Contribution to the Non-Lagrangian Formulation of Geotechnical and Geomechanical Processes

  • Chapter
  • First Online:
Holistic Simulation of Geotechnical Installation Processes

Abstract

Numerical simulations of geomechanical and geotechnical processes, such as vibro-injection pile installation, require suitable algorithms and sufficiently realistic models. These models have to account for large deformations, the evolution of material interfaces including free surfaces and contact interfaces, for granular material behavior in different flow regimes as well as for the interaction of the different materials and phases. Although the traditional Lagrangian formulation is well-suited to handling complex material behavior and maintaining material interfaces, it generally cannot represent large deformation, shear and vorticity. This is because in Lagrangian numerical methods the storage points (nodes resp. material points) move with the local material velocity, which may cause mesh tangling resp. clustering of points. The present contribution addresses the development of models for geotechnical and geomechanical processes by utilizing Eulerian and Arbitrary Lagrangian-Eulerian (ALE) formulations. Such non-Lagrangian viewpoints introduce additional difficulties which are discussed in detail. In particular, we investigate how to track interfaces and to model interaction of different materials with respect to an arbitrarily moving control volume, and how to validate non-Lagrangian numerical models by small-scale experimental tests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abadie, S., Morichon, D., Grilli, S., Glockner, S.: Numerical simulation of waves generated by landslides using a multiple-fluid Navier-Stokes model. Coast. Eng. 57, 779–794 (2010)

    Article  Google Scholar 

  2. Achanta, S., Cushman, J.H., Okos, M.R.: On multicomponent, multiphase thermomechanics with interfaces. Int. J. Eng. Sci. 32(11), 1717–1738 (1994)

    Article  MATH  Google Scholar 

  3. Addessio, F.L., Baumgardner, J.R., Dukowicz, J.K., Johnson, N.L., Kashiwa, B.A., Rauenzahn, R.M., Zemach, C.: CAVEAT: a computer code for fluid dynamics problems with large distortion and internal slip. Report LA-10613-MS-REV. 1 (revised edition), Los Alamos National Laboratory, Los Alamos, USA (1990)

    Google Scholar 

  4. Adrian, R.J.: Particle-imaging techniques for experimental fluid mechanics. J. Annu. Rev. Fluid Mech. 23, 261–304 (1991)

    Article  Google Scholar 

  5. Ancey, C., Coussot, P., Evesque, P.: A theoretical framework for granular suspensions in a steady simple shear flow. J. Rheol. 43(6), 1673–1699 (1999)

    Article  Google Scholar 

  6. Ancey, C., Evesque, P.: Frictional-collisional regime for granular suspension flows down an inclined channel. Phys. Rev. E 62(6), 8349–8360 (2000)

    Article  Google Scholar 

  7. Ancey, C.: Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime. Phys. Rev. E 65, 011304 (2001)

    Article  Google Scholar 

  8. Ancey, C.: Plasticity and geophysical flows: a review. J. Nonnewton. Fluid Mech. 142, 4–35 (2007)

    Article  MATH  Google Scholar 

  9. Anderson, K.G., Jackson, R.: A comparison of the solutions of some proposed equations of motion of granular materials for fully developed flow down inclined planes. Ind. Eng. Chem. Fundam. 241, 145–168 (1992)

    Google Scholar 

  10. Arbogast, T., Douglas, J., Hornung, U.: Derivation of the double porosity model of single phase flow via homogenization theory. SIAM J. Math. Anal. 21(4), 823–836 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  11. Arnold, D.N., Brezzi, F., Fortin, M.: A stable finite element for the Stokes equations. Calcolo 21(4), 337–344 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Assier-Rzadkiewicz, S., Mariotti, C., Heinrich, P.: Numerical simulation of submarine landslides and their hydraulic effects. J. Waterw. Port Coast. Ocean Eng. 123(4), 149–157 (1997)

    Article  Google Scholar 

  13. Aubram, D.: Differential geometry applied to continuum mechanics. Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, vol. 44, Shaker Verlag, Aachen (2009). http://dx.doi.org/10.14279/depositonce-2185

  14. Aubram, D.: An arbitrary Lagrangian-Eulerian method for penetration into sand at finite deformation. Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, vol. 62. Shaker Verlag, Aachen (2013). http://dx.doi.org/10.14279/depositonce-3958

  15. Aubram, D.: Optimization-based smoothing algorithm for triangle meshes over arbitrarily shaped domains. ar**v e-prints, 1410.5977 [cs.NA] (2014). http://arxiv.org/abs/1410.5977

  16. Aubram, D.: Development and experimental validation of an Arbitrary Lagrangian-Eulerian (ALE) method for soil mechanics. Geotechnik 38(3), 193–204 (2015). http://dx.doi.org/10.1002/gete.201400030

    Article  Google Scholar 

  17. Aubram, D.: Homogeneous equilibrium model for geomechanical multi-material flow with compressible constituents. J. Nonnewtonian Fluid Mech. 232, 88–101 (2016). http://dx.doi.org/10.1016/j.jnnfm.2016.04.001

    Article  MathSciNet  Google Scholar 

  18. Aubram, D.: A multi-material Eulerian method for large deformation and free surface flow of geomaterials (in preparation)

    Google Scholar 

  19. Aubram, D., Rackwitz, F., Savidis, S.A.: An ALE finite element method for cohesionless soil at large strains: computational aspects and applications. In: Benz, T., Nordal, S. (eds.) Proceedings 7th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE), pp. 245–250. CRC Press, Boca Raton (2010)

    Google Scholar 

  20. Aubram, D., Rackwitz, F., Wriggers, P., Savidis, S.A.: An ALE method for penetration into sand utilizing optimization-based mesh motion. Comput. Geotech. 65, 241–249 (2015). http://dx.doi.org/10.1016/j.compgeo.2014.12.012

    Article  Google Scholar 

  21. Aubram, D., Rackwitz, F., Savidis, S.A.: Vibro-injection pile installation in sand: part i—interpretation as multi-material flow. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77, pp. 73–102. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18170-7_5

    Chapter  Google Scholar 

  22. Aubram, D., Savidis, S.A., Rackwitz, F.: Theory and numerical modeling of geomechanical multi-material flow. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 187–229. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_10

    Chapter  Google Scholar 

  23. Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shear. Proc. R. Soc. Lond. Ser. A 225, 49–63 (1954)

    Article  Google Scholar 

  24. Bai, W.: The quadrilateral ‘mini’ element for the stokes problem. Comput. Methods Appl. Mech. Eng. 143, 41–47 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Bardenhagen, S.G., Brackbill, J.U., Sulsky, D.: The material-point method for granular materials. Comput. Methods Appl. Mech. Eng. 187, 529–541 (2000)

    Article  MATH  Google Scholar 

  26. Bedford, A., Drumheller, D.S.: Theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21(8), 863–960 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  27. Belytschko, T., Liu, W.K., Moran, D.: Nonlinear Finite Elements for Continua and Structures. Wiley, Chichester (2000)

    MATH  Google Scholar 

  28. Bennethum, L.S.: Compressibility moduli for porous materials incorporating volume fraction. J. Eng. Mech. 132, 1205–1214 (2006)

    Article  Google Scholar 

  29. Bennethum, L.S.: Theory of flow and deformation of swelling porous materials at the macroscale. Comput. Geotech. 34, 267–278 (2007)

    Article  Google Scholar 

  30. Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems-I, balance laws. Int. J. Eng. Sci. 34(2), 125–145 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  31. Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems-II, constitutive theory. Int. J. Eng. Sci. 34(2), 147–169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  32. Bennethum, L.S., Weinstein, T.: Three pressures in porous media. Transp. Porous Media 54, 1–34 (2004)

    Article  MathSciNet  Google Scholar 

  33. Benson, D.J.: An efficient, accurate, simple ALE method for nonlinear finite element programs. Comput. Methods Appl. Mech. Eng. 72, 305–350 (1989)

    Article  MATH  Google Scholar 

  34. Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99, 235–394 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  35. Benson, D.J.: A multi-material Eulerian formulation for the efficient solution of impact and penetration problems. Comput. Mech. 15, 558–571 (1995)

    Article  MATH  Google Scholar 

  36. Benson, D.J.: A mixture theory for contact in multi-material Eulerian formulations. Comput. Methods Appl. Mech. Eng. 140, 59–86 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  37. Benson, D.J.: Volume of fluid interface reconstruction methods for multi-material problems. Appl. Mech. Rev. 55(2), 151–165 (2002)

    Article  Google Scholar 

  38. Benson, D.J.: An implicit multi-material Eulerian formulation. Int. J. Numer. Meth. Eng. 48, 475–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  39. Benson, D.J.: Momentum advection on unstructured staggered quadrilateral meshes. Int. J. Numer. Meth. Eng. 75, 1549–1580 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  40. Benson, D.J., Okazawa, S.: Contact in a multi-material Eulerian finite element formulation. Comput. Methods Appl. Mech. Eng. 193, 4277–4298 (2004)

    Article  MATH  Google Scholar 

  41. Beuth, L., Wieckowski, Z., Vermeer, P.A.: Solution of quasi-static large-strain problems by the material point method. Int. J. Numer. Anal. Meth. Geomech. 35, 1451–1465 (2011)

    Google Scholar 

  42. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  43. Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    MathSciNet  Google Scholar 

  44. Bouré, J.A.: Two-phase flow models: the closure issue. Multiphase Science and Technology 3(1–4), 3–30 (1987)

    Article  Google Scholar 

  45. Bouré, J.A., Delhaye, J.M.: General equations and two-phase flow modeling section 1.2. In: Hetsroni, G. (ed.) Handbook of Multiphase Systems. Hemisphere Publishing Corporation (1982)

    Google Scholar 

  46. Bowen, R.M.: Theory of mixtures. In: Eringen, A.C. (ed.) Continuum Physics. Vol. III: Mixtures and EM Field Theories, part I. Academic Press, New York (1976)

    Google Scholar 

  47. Bowen, R.M.: Incompressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 18(9), 1129–1148 (1980)

    Article  MATH  Google Scholar 

  48. Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20(6), 697–735 (1982)

    Article  MATH  Google Scholar 

  49. Bui, H.H., Fukagawa, R., Sako, K., Ohno, S.: Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model. Int. J. Numer. Anal. Meth. Geomech. 32, 1537–1570 (2008)

    Article  MATH  Google Scholar 

  50. Carter, J.P., Booker, J.R., Davis, E.H.: Finite deformation of an elasto-plastic soil. Int. J. Numer. Anal. Meth. Geomech. 1, 25–43 (1977)

    Article  MATH  Google Scholar 

  51. Chang, C.H., Ramshaw, J.D.: Dynamical evolution of volume fractions in multipressure multiphase flow models. Phys. Rev. E 77, 066305 (2008)

    Article  Google Scholar 

  52. Chorin, A.J., Hughes, T.J.R., McCracken, M.F., Marsden, J.E.: Product formulas and numerical algorithms. Commun. Pure Appl. Math. 31, 205–256 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  53. Colella, P., Glaz, H.M., Ferguson, R.E.: Multifluid algorithms for Eulerian finite difference methods (1997). (unpublished manuscript)

    Google Scholar 

  54. Coussot, P., Ancey, C.: Rheophysical classification of concentrated suspensions and granular pastes. Phys. Rev. E 59(4), 4445–4457 (1999)

    Article  Google Scholar 

  55. Craig, R.F.: Craig’s Soil Mechanics, 7th edn. E & FN Spon, London (2007)

    Google Scholar 

  56. Cushman, J.H., Bennethum, L.S., Hu, B.X.: A primer on upscaling tools for porous media. Adv. Water Resour. 25, 1043–1067 (2002)

    Article  Google Scholar 

  57. Das, B.M.: Advanced Soil Mechanics, 3rd edn. Taylor & Francis, Boca Raton (2008)

    Google Scholar 

  58. Dassault Systèmes: Abaqus Analysis User’s Guide, Version 6.14 (2014)

    Google Scholar 

  59. DeBar, R.B.: Fundamentals of the KRAKEN code. Technical report UCID-17366, Lawrence Livermore Laboratory, Livermore, USA (1974)

    Google Scholar 

  60. Denlinger, R.P., Iverson, R.M.: Flow of variably fluidized granular masses across three-dimensional terrain. Numerical predictions and experimental tests. J. Geophys. Res. 106(B1), 553–566 (2001)

    Article  Google Scholar 

  61. Di, Y., Yang, J., Sato, T.: An operator-split ALE model for large deformation analysis of geomaterials. Int. J. Numer. Anal. Meth. Geomech. 31, 1375–1399 (2007)

    Article  MATH  Google Scholar 

  62. DIN EN ISO 14688–1: Geotechnische Erkundung und Untersuchung – Benennung, Beschreibung und Klassifizierung von Boden – Teil 1: Benennung und Beschreibung. Beuth Verlag, Berlin, January 2003 (German Code)

    Google Scholar 

  63. Drew, D.A.: Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261–291 (1983)

    Article  MATH  Google Scholar 

  64. Drew, D.A., Passman, S.L.: Theory of Multicomponent Fluids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  65. Dyadechko, V., Shashkov, M.: Moment-of-fluid interface reconstruction. Report LA-UR-05-7571, Los Alamos National Laboratory, Los Alamos, USA (2005)

    Google Scholar 

  66. Dyadechko, V., Shashkov, M.: Reconstruction of multi-material interfaces from moment data. J. Comput. Phys. 227, 5361–5384 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  67. Emeriault, F., Cambou, B., Mahboubi, A.: Homogenization for granular materials: non reversible behaviour. Mech. Cohesive-Frictional Mater. 1, 199–218 (1996)

    Article  Google Scholar 

  68. Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  69. Freßmann, D.: On single- and multi-material arbitrary Lagrangian-Eulerian approaches with application to micromechanical problems at finte deformations. Dissertation, Fachbereich Bauingenieur- und Vermessungswesen, Universität Hannover, Germany (2004)

    Google Scholar 

  70. Freßmann, D., Wriggers, P.: Advection approaches for single-and multi-material arbitrary Lagrangian-Eulerian finite element procedures. Comput. Mech. 39, 153–190 (2007)

    Article  MATH  Google Scholar 

  71. Galera, S., Breil, J., Maire, P.-H.: A 2D unstructured multi-material Cell-Centered Arbitrary Lagrangian-Eulerian (CCALE) scheme using MOF interface reconstruction. Comput. Fluids 46, 237–244 (2011)

    Article  MATH  Google Scholar 

  72. Gingold, R.A., Monaghan, J.J.: Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977)

    Article  MATH  Google Scholar 

  73. Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils Found. 36(1), 1–12 (1996)

    Article  Google Scholar 

  74. Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 1, averaging procedure. Adv. Water Resour. 2, 131–144 (1979)

    Article  Google Scholar 

  75. Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 2, mass, momenta, energy, and entropy equations. Adv. Water Resour. 2, 191–203 (1979)

    Article  Google Scholar 

  76. Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 3, constitutive theory for porous media flow. Adv. Water Resour. 3, 25–40 (1980)

    Article  Google Scholar 

  77. Hassanizadeh, M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)

    Article  Google Scholar 

  78. Heinrich, P.: Nonlinear water waves generated by submarine and aerial landslides. J. Waterw. Port Coast. Ocean Eng. 118(3), 249–266 (1992)

    Article  Google Scholar 

  79. Hicks, M.A., Dijkstra, J., Lloret-Cabot, M., Karstunen, M. (eds.): Installation Effects in Geotechnical Engineering. CRC Press, London (2013)

    Google Scholar 

  80. Hirsch, C.: Numerical Computation of Internal and External Flows, Vol. 1: Fundamentals of Computational Fluid Dynamics, 2nd edn. Butterworth-Heinemann, Burlington (2007)

    Google Scholar 

  81. Hirt, C.W., Nichols, B.D.: Volume of Fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  82. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)

    Article  MATH  Google Scholar 

  83. Hornung, U.: Homogenization and Porous Media. Springer, New York (1997)

    Book  MATH  Google Scholar 

  84. Hu, Y., Randolph, M.F.: A practical numerical approach for large deformation problems in soil. Int. J. Numer. Anal. Meth. Geomech. 22, 327–350 (1998)

    Article  MATH  Google Scholar 

  85. Hughes, T.J.R.: Numerical implementation of constitutive models: rate-independent deviatoric plasticity. In: Nemat-Nasser, S., Asaro, R.J., Hegemier, G.A. (eds.) Theoretical Foundation for Large-Scale Computations for Nonlinear Material Behavior, pp. 29–63. Martinus Nijhoff Publishers, Dordrecht (1984)

    Chapter  Google Scholar 

  86. Hutter, K., Rajagopal, K.R.: On flows of granular materials. Continuum Mech. Thermodyn. 6, 81–139 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  87. Hutter, K., Svendsen, B., Rickenmann, D.: Debris flow modeling: a review. Continuum Mech. Thermodyn. 8, 1–35 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  88. Hyman, J.M.: Numerical methods for tracking interfaces. Physica D 12, 396–407 (1984)

    Article  MATH  Google Scholar 

  89. Ishii, M., Hibiki, T.: Thermo-Fluid Dynamics of Two-Phase Flow, 2nd edn. Springer, LLC (2011)

    Book  MATH  Google Scholar 

  90. Iverson, R.M.: The physics of debris flows. Rev. Geophys. 35(3), 245–296 (1997)

    Article  Google Scholar 

  91. Iverson, R.M.: The debris-flow rheology myth. In: Rickenmann, D., Chen, C.L. (eds.) Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp. 303–314. Millpress, Rotterdam (2003)

    Google Scholar 

  92. Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across three-dimensional terrain, 1. Coulomb mixture theory. J. Geophys. Res. 106(B1), 537–552 (2001)

    Article  Google Scholar 

  93. Johnson, P.C., Jackson, R.: Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 176, 67–93 (1987)

    Article  Google Scholar 

  94. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  Google Scholar 

  95. Kolymbas, D.: Introduction to Hypoplasticity. A.A. Balkema, Rotterdam (2000)

    Google Scholar 

  96. Lade, P.V., de Boer, R.: The concept of effective stress for soil, concrete and rock. Géotechnique 47, 61–78 (1997)

    Article  Google Scholar 

  97. Lade, P.V., Yamamuro, J.A. (eds.): Physics and Mechanics of Soil Liquefaction. A.A. Balkema, Rotterdam (1999)

    Google Scholar 

  98. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, 3rd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  99. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, Chichester (1998)

    MATH  Google Scholar 

  100. Li, X.S.: A sand model with state-dependent dilatancy. Géotechnique 52(3), 173–186 (2002)

    Article  Google Scholar 

  101. Livermore Software Technology Corporation (LSTC): LS-DYNA Keyword User’s Manual, Vol. I, R8.0. Livermore Software Technology Corporation (LSTC) (2015)

    Google Scholar 

  102. Liyanapathirana, D.S.: Arbitrary Lagrangian Eulerian based finite element analysis of cone penetration in soft clay. Comput. Geotech. 36, 851–860 (2009)

    Article  Google Scholar 

  103. Locat, J., Lee, H.J.: Submarine landslides: advances and challenges. Can. Geotech. J. 39, 193–212 (2002)

    Article  Google Scholar 

  104. Loges, I., Niemunis, A.: Neohypoplasticity—estimation of small strain stiffness. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77, pp. 163–180. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18170-7_9

    Chapter  Google Scholar 

  105. Lucy, L.B.: A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977)

    Article  Google Scholar 

  106. Luttwak, G., Rabie, R.L.: The multi material arbitrary Lagrangian Eulerian code MMALE and its application to some problems of penetration and impact. Technical report LA-UR-85-2311, Los Alamos National Laboratory, Los Alamos, New Mexico, USA (1985)

    Google Scholar 

  107. Ma, G., Shi, F., Kirby, J.T.: Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Model. 43–44, 22–35 (2012)

    Article  Google Scholar 

  108. Ma, G., Kirby, J.T., Shi, F.: Numerical simulation of Tsunami waves generated by deformable submarine landslides. Ocean Model. 69, 146–165 (2013)

    Article  Google Scholar 

  109. Mabsout, M.E., Tassoulas, J.L.: A finite element model for the simulation of pile driving. Int. J. Numer. Meth. Eng. 37, 257–278 (1994)

    Article  MATH  Google Scholar 

  110. Mair, H.U.: Review: hydrocodes for structural response to underwater explosions. Shock Vibr. 6, 81–96 (1999)

    Article  Google Scholar 

  111. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice Hall Inc., New Jersey (1969)

    MATH  Google Scholar 

  112. Mandell, D.A., Adams, T.F., Holian, K.S., Addessio, F.L., Baumgardner, J.R., Mosso, S.J.: MESA: a 3-D computer code for armor/anti-armor applications. Report LA-UR-89-1851, Los Alamos National Laboratory, Los Alamos, USA (1989)

    Google Scholar 

  113. Manzari, M.T., Dafalias, Y.F.: A critical state two-surface plasticity model for sands. Géotechnique 47(2), 255–272 (1997)

    Article  Google Scholar 

  114. Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G., Løvholt, F.: Submarine landslides: processes, triggers and hazard prediction. Philos. Trans. R. Soc. Lond. Ser. A 364, 2009–2039 (2006)

    Article  MathSciNet  Google Scholar 

  115. McGlaun, J.M., Thompson, S.L.: CTH: a three-dimensional shock wave physics code. Int. J. Impact Eng. 10, 351–360 (1990)

    Article  Google Scholar 

  116. Miller, G.H., Puckett, E.G.: A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128, 134–164 (1996)

    Article  MATH  Google Scholar 

  117. Miller, D.S., Zimmerman, G.B.: An algorithm for time evolving volume fractions in mixed zones in Lagrangian hydrodynamics calculations. Russ. J. Phy. Chem. B 3, 117–121 (2009)

    Article  Google Scholar 

  118. Moseley, M.P., Kirsch, K. (eds.): Ground Improvement, 2nd edn. Spon Press, New York (2004)

    Google Scholar 

  119. Murad, M.A., Bennethum, L.S., Cushman, J.H.: A multi-scale theory of swelling porous media: I, application to one-dimensional consolidation. Transp. Porous Media 19, 93–122 (1995)

    Article  Google Scholar 

  120. Murad, M.A., Cushman, J.H.: Multiscale flow and deformation in hydrophilic swelling porous media. Int. J. Eng. Sci. 34(3), 313–338 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  121. Nazem, M., Sheng, D., Carter, J.P.: Stress integration and mesh refinement for large deformation in geomechanics. Int. J. Numer. Meth. Eng. 65, 1002–1027 (2006)

    Article  MATH  Google Scholar 

  122. Nazem, M., Sheng, D., Carter, J.P., Sloan, S.W.: Arbitrary Lagrangian-Eulerian method for large-strain consolidation problems. Int. J. Numer. Anal. Method Geomech. 32(9), 1023–1050 (2008)

    Article  MATH  Google Scholar 

  123. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frictional Mater. 2, 279–299 (1997)

    Article  Google Scholar 

  124. Niemunis, A., Tavera, C.E.G., Wichtmann, T.: Peak stress obliquity in drained and undrained sands, simulations with neohypoplasticity. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 85–114. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_5

    Chapter  Google Scholar 

  125. Nikolinakou, M.A., Whittle, A.J., Savidis, S.A., Schran, U.: Prediction and interpretation of the performance of a deep excavation in Berlin sand. J. Geotech. Geoenviron. Eng. 137(11), 1047–1061 (2011)

    Article  Google Scholar 

  126. Noh, W.F.: CEL: a time-dependent, two-space-dimensional, coupled Eulerian-Lagrange code. In: Alder, B. et al. (ed.) Methods in Computational Physics, Advances in Research and Applications, vol. 3: Fundamental Methods in Hydrodynamics, pp. 117–179. Academic Press, New York and London (1964)

    Google Scholar 

  127. Passman, S.L., Nunziato, J.W., Bailey, P.B., Reed, K.W.: Shearing motion of a fluid-saturated granular material. J. Rheol. 30(1), 167–192 (1986)

    Article  MATH  Google Scholar 

  128. Pastor, M., Zienkiewicz, O.C., Chan, A.H.C.: Generalized plasticity and the modelling of soil behaviour. Int. J. Numer. Anal. Method Geomech. 14, 151–190 (1990)

    Article  MATH  Google Scholar 

  129. Peery, J.S., Carroll, D.E.: Multi-material ALE methods in unstructured grids. Comput. Methods Appl. Mech. Eng. 187, 591–619 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  130. Pitman, E.B., Le, L.: A two-fluid model for avalanche and debris flows. Philos.Trans. R. Soc. Lond. Ser. A 363, 1573–1601 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  131. Plumb, O.A., Whitaker, S.: Dispersion in heterogeneous porous media, 1. local volume averaging and large-scale averaging. Water Resour. Res. 24(7), 913–926 (1988)

    Article  Google Scholar 

  132. Pudasaini, S.P.: A general two-phase debris flow model. J. Geophys. Res. 117, F03010 (2012)

    Article  Google Scholar 

  133. Pudasaini, S.P., Hutter, K.: Avalanche Dynamics: Dynamics of Rapid Flows of Dense Granular Avalanche. Springer, Heidelberg (2007)

    Google Scholar 

  134. Pudasaini, S.P., Wang, Y., Hutter, K.: Modelling debris flows down general channels. Nat. Hazards Earth Syst. Sci. 5, 799–819 (2005)

    Article  Google Scholar 

  135. Qiu, G., Henke, S., Grabe, J.: Application of a coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Comput. Geotech. 38, 30–39 (2011)

    Article  Google Scholar 

  136. Rackwitz, F., Savidis, S.A.: Numerische Untersuchungen zum Tragverhalten von Zugpfählen in Berliner Sand. Bauingenieur 79(9), 375–383 (2004). (in German)

    Google Scholar 

  137. Rider, W.J., Kothe, D.B.: Reconstructing volume tracking. J. Comput. Phys. 141, 112–152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  138. Rudman, M.: Volume-tracking methods for interfacial flow calculations. Int. J. Num. Meth. Fluids 24(7), 671–691 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  139. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 21–24 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  140. Savidis, S.A., Aubram, D., Rackwitz, F.: Arbitrary Lagrangian-Eulerian finite element formulation for geotechnical construction processes. J. Theoret. Appl. Mech. 38(1–2), 165–194 (2008)

    MathSciNet  Google Scholar 

  141. Savidis, S.A., Aubram, D., Rackwitz, F.: Vibro-injection pile installation in sand: part ii—numerical and experimental investigation. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 77, pp. 103–131. Springer, Heidelberg (2015). doi:10.1007/978-3-319-18170-7_6

    Chapter  Google Scholar 

  142. Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Annu. Rev. Fluid Mech. 31, 567–603 (1999)

    Article  MathSciNet  Google Scholar 

  143. Shashkov, M.: Closure models for multimaterial cells in arbitrary Lagrangian-Eulerian hydrocodes. Int. J. Num. Methods Fluids 56(8), 1497–1504 (2008)

    Article  MATH  Google Scholar 

  144. Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, New York (1968)

    Google Scholar 

  145. Seed, R.B., Cetin, K.O., Moss, R.E.S., Kammerer, A.M., Wu, J., Pestana, J.M., Riemer, M.F., Sancio, R.B., Bray, J.D., Kayen, R.E., Faris, A.: Recent advances in soil liquefaction engineering: a unified and consistent framework. Technical report EERC 2003–06, University of California, Berkeley, California, USA (2003)

    Google Scholar 

  146. Sheng, D., Nazem, M., Carter, J.P.: Some computational aspects for solving deep penetration problems in geomechanics. Comput. Mech. 44, 549–561 (2009)

    Article  MATH  Google Scholar 

  147. Simo, J.C., Hughes, T.J.R.: Computational Inelasticity. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  148. Soga, K., Alonso, E., Yerro, A., Kumar, K., Bandara, S.: Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3), 248–273 (2016)

    Article  Google Scholar 

  149. Stewart, H.B., Wendroff, B.: Two-phase flow: models and methods. J. Comput. Phys. 56, 363–409 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  150. Sulsky, D., Zhou, S.-J., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87, 236–252 (1995)

    Article  MATH  Google Scholar 

  151. Susila, E., Hryciw, R.D.: Large displacement FEM modelling of the cone penetration Test (CPT) in Normally consolidated sand. Int. J. Numer. Anal. Meth. Geomech. 27, 585–602 (2003)

    Article  MATH  Google Scholar 

  152. Taiebat, M., Dafalias, Y.F.: SANISAND: simple anisotropic sand plasticity model. Int. J. Numer. Anal. Meth. Geomech. 32, 915–948 (2008)

    Article  MATH  Google Scholar 

  153. Terzaghi, K.: Theoretical Soil Mechanics. Wiley, New York (1943)

    Book  Google Scholar 

  154. Tho, K.K., Leung, C.F., Chow, Y.K., Swaddiwudhipong, S.: Eulerian finite-element technique for analysis of jack-up spudcan penetration. Int. J. Geomech. 12, 64–73 (2012)

    Article  Google Scholar 

  155. Triantafyllidis, T. (ed.): Numerical Modelling of Construction Processes in Geotechnical Engineering for Urban Environment. CRC Press, London (2006)

    Google Scholar 

  156. Triantafyllidis, T. (ed.): Holistic Simulation of Geotechnical Installation Processes: Numerical and Physical Modelling. LNACM, vol. 77. Springer, Heidelberg (2015). http://dx.doi.org/10.1007/978-3-319-18170-7

  157. Triantafyllidis, T. (ed.): Holistic Simulation of Geotechnical Installation Processes: Benchmarks and Simulations. LNACM, vol. 80. Springer, Heidelberg (2016). http://dx.doi.org/10.1007/978-3-319-23159-4

  158. Truesdell, C., Toupin, R.A.: Encyclopedia of physics. In: Flugge, S. (ed.) Bd. III/1: The Classical Field Theories, pp. 226–793. Springer, Heidelberg (1960)

    Google Scholar 

  159. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 3rd edn. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  160. Trulio, J.G., Trigger, K.R.: Numerical solution of the one-dimensional hydrodynamic equations in an arbitrary time-dependent coordinate system. Report UCRL-6522, Lawrence Radiation Laboratory, University of California, Livermore, USA (1961)

    Google Scholar 

  161. Trulio, J.G.: Theory and structure of the AFTON codes. Report AFWL-TR-66-19, Air Force Weapons Laboratory, Kirtland Air Force Base, New Mexico, USA (1966)

    Google Scholar 

  162. Vogelsang, J., Huber, G., Triantafyllidis, T.: Requirements, concepts, and selected results for model tests on pile penetration. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 1–30. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_1

    Chapter  Google Scholar 

  163. Vogelsang, J., Huber, G., Triantafyllidis, T., Bender, T.: Interpretation of vibratory pile penetration based on digital image correlation. In: Triantafyllidis, T. (ed.) Holistic Simulation of Geotechnical Installation Processes. LNACM, vol. 80, pp. 31–51. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23159-4_2

    Chapter  Google Scholar 

  164. von Wolffersdorff, P.-A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frictional Mater. 1, 251–271 (1996)

    Article  Google Scholar 

  165. Weseloh, W.N., Clancy, S.P., Painter, J.W.: PAGOSA physics manual. Report LA-14425-M, Los Alamos National Laboratory, Los Alamos, USA (2010)

    Google Scholar 

  166. Whitaker, S.: Flow in porous media I: a theoretical derivation of Darcy’s law. Trans. Porous Media 1, 3–25 (1986)

    Article  Google Scholar 

  167. Whitaker, S.: Flow in porous media II: the governing equations for immiscible, two-phase flow. Trans. Porous Media 1, 105–125 (1986)

    Article  Google Scholar 

  168. Whitaker, S.: Flow in porous media III: deforming media. Trans. Porous Media 1, 127–154 (1986)

    Article  Google Scholar 

  169. Whitaker, S.: The Method of Volume Averaging. Kluwer Academic Publishers, Dordrecht (1999)

    Book  Google Scholar 

  170. White, D.J., Take, W.A.: GeoPIV: Particle Image Velocimetry (PIV) software for use in geotechnical testing. Technical report CUED/D-SOILS/TR322, Geotechnical and Environmental Research Group, University of Cambridge, UK (2002)

    Google Scholar 

  171. White, D.J., Take, W.A., Bolton, M.D.: Soil deformation measurement using Particle Image Velocimetry (PIV) and photogrammetry. Géotechnique 53(7), 619–631 (2003)

    Article  Google Scholar 

  172. Wood, A.B.: A Textbook of Sound. The Macmillan Company, New York (1930)

    Google Scholar 

  173. Wood, D.M.: Soil Mechanics: A One-Dimensional Introduction. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  174. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  175. Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics, pp. 273–285. Academic Press, London (1982)

    Google Scholar 

  176. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A., Shiomi, T.: Computational Geomechanics - With Special Reference to Earthquake Engineering. Wiley, Chichester (1999)

    MATH  Google Scholar 

  177. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method, Volume 1: The Basis, 5th edn. Butterworth-Heinemann, Oxford (2000)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the German Research Foundation (DFG; Grant SA 310/26-2) as part of the DFG Research Unit FOR 1136. The authors are also grateful to their colleagues in this research unit for collaboration and for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Aubram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Aubram, D., Rackwitz, F., Savidis, S.A. (2017). Contribution to the Non-Lagrangian Formulation of Geotechnical and Geomechanical Processes. In: Triantafyllidis, T. (eds) Holistic Simulation of Geotechnical Installation Processes. Lecture Notes in Applied and Computational Mechanics, vol 82. Springer, Cham. https://doi.org/10.1007/978-3-319-52590-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-52590-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-52589-1

  • Online ISBN: 978-3-319-52590-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation