleotide polymorphism (SNP) haplotypes in maize. In: Plant and Animal Genome VIII Conf, San Diego

    Google Scholar 

  • Bohn M, Khairallah M, Gonzalez de Leon D, Hoisington DA, Utz H (1996) QTL map** in tropical maize. 1. Genomic regions affecting leaf feeding resistance to sugarcane borer and other traits. Crop Sci 36:1352–1361

    Article  Google Scholar 

  • Bouchez A, Hospital F, Causse M, Gallais A, Charcosset A (2002) Marker-assisted introgression of favorable alleles at quantitative trait loci between maize elite lines. Genetics 162:1945–1959

    PubMed  CAS  Google Scholar 

  • Bowers JE, Abbey C, Anderson S, Chang C, Draye X, Hoppe AH et al (2003) A high-density genetic recombination map of sequence-tagged sites for sorghum, as a framework for comparative structural and evolutionary genomics of tropical grains and grasses. Genetics 165:367–386

    PubMed  CAS  Google Scholar 

  • Brown AHD, Allard RW (1969) Further isozyme differences among the inbred parents of a reciprocal recurrent selection population of maize. Crop Sci 9:643–644

    Article  CAS  Google Scholar 

  • Brown AF, Juvik JA, Pataky JK (2001) Quantitative trait loci in sweet corn associated with partial resistance to Stewart’s wilt, northern corn leaf blight, and common rust. Phytopathology 91:293–300

    CAS  PubMed  Google Scholar 

  • Brueggeman R, Rostoks N, Kudrna D, Kilian A, Han F (2002) The barley stem rust-resistance gene Rpg1 is a novel disease-resistance gene with homology to receptor kinases. Proc Natl Acad Sci USA 99:9328–9333

    Article  PubMed  CAS  Google Scholar 

  • Brunner S, Keller B, Feuillet C (2003) A large rearrangement involving genes and low-copy DNA interrupts the micro-collinearity between rice and barley at the Rph7 locus. Genetics 164:673–683

    PubMed  CAS  Google Scholar 

  • Burr B, Burr FA (1985) Towards a molecular characterization of multiple factor inheritance. In: Zaitlin M et al (eds) Biotechnology in Plant Science. Academic, New York, pp 277–284

    Google Scholar 

  • Burr B, Evola SV, Burr FA, Beckman J (1983) The application of restriction fragment length polymorphismto plant breeding. In: Setlow JK, Hollaender A (eds) Genetic Engineering: Principles and Methods. Plenum, New York, pp 45–58

    Google Scholar 

  • Burr B, Burr SA, Thompson KH, Albertsen MC, Stuber CW (1988) Gene map** with recombinant inbreds in maize. Genetics 118:519–526

    PubMed  CAS  Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  • Byrne PF, McMullen MD, Snook ME, Musket TA, Theuri JM, Widstrom NW et al (1996) Quantitative trait loci and metabolic pathways: genetic control of the concentration of maysin, a corn earworm resistance factor, in maize silks. Proc Natl Acad Sci USA 93:8820–8825

    Article  PubMed  CAS  Google Scholar 

  • Cai HW, Gao ZS, Yuyama N, Ogawa N (2003) Identification of AFLP markers closely linked to the rhm gene for resistance to southern corn leaf blight in maize by using bulked segregant analysis. Mol Gen Genom 269:299–303

    Article  CAS  Google Scholar 

  • Cardinal AJ, Lee M, Moore KJ (2003) Genetic map** and analysis of quantitative trait loci affecting fiber and lignin content in maize. Theor Appl Genet 106:866–874

    PubMed  CAS  Google Scholar 

  • Castiglioni P, Ajmone-Marsan P, van Wijk R, Motto M (1999) AFLP markers in a molecular linkage map of maize: codominant scoring and linkage group distribution. Theor Appl Genet 99:425–431

    Article  CAS  Google Scholar 

  • Causse M, Rocher JP, Henry AM, Charcosset A, Prioul JL (1995) Genetic dissection of the relationship between carbon metabolism and early growth in maize, with emphasis on key enzyme loci. Mol Breed 1:259–272

    Article  CAS  Google Scholar 

  • Causse M, Santoni S, Damerval C, Maurice A, Charcosset A (1996) A composite map of expressed sequences in maize. Genome 39:418–432

    CAS  PubMed  Google Scholar 

  • Chen CX, Wang ZL, Yang DE, Ye CJ, Zhao YB, ** DM et al (2004) Molecular tagging and genetic map** of the disease resistance gene RppQ to southern corn rust. Theor Appl Genet 108:945–950

    Article  PubMed  CAS  Google Scholar 

  • Chomet PS (1994)Transposon tagging with Mutator. In Freeling M, Walbot V (eds) The Maize Handbook. Springer, Berlin Heidelberg New York, pp 243–249

    Google Scholar 

  • Civardi L, **a Y, Edwards KJ, Schnable PS, Nikolau BJ (1994) The relationship between genetic and physical distances in the cloned a1-sh2 interval of the Zea mays L. genome. Proc Natl Acad Sci USA 91:8268–8272

    Article  PubMed  CAS  Google Scholar 

  • Coe EH, Hoisington DA, Neuffer MG (1987) Linkage map of corn (maize) (Zea mays L.). Maize Genet Coop Newslett 61:116–147

    Google Scholar 

  • Coe EH, Polacco M, Davis GL, McMullen MD (2001) Maize molecular maps: markers, bins, and database. In: Phillips RL, Vasil IK (eds) DNA-Based Markers in Plants. Kluwer, Dordrecht, pp 255–284

    Google Scholar 

  • Collins NC, Webb CA, Seah S, Ellis JG, Hulbert SH, Pryor A (1998) The isolation and map** of disease resistance gene analogs inmaize. Mol Plant-Micr Interact 11:968–978

    CAS  Google Scholar 

  • Collins NC, Drake J, Ayliffe M, Sun Q, Ellis J, Hulbert S, Pryor T (1999) Molecular characterization of the maize Rp1-D rust resistance haplotype and its mutants. Plant Cell 11:1365–1376

    Article  PubMed  CAS  Google Scholar 

  • Collins N, Park R, Spielmeyer W, Ellis J, Pryor AJ (2001) Resistance gene analogs in barley and their relationships to rust resistance genes. Genome 44:375–381

    Article  PubMed  CAS  Google Scholar 

  • Cone K (1994) Transposon tagging with Spm. In: Freeling M, Walbot V (eds) The Maize Handbook. Springer, Berlin Heidelberg New York, pp 240–242

    Google Scholar 

  • Damerval C, Maurice A, Josse JM, de Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137:289–301

    PubMed  CAS  Google Scholar 

  • Davis GL, McMullen MD, Baysdorfer C, Musket T, Grant D, Staebell M et al (1999) A maize map standard with sequenced core markers, grass genome reference points and 932 expressed sequence tagged sites (ESTs) in a 1736-locus map. Genetics 152:1137–1172

    PubMed  CAS  Google Scholar 

  • Dellaporta SL, Moreno MA (1994) Gene tagging with Ac/Ds elements in maize. In: Freeling M, Walbot V (eds) The Maize Handbook. Springer, Berlin Heidelberg New York, pp 219–233

    Google Scholar 

  • Devos KM, Chao S, Li QY, Simonetti MC, Gale MD (1994) Relationship between chromosome9 of maize and wheat homeologous group 7 chromosomes. Genetics 138:1287–1292

    PubMed  CAS  Google Scholar 

  • Dixon MS, Jones DA, Keddie JS, Thomas CM, Harrison K, Jones JDG (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84:451–459

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Stec A (1991) Genetic analysis of the morphological differences between maize and teosinte. Genetics 129:285–295

    PubMed  CAS  Google Scholar 

  • Doebley J, Stec A (1993) Inheritance of the morphological differences between maize and teosinte: comparison of results for two F2 populations. Genetics 134:559–570

    PubMed  CAS  Google Scholar 

  • Doebley JF, Goodman MM, Stuber CW (1986) Exceptional genetic divergence of northern flint corn. Am J Bot 73:64–69

    Article  Google Scholar 

  • Doebley J, Bacigalupo A, Stec A (1994) Inheritance of kernel weight in two maize-teosinte hybrid populations: implications for crop evolution. J Hered 85:191–195

    Google Scholar 

  • Draye X, Lin YR, Qian XY, Bowers JE, Burow GB, Morrell PL et al (2001) Toward integration of comparative genetic, physical, diversity, and cytomolecular maps for grasses and grains, using the sorghum genome as a foundation. Plant Physiol 125:1325–1341

    Article  PubMed  CAS  Google Scholar 

  • Dubcovsky J, Ramakrishna W, SanMiguel PJ, Busso CS, Yan L, Shiloff BA, Bennetzen JL (2001) Comparative sequence analysis of collinear barley and rice bacterial artificial chromosomes. Plant Physiol 125:1342–1353

    Article  PubMed  CAS  Google Scholar 

  • Dubreuil P, Charcosset A (1998) Genetic diversity within and among maize populations: a comparison between isozyme and nuclear RFLP loci. Theor Appl Genet 96:577–587

    Article  CAS  Google Scholar 

  • Dubreuil P, Dufour P, Krejcj E, Causse M, de Vienne D, Gallais A, Charcosset A (1996) Organization of RFLP diversity among inbred lines of maize representing the most significant heterotic groups. Crop Sci 36:790–799

    Article  Google Scholar 

  • Dudley JW, Lambert RJ (1992) Ninety generations of selection for oil and protein in maize. Maydica 37:81–87

    Google Scholar 

  • Dufour P, Johnsson C, Antoine-Michard S, Cheng R, Murigneux A, Beckert M (2001) Segregation distortion at marker loci: variation during microspore embryogenesis in maize. Theor Appl Genet 102:993–1001

    Article  CAS  Google Scholar 

  • Edwards MD, Stuber CW, Wendel JF (1987) Molecular-marker-facilitated investigation of quantitative-trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116:113–125

    PubMed  CAS  Google Scholar 

  • Edwards MD, Helentjaris T, Wright S, Stuber CW (1992) Molecular-marker-facilitated investigations of quantitative trait loci in maize. 4. Analysis based on genome saturation with isozyme and restriction fragment length polymorphism markers. Theor Appl Genet 83:765–774

    Article  CAS  Google Scholar 

  • Emerson RA, Beadle GW, Fraser AC (1935) A summary of linkage studies in maize. Cornell Univ Agric Exp Stn Mem 180:1–83

    Google Scholar 

  • Enoki H, Sato H, Koinuma K (2002) SSR analysis of genetic diversity among maize inbred lines adapted to cold regions of Japan. Theor Appl Genet 104:1270–1277

    Article  PubMed  CAS  Google Scholar 

  • Eta-Ndu JT, Openshaw SJ (1999) Epistasis for grain yield in two F2 populations of maize. Crop Sci 39:346–352

    Google Scholar 

  • Evans MMS, Kermicle JL (2001) Teosinte crossing barrier 1, a locus governing hybridization of teosinte with maize. Theor Appl Genet 103:259–265

    Article  CAS  Google Scholar 

  • Flint-Garcia SA, Darrah LL, McMullen MD, Hibbard BE (2003a) Phenotypic versus marker-assisted selection for stalk strength and second-generation European corn borer resistance in maize. Theor Appl Genet 107:1331–1336

    Article  PubMed  CAS  Google Scholar 

  • Flint-Garcia SA, Jampatong C, Darrch LL, McMullen MD (2003b) Quantitative trait locus analysis of stalk strength in four maize populations. Crop Sci 43:13–22

    Article  CAS  Google Scholar 

  • Flint-Garcia SA, McMullen MD, Darrch LL (2003c) Genetic relationship of stalk strength and ear height in maize. Crop Sci 43:23–31

    Article  CAS  Google Scholar 

  • Frova C, Sari-Gorla M (1994) Quantitative trait loci (QTLs) for pollen thermotolerance detected in maize. Mol Gen Genet 245:424–430

    Article  PubMed  CAS  Google Scholar 

  • Frova C, Krajewski P, di Fonzo N, Villa M, Sari-Gorla M (1999) Genetic analysis of drought tolerance in maize by molecular markers. I. Yield components. Theor Appl Genet 99:280–288

    Article  Google Scholar 

  • Gale MD, Devos KM (1998)Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Galinat WC (1988) The origin of corn. In: Sprague GF, Dudley JW (eds) Corn and Corn Improvement (3rd ed). ASA/CSSA/SSSA Publishers, Madison, WI, pp 1–31

    Google Scholar 

  • Galinat WC (1992) Evolution of corn. Adv Agron 47:203–231

    Article  Google Scholar 

  • Gardiner J, Coe E, Melis-Hancocks S, Hoisington DA, Chao S (1993) Development of a core RFLP map in maize using an immortalized-F2 population. Genetics 134:917–930

    PubMed  CAS  Google Scholar 

  • Gaut BS (2001) Patterns of chromosomal duplication in maize and their implications for comparative maps of the grasses. Genome Res 11:55–66

    Article  PubMed  CAS  Google Scholar 

  • Gauthier P, Gouesnard B, Dallard J, Redaelli R, Rebourg C, Charcosset A, Boyat A (2002) RFLP diversity and relationships among traditional European maize populations. Theor Appl Genet 105:91–99

    Article  PubMed  CAS  Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M et al (2002) A draft sequence of the rice genome (Oryza sativa L. issp. japonica). Science 296:92–100

    Article  PubMed  CAS  Google Scholar 

  • Goldman IL, Rocheford TR, Dudley JW (1994) Molecular markers associated with maize kernel oil concentration in an Illinois high protein × Illinois low protein cross. Crop Sci 34:908–915

    Article  Google Scholar 

  • Goodman MM, Stuber CW (1983) Maize. In: Tanksley SD, Orton TJ (eds) Isozymes in Plant Genetics and Breeding, Part B. Elsevier, Amsterdam, pp 1–33

    Google Scholar 

  • Graham GI, Wolff DW, Stuber CW (1997) Characterization of a yield quantitative locus on chromosome five of maize by fine map**. Crop Sci 37:1601–1610

    Article  CAS  Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Lewald J, Sattler A et al (1995) Structure of the Arabidopsis RPM7 gene enabling dual specificity disease resistance. Science 269:843–846

    Article  PubMed  CAS  Google Scholar 

  • Guimarães CT, Sills GR, Sobral BWS (1997) Comparative map** of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci USA 94:14261–14266

    Article  PubMed  Google Scholar 

  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames, IA

    Google Scholar 

  • Han F, Kilian A, Chen JP, Kudrna D, Steffenson B, Tamamoto K et al (1999) Sequence analysis of a rice BAC covering the syntenous barley Rpg1 region. Genome 42:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Helentjaris T, King G, Slocum M, Siedenstrang C, Wegman S (1985) Restriction fragment polymorphism as probes for plant diversity and their development as tools for applied plant breeding. Plant Mol Biol 5:109–118

    Article  CAS  Google Scholar 

  • Helentjaris T, Slocum M, Wright S, Schaefer A, Nienhuis J (1986a) Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet 72:761–769

    Article  CAS  Google Scholar 

  • Helentjaris T, Wright S, Weber D (1986b) Construction of a genetic linkage map in maize using restriction fragment length polymorphisms. Maize Genet Coop Newslett 60:118–120

    Google Scholar 

  • Helentjaris T, Weber DF, Wright S (1986c) Use of monosomics to map cloned DNA fragment in maize. Proc Natl Acad Sci USA 83:6035–6039

    Article  PubMed  CAS  Google Scholar 

  • Helentjaris T, Weber D, Wright S (1988) Identification of the genomic locations of duplicate nucleotide sequences in maize by analysis of restriction fragment length polymorphisms. Genetics 118:353–363

    CAS  PubMed  Google Scholar 

  • Holland JB, Uhr DV, Jeffers D, Goodman MM (1998) Inheritance of resistance to southern corn rust in tropical-by-corn-belt maize populations. Theor Appl Genet 96:232–241

    Article  Google Scholar 

  • Hooker AL (1963) Inheritance of chlorotic-lesion resistance to Helminthosporium turcicumin seedling corn. Phytopathology 53:660–662

    Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Hulbert SH, Richter TE, Axtell JD, Bennetzen JL (1990) Genetic map** and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl Acad Sci USA 87:4251–4255

    Article  PubMed  CAS  Google Scholar 

  • Jiang C, Edmeades GO, Armstead I, Lafitte HR, Hayward MD, Hoisington D (1999) Genetic analysis of adaptation differences between highland and lowland tropical maize using molecular markers. Theor Appl Genet 99:1106–1119

    Article  CAS  Google Scholar 

  • Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ, Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266:789–793

    Article  PubMed  CAS  Google Scholar 

  • Jung M, Weldekidan T, Schaff D, Paterson A, Tingey S, Hawk J (1994) Generation-means analysis and quantitative trait locus map** of anthracnose stalk rot genes in maize. Theor Appl Genet 89:413–418

    Article  CAS  Google Scholar 

  • Kahler AL (1985) Association between enzyme marker loci and agronomic traits in maize. In: Proc 40th Annu Corn and Sorghum Res Conf, Am Seed Trade Assoc, Washington, DC, pp 66–89

    Google Scholar 

  • Kilian A, Chen J Han F, Steffenson B, Kleinhofs A (1997) Towards map-based cloning of the barley stem rust resistance genes Rpg1 and Rpg4 using rice as an intergenomic cloning vehicle. Plant Mol Biol 35:187–195

    Article  PubMed  CAS  Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong JM, Obert JA et al (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  PubMed  CAS  Google Scholar 

  • Koester RP, Sisco PH, Stuber CW (1993) Identification of quantitative trait loci controlling days to flowering and plant height in two near isogenic lines of maize. CropSci 33:1209–1216

    Article  Google Scholar 

  • Krakowsky MD, Lee M, Woodman-Clikeman WL, Long MJ, Sharopova N (2004) QTL map** of resistance to stalk tunneling by the European corn borer in RILs of maize population B73 × De811. Crop Sci 44:274–282

    Article  CAS  Google Scholar 

  • Kynast RG, Riera-Lizarazu O, Vales MI, Okagaki RJ, Maquieira SB, Chen G et al. (2001) A complete set of maize individual chromosome additions to the oat genome. Plant Physiol 125:1216–1227

    Article  CAS  Google Scholar 

  • Lambert RJ (2001) High-oil corn hybrids. In: Hallauer AR (ed) Specialty Corns, 2nd edn. CRC Press, Boca Raton, FL, pp 131–154

    Google Scholar 

  • Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene RPS2 and the tobacco viral resistance gene N. Plant Cell 7:1195–1206

    Article  PubMed  CAS  Google Scholar 

  • Lebreton C, Lazic-Jancic V, Steed A, Pekic S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865

    CAS  Google Scholar 

  • Lee M, Sharopova N, Beavis WD, Grant D, Katt M, Blair D, Hallauer A (2002) Expanding the genetic map of maize with the intermated B73 × Mo17 (IBM) population. Plant Mol Biol 48:453–461

    Article  PubMed  CAS  Google Scholar 

  • Lehmensiek A, Esterhuizen AM, van Staden D, Nelson SW, Retief AE (2001) Genetic map** of gray leaf spot (GLS) resistance genes in maize. Theor Appl Genet 103:797–803

    Article  CAS  Google Scholar 

  • Liu SC, Kowalsky SP, Lan TH, Feldmann KA, Paterson AH (1996) Genome-wide high-resolution map** by recurrent intermating using Arabidopsis thaliana as a model. Genetics 142:247–258

    PubMed  CAS  Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellite. Genetics 165:2117–2128

    PubMed  CAS  Google Scholar 

  • Livini C, Ajmone-Marsan P, Nelchinger AE, Messmer MM, Motto M (1992) Genetic diversity of maize inbred lines within and among heterotic groups revealed by RFLPs. Theor Appl Genet 84:17–25

    Article  Google Scholar 

  • Lu H, Bernardo R (2001) Molecular marker diversity among current and historical maize inbreds. Theor Appl Genet 103:613–617

    Article  CAS  Google Scholar 

  • Lübberstedt T, Melchinger AE, Schon CC, Utz H, Klein D (1997) QTL map** in testcrosses of European flint lines of maize. 1. Comparison of different testers for forage yield traits. Crop Sci 37:921–931

    Article  Google Scholar 

  • Lübberstedt T, Klein D, Melchinger AE (1998) Comparative QTL map** of resistance to Ustilago maydis across four populations of European flint-maize. Theor Appl Genet 97:1321–1330

    Article  Google Scholar 

  • Mangelsdorf PC, Reeves RG (1939) The origin of Indian corn and its relatives. Bull No. 574, Texas Agri Exp Stn, College Station, TX

    Google Scholar 

  • Marçon A, Kaeppler SM, Jensen SG, Senior L, Stuber C (1999) Loci controlling resistance to high plains virus and wheat streak mosaic virus in a B73 × Mo17 population of maize. Crop Sci 39:1171–1177

    Article  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R et al (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Meksem K, Leister D, Paleman J, Zabeau M, Salamini F, Gebhardt C (1995) A high-resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Mol Gen Genet 249:74–81

    Article  PubMed  CAS  Google Scholar 

  • Melchinger AE, Messmer MM, Lee M, Woodman WL, Lamkey KR (1991) Diversity and relationships among U.S. maize inbreds revealed by restriction fragment length polymorphisms. Crop Sci 31:669–678

    Article  Google Scholar 

  • Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSRmarkers. Plant Mol Biol 48:483–499

    Article  PubMed  CAS  Google Scholar 

  • Messmer MM, Melchinger AE, Lee M, Woodman WL, Lee EA, Lamkey KR (1991) Genetic diversity among progenitors and elite lines from the Iowa Stiff Stalk Synthetic (BSSS) maize population: comparison of allozyme and RFLP data. Theor Appl Genet 83:97–107

    Article  Google Scholar 

  • Messmer MM, Melchinger AE, Boppenmaier J, Brunklaus-Jung E, Herrmann RG (1992) Relationships among early European maize inbreds. I. Genetic diversity among flint and dent lines revealed by RFLPs. Crop Sci 32:1301–1309

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genome regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Mindrinos M, Katagiri F, Yu G-L, Ausubel FM (1994) The Arabidopsis thaliana disease resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucinerich repeats. Cell 78:1089–1099

    Article  PubMed  CAS  Google Scholar 

  • Moore G, Gale MD, Kurata N, Flavell RB (1993) Molecular analysis of small grain cereal genomes: current status and prospects. Bio/Technology 11:594–599

    Google Scholar 

  • Moore G, Devos KM, Wang Z, Gale MD (1995) Cereal genome evolution — grasses, line up and form a circle. Curr Biol 5:737–739

    Article  PubMed  CAS  Google Scholar 

  • Murigneux A, Barloy D, Leroy P, Beckert M (1993a) Molecular and morphological evaluation of doubled haploid lines in maize. 1. Homogeneity withinDH lines. Theor Appl Genet 86:837–842

    Article  CAS  Google Scholar 

  • Murigneux A, Baud S, Beckert M (1993b) Molecular and morphological evaluation of doubled-haploid lines in maize. 2. Comparison with single-seed-descent lines. Theor Appl Genet 87:278–287

    Article  Google Scholar 

  • Neuffer MG, Coe E, Wessler S (1997) Mutants of Maize. Cold Spring Harbor Laboratory, New York

    Google Scholar 

  • O’Sullivan DM, Ripoll PJ, Rodgers M, Edwards KJ (2001) A maize bacterial artificial chromosome (BAC) library from the European flint inbred line F2. Theor Appl Genet 103:425–432

    Article  CAS  Google Scholar 

  • Ouedraogo JT, Maheshwari V, Berner DK, St-Pierre C-A, Belzile F, Timko MP (2001) Identification of AFLP markers linked to resistance of cowpea (Vigna unguiculata L.) to parasitism by Striga gesnerioides. Theor Appl Genet 102:1029–1036

    Article  CAS  Google Scholar 

  • Pe ME, Gianfranceschi L, Taramino G, Tarchini R, Angelini P (1993) Map** quantitative trait loci (QTLs) for resistance to Gibberella zeae infection in maize. Mol Gen Genet 241:11–16

    Article  PubMed  CAS  Google Scholar 

  • Pei DQ, Gobelman-Werner K, Wise R (2000) Physical characterization of the maize rf1 genomic region. In: Plant & Animal Genome VIII Conf, San Diego

    Google Scholar 

  • Pejic I, Ajmone-Marsan P, Morgante M, Kozumplick V, Castiglioni P, Taramino G, Motto M (1998) Comparative analysis of genetic similarity among maize inbred lines detected by RFLPs, RAPDs, SSRs, and AFLPs. Theor Appl Genet 97:1248–1255

    Article  CAS  Google Scholar 

  • Pereira MG, Lee M, Bramel-Cox P, Woodman W, Doebley J, Whitkus R (1994) Construction of an RFLP map in sorghum and comparative map** in maize. Genome 37:236–243

    CAS  PubMed  Google Scholar 

  • Pernet A, Hoisington D, Franco J, Isnard M, Jewell D, Jiang C et al (1999) Genetic map** of maize streak virus resistance from the Mascarene source. I. Resistance in line D211 and stability against different virus clones. Theor Appl Genet 99:524–539

    Article  CAS  Google Scholar 

  • Quarrie SA, Steed A, Lebreton C, Gulli M, Calestani C (1994) QTL analysis of ABA production in wheat and maize and associated physiological traits. Russian J Plant Physiol 41:565–571

    Google Scholar 

  • Ragot M, Sisco PH, Hoisington DA, Stuber CW (1995) Molecular-marker-mediated characterization of favorable exotic alleles at quantitative trait loci in maize. Crop Sci 35:1306–1315

    Article  CAS  Google Scholar 

  • Rebourg C, Gouesnard B, Charcosset A (2001) Large scale molecular analysis of traditional European maize populations. Relationships with morphological variation. Heredity 86:574–587

    Article  PubMed  CAS  Google Scholar 

  • Rebourg C, Chastanet M, Gouesnard B, Welcker C, Dubreuil P, Charcosset A (2003) Maize introduction into Europe: the history reviewed in the light ofmolecular data. Theor Appl Genet 106:895–903

    PubMed  CAS  Google Scholar 

  • Reif JC, **a XC, Melchinger AE, Warburton ML, Hoisington DA, Beck D et al (2004) Genetic diversity determined within and among CIMMYT maize populations of tropical, subtropical, and temperate germplasm by SSR markers. Crop Sci 44:326–334

    Article  CAS  Google Scholar 

  • Ribaut JM, Jiang C, Gonzalez-de-Leon D, Edmeades GO, Hoisington DA (1997) Identification of quantitative trait loci under drought condition in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor Appl Genet 94:887–896

    Article  Google Scholar 

  • Richey FD (1922) The experimental basis for the present status of corn breeding. J Am Soc Agron 14:1–17

    Google Scholar 

  • Roman H, Ullstrup AJ (1951) The use of A-B translocations to locate genes in maize. Agron J 43:450–454

    Article  Google Scholar 

  • Rostoks N, Zale JM, Soule J, Brueggeman R, Druka A, Kudrna D et al (2002) A barley gene family homologous to the maize rust resistance gene Rp1-D. Theor Appl Genet 104:1298–1306

    Article  PubMed  CAS  Google Scholar 

  • Salmeron JM, Oldroyd GED, Rommens CMT, Scofield SR, Kim HS, Lavelle DT et al (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, Tuberosa R, Chiapparino E, Maccaferri M, Veillet S, van Beuningen L et al (2002) Toward positional cloning of Vgt1, a QTL controlling the transition from the vegetative to the reproductive phase in maize. Plant Mol Biol 48:601–613

    Article  PubMed  CAS  Google Scholar 

  • Sari-Gorla M, Pe ME, Rossini L (1994) Detection of QTLs controlling pollen germination and growth in maize. Heredity 72:332–335

    Google Scholar 

  • Schön CC, Lee M, Melchinger AE, Guthrie WD, Woodman WL (1993) Map** and characterization of quantitative trait loci affecting resistance against second-generation European corn borer in maize with the aid of RFLPs. Heredity 70:648–659

    Google Scholar 

  • Senior ML, Heun M (1993) Map** maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36:884–889

    PubMed  CAS  Google Scholar 

  • Senior ML, Chin ECL, Lee M, Smith JSC, Stuber CW (1996) Simple sequence repeat markers developed from maize sequences found in the GenBank database: map construction. Crop Sci 36:1676–1683

    Article  CAS  Google Scholar 

  • Sharopova N, McMullen MD, Schultz L, Schroeder S, Sanchez-Villeda H, Gardiner J et al (2002) Development and map** of SSR markers for maize. Plant Mol Biol 48:463–481

    Article  PubMed  CAS  Google Scholar 

  • Sibov ST, Gaspar M, Silva MJ, Ottoboni LMM, Arruda P, Souza AP (1999) Two genes control aluminum tolerance in maize: genetic and molecular map** analyses. Genome 42:475–482

    Article  CAS  Google Scholar 

  • Simons G, van der Lee T, Diergaarde P, van Daelen R, Groenendijk J, Frijters A et al (1997) AFLP-based fine map** of the Mlo gene to a 30-kb DNA segment of the barley genome. Genomics 44:61–70

    Article  PubMed  CAS  Google Scholar 

  • Smith DR, Hooker AL (1973) Monogenic chorotic-lesion resistance in corn to Helminthosporium maydis. Crop Sci 13:330–331

    Article  Google Scholar 

  • Smith JSC, Chin ECL, Shu H, Smith OS, Wall SJ, Senior ML et al (1997) An evaluation of utility of SSR loci as molecular markers in maize (Zea mays L.): comparisons with data from RFLPs and pedigree. Theor Appl Genet 95:163–173

    Article  CAS  Google Scholar 

  • Song W-Y, Wang G-L, Chen L-L, Kim H-S, Pi LY, Holsten T et al (1995) A receptor kinase-like protein encoded by the rice disease resistance gene Xa21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package, JoinMap. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Stein N, Feuillet C, Wicker T, Schlagenhauf E, Keller B (2000) Subgenome chromosome walking in wheat: a 450-kb physical contig in Triticum monococcum L. spans the Lr10 resistance locus in hexaploid wheat (Triticum aestivum L.). Proc Natl Acad Sci USA 97:13436–13441

    Article  PubMed  CAS  Google Scholar 

  • Stuber CW (1994) Success in the use of molecular markers for yield enhancement in corn. In: Proc 49th Annu Corn and Sorghum Ind Res Conf, Am Seed Trade Assoc, 49:232–238

    Google Scholar 

  • Stuber CW, Lincoln SE, Wolff DW, Helentjaris TH, Lander ES (1992) Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics 132:823–839

    PubMed  CAS  Google Scholar 

  • Sughroue JR, Rocheford TR (1994) Restriction fragment length polymorphism differences among Illinois long-term selection oil strains. Theor Appl Genet 87:916–924

    Article  CAS  Google Scholar 

  • Tai T, Dahlbeck D, Stall RE, Peleman J, Staskawicz BJ (1999) High-resolution genetic and physical map** of the region containing the Bs2 resistance gene of pepper. Theor Appl Genet 99:1201–1206

    Article  CAS  Google Scholar 

  • Taramino G, Tingey S (1996) Simple sequence repeats for germplasm analysis and map** in maize. Genome 39:277–287

    PubMed  CAS  Google Scholar 

  • Tikhonov AP, San Miguel PJ, Nakajima Y, Gorenstein NM, Bennetzen JF, Avramova Z (1999) Colinearity and its exceptions in orthologous adh regions of maize and sorghum. Proc Natl Acad Sci USA 96:7409–7414

    Article  PubMed  CAS  Google Scholar 

  • Troyer F (2001) Temperate corn-background, behavior, and breeding. In: Hallauer AR (ed) Specialty Corns, 2nd edn. CRC Press, Boca Baton, FL, pp 393–466

    Google Scholar 

  • van Ooijen JW, Maliepaard C (1996) Map QTL version 3.0: Software for the calculation of QTL positions on geneticmaps. Plant Genome IV Conf, San Diego

    Google Scholar 

  • Veldboom LR, Lee M (1994) Molecular-marker-facilitated studies of morphological traits in maize. 2. Determination of QTLs for grain yield and yield components. Theor Appl Genet 89:451–458

    Article  CAS  Google Scholar 

  • Veldboom LR, Lee M (1996) Genetic map** of quantitative trait loci in maize in stress and nonstress environments. II. Plant height and flowering. Crop Sci 36:1320–1327

    Article  CAS  Google Scholar 

  • Veldboom LR, Lee M, Woodman WL (1994) Molecular marker-facilitated studies in an elite maize population. 1. Linkage analysis and determination of QTL for morphological traits. Theor Appl Genet 88:7–16

    Article  CAS  Google Scholar 

  • Vlãdutu C, McLaughlin J, Philips RL (1999) Fine map** and characterization of linked quantitative trait loci involved in the transition of the maize apical meristem from vegetative to generative structures. Genetics 153:993–1007

    PubMed  Google Scholar 

  • von Malek B, Weber WE, Debener T (2000) Identification of molecular markers linked to Rdr1, a gene conferring resistance to blackspot in roses. Theor Appl Genet 101:977–983

    Article  Google Scholar 

  • Vos P, Hogers R, Bleekers M, Reijans M, van der Lee T, Hornes M et al (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    PubMed  CAS  Google Scholar 

  • Watson SA (1987) Structure and composition. In: Watson SA, Ramstad PE (eds) Corn: Chemistry and Technology. Am Assoc Cereal Chem, St Paul, MN, pp 53–82

    Google Scholar 

  • Weber DF, Helentjaris T (1989) Map** RFLP loci in maize using B-A translocations. Genetics 121:583–590

    PubMed  CAS  Google Scholar 

  • Wei F, Gobelman-Werner K, Morroll SM, Kurth J, Mao L, Wing R et al (1999) The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley. Genetics 153:1929–1948

    PubMed  CAS  Google Scholar 

  • Welz HG, **a XC, Bassetti P, Melchinger AE, Lünnerstedt T (1999) QTLs for resistance to Setosphaeria turcica in an early maturing dent × flint maize population. Theor Appl Genet 99:649–655

    Article  Google Scholar 

  • Wendel JF, Stuber CW, Edwards MD, Goodman MM (1986) Duplicated chromosome segments in maize (Zea mays L.): further evidence from hexokinase isozymes. Theor Appl Genet 72:178–185

    Article  CAS  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C, Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to Toll and the interleukin-1 receptor. Cell 78:1101–1115

    Article  PubMed  CAS  Google Scholar 

  • Whitkus R, Doebley J, Lee M (1992) Comparative genome map** of sorghum and maize. Genetics 132:1119–1130

    PubMed  CAS  Google Scholar 

  • Wilson WA, Harrington SE, Woodman WL, Lee M, Sorrells ME, McCouch SR (1999) Inferences on the genome structure of progenitor maize through comparative analysis of rice, maize and the domesticated panicoids. Genetics 153:453–473

    PubMed  CAS  Google Scholar 

  • Wise RP, Schnable PS (1994) Map** complementary genes in maize: positioning the rf1 and rf2 nuclear-fertility restorer loci of Texas (T) cytoplasm relative to RFLP and visible markers. Theor Appl Genet 88:785–795

    Article  CAS  Google Scholar 

  • Woo SS, Jiang J, Gill BS, Paterson AH, Wing RA (1994) Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor. Nucleic Acids Res 22:4922–4931

    PubMed  CAS  Google Scholar 

  • Xu ML, Melchinger AE, ** of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Mol Gen Genet 261:574–581

    Article  PubMed  CAS  Google Scholar 

  • Yang HY, Korban SS, Kruger J, Schmidt H (1997) The use of a modified bulk segregant analysis to identify a molecular marker linked to a scab resistance gene in apple. Euphytica 94:175–182

    Article  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T et al (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang ZX (1998) Expression of Xa1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95:1663–1668

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Hu S, Wang J, Wong GKS, Li S, Liu B et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  PubMed  CAS  Google Scholar 

  • Zaitlin D, DeMars SJ, Gupta M (1992) Linkage of a second gene for NCLB resistance to molecular markers in maize. Maize Gene Coop Newslett 66:69–70

    Google Scholar 

  • Zaitlin D, DeMars S, Ma Y (1993) Linkage of rhm, a recessive gene for resistance to southern corn leaf blight, to RFLP marker loci in maize (Zea mays) seedlings. Genome 36:555–564

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cai, H. (2006). Maize. In: Kole, C. (eds) Cereals and Millets. Genome Map** and Molecular Breeding in Plants, vol 1. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-34389-9_3

Download citation

Publish with us

Policies and ethics

Navigation