Theory and Numerical Modeling of Geomechanical Multi-material Flow

  • Chapter
  • First Online:
Holistic Simulation of Geotechnical Installation Processes

Abstract

Multi-material flow describes a situation where several distinct materials separated by sharp material interfaces undergo large deformations. The research presented in this paper addresses a particular class of multi-material flow situations encountered in geomechanics and geotechnical engineering which is characterized by a complex coupled behavior of saturated granular material as well as by a hierarchy of distinct spatial scales. Examples include geotechnical installation processes, liquefaction-induced soil failure, and debris flow. The most attractive numerical approaches to solve such problems use variants of arbitrary Lagrangian–Eulerian descriptions allowing interfaces and free surfaces to flow through the computational mesh. Mesh elements cut by interfaces (multi-material elements) necessarily arise which contain a heterogeneous mixture of two or more materials. The heterogeneous mixture is represented as an effective single-phase material using mixture theory. The paper outlines the specific three-scale mixture theory developed by the authors and the MMALE numerical method to model and simulate geomechanical multi-material flow. In contrast to traditional flow models which consider the motion of multiple single-phase materials or single multi-phase mixture, the present research succeeds in incorporating both the coupled behavior of saturated granular material and its interaction with other (pure) materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (France)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (France)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 105.49
Price includes VAT (France)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 105.49
Price includes VAT (France)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We use the term “volume” and “surface area” even though the present section is restricted to two-dimensional problems. In fact, area and length in two dimensions can be regarded as volume and surface area per unit depth in three dimensions.

  2. 2.

    Table V in the original paper [95] has typos in the formulas for the side fractions for case IV, in which C should be in fact \(1-C\), where C is the volume fraction. The correct formulas are in Algorithm 5.

References

  1. Achanta, S., Cushman, J.H., Okos, M.R.: On multicomponent, multiphase thermomechanics with interfaces. Int. J. Eng. Sci. 32(11), 1717–1738 (1994)

    Article  MATH  Google Scholar 

  2. Alciatore, D., Miranda, R.: A Winding Number and Point-In-Polygon Algorithm. Glaxo Virtual Anatomy Project Research Report, Department of Mechanical Engineering, Colorado State University, (1995)

    Google Scholar 

  3. Ancey, C., Coussot, P., Evesque, P.: A theoretical framework for granular suspensions in a steady simple shear flow. J. Rheol. 43(6), 1673–1699 (1999)

    Article  Google Scholar 

  4. Ancey, C., Evesque, P.: Frictional-collisional regime for granular suspension flows down an inclined channel. Phys. Rev. E 62(6), 8349–8360 (2000)

    Article  Google Scholar 

  5. Ancey, C.: Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime. Phys. Rev. E 65(011304) (2001)

    Google Scholar 

  6. Ancey, C.: Plasticity and geophysical flows: a review. J. Non-Newton. Fluid Mech. 142, 4–35 (2007)

    Article  MATH  Google Scholar 

  7. Anderson, K.G., Jackson, R.: A comparison of the solutions of some proposed equations of motion of granular materials for fully developed flow down inclined planes. Ind. Eng. Chem. Fundam. 241, 145–168 (1992)

    Google Scholar 

  8. Aubram, D.: Differential Geometry Applied to Continuum Mechanics. In: Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, vol. 44. Shaker Verlag, Aachen (2009). http://opus.kobv.de/tuberlin/volltexte/2009/2270/

  9. Aubram, D.: An Arbitrary Lagrangian-Eulerian Method for Penetration into Sand at Finite Deformation. In: Veröffentlichungen des Grundbauinstitutes der Technischen Universität Berlin, vol. 62. Shaker Verlag, Aachen (2013). http://opus4.kobv.de/opus4-tuberlin/frontdoor/index/index/docId/4755

  10. Aubram, D.: Development and experimental validation of an arbitrary Lagrangian-Eulerian (ALE) method for soil mechanics. Geotechnik 38(3),193–204 (2015). http://dx.doi.org/10.1002/gete.201400030

    Google Scholar 

  11. Aubram, D.: Homogeneous Equilibrium Model for Geomechanical Multi-Material Flow with Compressible Constituents (in preparation)

    Google Scholar 

  12. Aubram, D., Rackwitz, F., Savidis, S.A.: An ALE finite element method for cohesionless soil at large strains: computational aspects and applications. In: Benz, T., Nordal, S. (eds.) Proceedings 7th European Conference on Numerical Methods in Geotechnical Engineering (NUMGE), pp. 245–250. CRC Press, Boca Raton (2010)

    Google Scholar 

  13. Aubram, D., Rackwitz, F., Wriggers, P., Savidis, S.A.: An ALE method for penetration into sand utilizing optimization-based mesh motion. Comput. Geotech. 65 241–249 (2015). http://dx.doi.org/10.1016/j.compgeo.2014.12.012

    Google Scholar 

  14. Aubram, D., Rackwitz, F., Savidis, S.A.: Vibro-injection pile installation in sand: part I-interpretation as multi-material flow. In: Triantyfyllidis, Th. (ed) Holistic Simulation of Geotechnical Installation Processes—Numerical and Physical Modelling, pp. 73–102. Springer International Publishing, Switzerland (2015). http://dx.doi.org/10.1007/978-3-319-18170-7_5

    Google Scholar 

  15. Bagnold, R.A.: Experiments on a gravity-free dispersion of large solid spheres in a newtonian fluid under shear. Proc. Royal Soc. Lond. A 225, 49–63 (1954)

    Article  Google Scholar 

  16. Barth, T., Ohlberger, M.: Finite volume methods: foundation and analysis. In: Encyclopedia of Computational Mechanics, vol. 1, chap. 15. Wiley, Chichester (2004)

    Google Scholar 

  17. Bauer, E.: Calibration of a comprehensive constitutive equation for granular materials. Soils Found. 36(1), 13–26 (1996)

    Article  Google Scholar 

  18. Bedford, A., Drumheller, D.S.: Theories of immiscible and structured mixtures. Int. J. Eng. Sci. 21(8), 863–960 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Belytschko, T., Liu, W.K., Moran, D.: Nonlinear finite elements for continua and structures. Wiley, Chichester (2000)

    Google Scholar 

  20. Bennethum, L.S.: Compressibility moduli for porous materials incorporating volume fraction. J. Eng. Mech. 132, 1205–1214 (2006)

    Article  Google Scholar 

  21. Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems-I. Balance laws. Int. J. Eng. Sci. 34(2), 125–145 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bennethum, L.S., Cushman, J.H.: Multiscale, hybrid mixture theory for swelling systems-II. Constitutive theory. Int. J. Eng. Sci. 34(2), 147–169 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  23. Bennethum, L.S., Weinstein, T.: Three pressures in porous media. Transp. Porous Med. 54, 1–34 (2004)

    Article  MathSciNet  Google Scholar 

  24. Benson, D.J.: Computational methods in Lagrangian and Eulerian hydrocodes. Comput. Methods Appl. Mech. Eng. 99, 235–394 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  25. Benson, D.J.: A multi-material Eulerian formulation for the efficient solution of impact and penetration problems. Comput. Mech. 15, 558–571 (1995)

    Article  MATH  Google Scholar 

  26. Benson, D.J.: An implicit multi-material Eulerian formulation. Int. J. Numer. Methods Eng. 48, 475–499 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  27. Benson, D.J.: Volume of fluid interface reconstruction methods for multi-material problems. Appl. Mech. Rev. 55(2), 151–165 (2002)

    Article  Google Scholar 

  28. Benson, D.J.: Momentum advection on unstructured staggered quadrilateral meshes. Int. J. Numer. Methods Eng. 75, 1549–1580 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  29. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  MATH  Google Scholar 

  30. Biot, M.A., Willis, D.G.: The elastic coefficients of the theory of consolidation. J. Appl. Mech. 24, 594–601 (1957)

    MathSciNet  Google Scholar 

  31. Böhrnsen, J.U., Antes, H., Ostendorf, M., Schwedes, J.: Silo discharge: measurement and simulation of dynamic behavior in bulk solids. Chem. Eng. Technol. 27, 71–76 (2004)

    Article  Google Scholar 

  32. Bouré, J.A., Delhaye, J.M.: General equations and two-phase flow modeling Section 1.2. In: Hetsroni, G. (ed.) Handbook of Multiphase Systems. Hemisphere Publishing Corporation, Washington (1982)

    Google Scholar 

  33. Bouré, J.A.: Two-phase flow models: the closure issue. Multiph. Sci. Technol. 3(1–4), 3–30 (1987)

    Article  Google Scholar 

  34. Bowen, R.M.: Compressible porous media models by use of the theory of mixtures. Int. J. Eng. Sci. 20(6), 697–735 (1982)

    Article  MATH  Google Scholar 

  35. Colella, P., Glaz, H.M., Ferguson, R.E.: Multifluid algorithms for Eulerian finite difference methods. (1997) (unpublished manuscript)

    Google Scholar 

  36. Coussot, P., Ancey, C.: Rheophysical classification of concentrated suspensions and granular pastes. Phys. Rev. E 59(4), 4445–4457 (1999)

    Article  Google Scholar 

  37. Cushman, J.H., Bennethum, L.S., Hu, B.X.: A primer on upscaling tools for porous media. Adv. Water Resour. 25, 1043–1067 (2002)

    Article  Google Scholar 

  38. Das, B.M.: Advanced Soil Mechanics, 3rd edn. Taylor & Francis, USA (2008)

    Google Scholar 

  39. DeBar, R.B.: Fundamentals of the KRAKEN Code. Technical Report UCID-17366, Lawrence Livermore Laboratory, Livermore, USA (1974)

    Google Scholar 

  40. De Boer, R.: Theory Porous Media. Springer, Berlin (2000)

    Book  MATH  Google Scholar 

  41. Drew, D.A.: Mathematical modeling of two-phase flow. Annu. Rev. Fluid Mech. 15, 261–291 (1983)

    Article  MATH  Google Scholar 

  42. Drew, D.A., Passman, S.L.: Theory of Multicomponent Fluids. Springer, New York (1999)

    Book  MATH  Google Scholar 

  43. Drumheller, D.S.: A theory for dynamic compaction of wet porous solids. Int. J. Solids Struct. 23, 211–237 (1987)

    Article  Google Scholar 

  44. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles and Practice, 2nd edn. Addison-Wesley Professional, Reading (1995)

    Google Scholar 

  45. Forterre, Y., Pouliquen, O.: Flows of dense granular media. Ann. Rev. Fluid Mech. 40, 1–24 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  46. Freßmann, D., Wriggers, P.: Advection approaches for single-and multi-material arbitrary Lagrangian-Eulerian finite element procedures. Comput. Mech. 39, 153–190 (2007)

    Article  MATH  Google Scholar 

  47. Galera, S., Maire, P.-H., Breil, J.: A two-dimensional unstructured cell-centered multi-material ale scheme using VOF interface reconstruction. J. Comput. Phys. 229, 5755–5787 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Goddard, J.D.: Continuum modeling of granular media. Appl. Mech. Rev. 66(050801) (2014)

    Google Scholar 

  49. Goodman, M.A., Cowin, S.C.: A continuum theory for granular materials. Archive Ration. Mech. Anal. 44, 249–266 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  50. Greiner, G., Hormann, K.: Efficient clip** of arbitrary polygons. ACM Trans. Gr. 17(2), 71–83 (1998)

    Article  Google Scholar 

  51. Gudehus, G.: A comprehensive constitutive equation for granular materials. Soils Found. 36(1), 1–12 (1996)

    Article  Google Scholar 

  52. Gueyffier, D., Li, J., Nadim, A., Scardovelli, R., Zaleski, S.: Volume-of-fluid interface tracking with smoothed surface stress methods for three-dimensional flows. J. Comput. Phys. 152(2), 423–456 (1999)

    Article  MATH  Google Scholar 

  53. Haines, E.: Point in Polygon Strategies. In: Graphics Gems, vol. IV, pp. 24–46. Academic Press, Boston (1994)

    Google Scholar 

  54. Hassanizadeh, M., Gray, W.G.: General conservation equations for multi-phase systems: 1 averaging procedure. Adv. Water Resour. 2, 131–144 (1979)

    Article  Google Scholar 

  55. Hassanizadeh, M., Gray, W.G.: Mechanics and thermodynamics of multiphase flow in porous media including interphase boundaries. Adv. Water Resour. 13(4), 169–186 (1990)

    Article  Google Scholar 

  56. Häussler, U., Eibl, J.: Numerical investigations on discharging silos. J. Eng. Mech. 110(6), 957–971 (1984)

    Article  Google Scholar 

  57. Hirt, C.W., Amsden, A.A., Cook, J.L.: An arbitrary Lagrangian-Eulerian computing method for all flow speeds. J. Comput. Phys. 14, 227–253 (1974)

    Article  MATH  Google Scholar 

  58. Hirt, C.W., Nichols, B.D.: Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39, 201–225 (1981)

    Article  MATH  Google Scholar 

  59. Hutter, K., Rajagopal, K.R.: On flows of granular materials. Contin. Mech. Thermodyn. 6, 81–139 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  60. Hutter, K., Svendsen, B., Rickenmann, D.: Debris flow modeling: a review. Contin. Mech. Thermodyn. 8, 1–35 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  61. Hwang, H., Hutter, K.: A new kinetic model for rapid granular flow. Contin. Mech. Thermodyn. 7, 357–384 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  62. Hyman, J.M.: Numerical methods for tracking interfaces. Physica D 12, 396–407 (1984)

    Article  MATH  Google Scholar 

  63. Iverson, R.M.: The physics of debris flows. Rev. Geophys. 35(3), 245–296 (1997)

    Article  Google Scholar 

  64. Iverson, R.M., Denlinger, R.P.: Flow of variably fluidized granular masses across three-dimensional terrain. 1. Coulomb mixture theory. J. Geophys. Res. 106(B1), 537–552 (2001)

    Article  Google Scholar 

  65. Johnson, P.C., Jackson, R.: Frictional-collisional constitutive relations for granular materials, with application to plane shearing. J. Fluid Mech. 176, 67–93 (1987)

    Article  Google Scholar 

  66. Jop, P., Forterre, Y., Pouliquen, O.: A constitutive law for dense granular flows. Nature 441, 727–730 (2006)

    Article  Google Scholar 

  67. Kim, D.H., Kim, M.-J.: An extension of polygon clip** to resolve degenerate cases. Comput.-Aided Des. Appl. 3(1–4), 447–456 (2006)

    Article  Google Scholar 

  68. Kolymbas, D.: Const. Model. Granul. Mater. Springer, Berlin Heidelberg (2000)

    Google Scholar 

  69. Kramer, S.L., Byers, M.B., Wang, C.H.: Experimental measurement of the residual strength of particulate materials. In: Lade, P.V., Yamamuro, J.A. (eds.) Physics and Mechanics of Soil Liquefaction, pp. 249–260. A.A. Balkema, Rotterdam, The Netherlands (1999)

    Google Scholar 

  70. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, 3rd edn. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  71. Lewis, R.W., Schrefler, B.A.: The Finite Element Method in the Static and Dynamic Deformation and Consolidation of Porous Media, 2nd edn. Wiley, Chichester (1998)

    MATH  Google Scholar 

  72. Li, X.S.: A sand model with state-dependent dilatancy. Géotechnique 52(3), 173–186 (2002)

    Article  Google Scholar 

  73. Locat, J., Lee, H.J.: Submarine landslides: advances and challenges. Can. Geotech. J. 39, 193–212 (2002)

    Article  Google Scholar 

  74. Luttwak, G., Rabie, R.L.: The Multi Material Arbitrary Lagrangian Eulerian Code MMALE and Its Application to Some Problems of Penetration and Impact. Technical Report LA-UR-85-2311, Los Alamos National Laboratory, Los Alamos, New Mexico (1985)

    Google Scholar 

  75. Mair, H.U.: Review: hydrocodes for structural response to underwater explosions. Shock Vibr. 6, 81–96 (1999)

    Article  Google Scholar 

  76. Malvern, L.E.: Introduction to the Mechanics of a Continuous Medium. Prentice Hall, New Jersey (1969)

    MATH  Google Scholar 

  77. Manzari, M.T., Dafalias, Y.F.: A critical state two-surface plasticity model for sands. Géotechnique 47(2), 255–272 (1997)

    Article  Google Scholar 

  78. Masson, D.G., Harbitz, C.B., Wynn, R.B., Pedersen, G., Løvholt, F.: Submarine landslides: processes, triggers and hazard prediction. Philos. Trans. Royal Soc. Lond. A 364, 2009–2039 (2006)

    Article  MathSciNet  Google Scholar 

  79. McGlaun, J.M., Thompson, S.L.: CTH: a three-dimensional shock wave physics code. Int. J. Impact Eng. 10, 351–360 (1990)

    Article  Google Scholar 

  80. Miller, G.H., Puckett, E.G.: A high-order Godunov method for multiple condensed phases. J. Comput. Phys. 128, 134–164 (1996)

    Article  MATH  Google Scholar 

  81. Ming, H.Y., Li, X.S.: Fully coupled analysis of failure and remediation of lower San Fernando Dam. J. Geotech. Geoenviron. Eng. 129(4), 336–348 (2003)

    Article  Google Scholar 

  82. Mooney, M.: The viscosity of a concentrated suspension of spherical particles. J. Colloid Sci. 6(2), 162–170 (1951)

    Article  Google Scholar 

  83. Niemunis, A., Herle, I.: Hypoplastic model for cohesionless soils with elastic strain range. Mech. Cohesive-Frictional Mater. 2, 279–299 (1997)

    Article  Google Scholar 

  84. Nikolinakou, M.A., Whittle, A.J., Savidis, S.A., Schran, U.: Prediction and interpretation of the performance of a deep excavation in Berlin sand. J. Geotech. Geoenviron. Eng. 137(11), 1047–1061 (2011)

    Article  Google Scholar 

  85. O’Rourke, J.: Comput. Geom. C, 2nd edn. Cambridge University Press, New York (1998)

    Book  Google Scholar 

  86. Passman, S.L., Nunziato, J.W., Bailey, P.B., Reed, K.W.: Shearing motion of a fluid-saturated granular material. J. Rheol. 30(1), 167–192 (1986)

    Article  MATH  Google Scholar 

  87. Pastor, M., Zienkiewicz, O.C., Chan, A.H.C.: Generalized plasticity and the modelling of soil behaviour. Int. J. Numer. Anal. Methods Geomech. 14, 151–190 (1990)

    Article  MATH  Google Scholar 

  88. Peery, J.S., Carroll, D.E.: Multi-material ALE methods in unstructured grids. Comput. Methods Appl. Mech. Eng. 187, 591–619 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  89. Pilliod, J.E., Puckett, E.G.: Second-order accurate volume-of-fluid algorithms for tracking material interfaces. J. Comput. Phys. 199, 465–502 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  90. Pudasaini, S.P., Wang, Y., Hutter, K.: Modelling debris flows down general channels. Nat. Hazards Earth Syst. Sci. 5, 799–819 (2005)

    Article  Google Scholar 

  91. Pudasaini, S.P.: A general two-phase debris flow model. J. Geophys. Res. 117(F03010) (2012)

    Google Scholar 

  92. Rackwitz, F., Savidis, S.A.: Numerische Untersuchungen zum Tragverhalten von Zugpfählen in Berliner Sand. Bauingenieur 79(9), 375–383 (2004)

    Google Scholar 

  93. Rider, W.J., Kothe, D.B.: Reconstructing volume tracking. J. Comput. Phys. 141, 112–152 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  94. Rider, W.J., Love, E., Wong, M.K., Strack, O.E., Petney, S.V., Labreche, D.A.: Adaptive methods for multi-material ALE hydrodynamics. Int. J. Numer. Methods Fluids 65, 1325–1337 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  95. Rudman, M.: Volume-tracking methods for interfacial flow calculations. Int. J. Numer. Methods Fluids 24(7), 671–691 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  96. Savage, S.B., Hutter, K.: The motion of a finite mass of granular material down a rough incline. J. Fluid Mech. 199, 21–24 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  97. Savidis, S.A., Aubram, D., Rackwitz, F.: Arbitrary Lagrangian-Eulerian finite element formulation for geotechnical construction processes. J. Theor. Appl. Mech. 38(1–2), 165–194 (2008)

    MathSciNet  Google Scholar 

  98. Savidis, S.A., Aubram, D., Rackwitz, F.: Vibro-injection pile installation in sand: part ii-numerical and experimental investigation. In: Triantyfyllidis, Th. (ed): Holistic Simulation of Geotechnical Installation Processes—Numerical and Physical Modelling, pp. 103–131. Springer, 2015. http://dx.doi.org/10.1007/978-3-319-18170-7_6

  99. Sawicki, A., Mierczyński, J.: Developments in modeling liquefaction of granular soils, caused by cyclic loads. Appl. Mech. Rev. 59, 91–106 (2006)

    Article  Google Scholar 

  100. Scardovelli, R., Zaleski, S.: Direct numerical simulation of free-surface and interfacial flow. Ann. Rev. Fluid Mech. 31, 567–603 (1999)

    Article  MathSciNet  Google Scholar 

  101. Schneider, P.J., Eberly, D.H.: Geometric Tools for Computer Graphics. Morgan Kaufmann (2003)

    Google Scholar 

  102. Schofield, A.N., Wroth, C.P.: Critical State Soil Mechanics. McGraw-Hill, New York (1968)

    Google Scholar 

  103. Shashkov, M.: Closure models for multimaterial cells in arbitrary Lagrangian-Eulerian hydrocodes. Int. J. Numer. Methods Fluids 56(8), 1497–1504 (2008)

    Article  MATH  Google Scholar 

  104. Seed, H.B., Lee, K.L., Idriss, I.M., Makdisi, F.I.: The slides in the San Fernando Dams during the earthquake of February 9, 1971. J. Geotech. Eng. Division, ASCE 101(7), 651–688 (1975)

    Google Scholar 

  105. Seed, R.B., Cetin, K.O., Moss, R.E.S., Kammerer, A.M., Wu, J., Pestana, J.M., Riemer, M.F., Sancio, R.B., Bray, J.D., Kayen, R.E., Faris, A.: Recent Advances in Soil Liquefaction Engineering: A Unified and Consistent Framework. Technical Report EERC 2003–2006, University of California, Berkeley, California, USA (2003)

    Google Scholar 

  106. Sunday, D.: Fast polygon area and Newell normal computation. J Gr. Tools 7(2), 9–13 (2002). http://geomalgorithms.com

    Google Scholar 

  107. Sunday, D.: Geometry Algorithms: Line and Segment Intersections. http://geomalgorithms.com/a05-_intersect-1.html, June 2015

  108. Sutherland, I.E., Hodgman, G.W.: Reentrant polygon clip**. Commun. ACM 17(1), 32–42 (1974)

    Article  MATH  Google Scholar 

  109. Taiebat, M., Dafalias, Y.F.: SANISAND: simple anisotropic sand plasticity model. Int. J. Numer. Anal. Methods Geomech. 32, 915–948 (2008)

    Article  MATH  Google Scholar 

  110. Terzaghi, K.: Theor. Soil Mech. Wiley, New York (1943)

    Book  Google Scholar 

  111. Triantafyllidis, Th: Cyclic Behaviour of Soils and Liquefaction Phenomena. A.A. Balkema, The Netherlands (2004)

    Book  Google Scholar 

  112. Triantafyllidis, Th.: Holistic Simulation of Geotechnical Installation Processes—Numerical and Physical Modelling, vol. 77. In: Lecture Notes in Applied and Computational Mechanics. Springer, Switzerland (2015). http://dx.doi.org/10.1007/978-3-319-18170-7

  113. Truesdell, C., Toupin, R.A.: Encyclopedia of Physics. Bd. III/1: The Classical Field Theories, pp. 226–793. Springer, Berlin (1960)

    Google Scholar 

  114. Truesdell, C., Noll, W.: The Non-Linear Field Theories of Mechanics, 3rd edn. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  115. von Wolffersdorff, P.-A.: A hypoplastic relation for granular materials with a predefined limit state surface. Mech. Cohesive-Frictional Mater. 1, 251–271 (1996)

    Article  Google Scholar 

  116. Wang, Y., Hutter, K.: A constitutive model of multiphase mixtures and its application in shearing flows of saturated solid-fluid mixtures. Granul. Matter 1, 163–181 (1999)

    Article  Google Scholar 

  117. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Berlin (2008)

    MATH  Google Scholar 

  118. Youngs, D.L.: Time-dependent multi-material flow with large fluid distortion, pp. 273–285. In: Morton, K.W., Baines, M.J. (eds.) Numerical Methods for Fluid Dynamics. Academic Press, London (1982)

    Google Scholar 

  119. Youngs, D.L.: An Interface Tracking Method for a 3D Eulerian Hydrodynamics Code. Technical Report AWRE/44/92/35, Atomic Weapons Research Establishment, Aldermaston, UK (1987)

    Google Scholar 

  120. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Paul, D.K., Shiomi, T.: Static and dynamic behaviour of soils: a rational approach to quantitative solutions. I. Fully saturated problems. Proc. Royal Soc. Lond. A 429, 285–309 (1990)

    Article  MATH  Google Scholar 

  121. Zienkiewicz, O.C., Chan, A.H.C., Pastor, M., Schrefler, B.A., Shiomi, T.: Computational Geomechanics—With Special Reference to Earthquake Engineering. Wiley, Chichester (1999)

    MATH  Google Scholar 

Download references

Acknowledgments

The presented work was carried out under the financial support from the German Research Foundation (DFG; Grant SA 310/26-2) as part of the DFG Research Unit FOR 1136, which is gratefully acknowledged. The authors would like to thank their colleagues in this research unit for collaboration and continuously discussing our work. Special thanks go to Prof. David J. Benson and the Department of Structural Engineering at the University of California, San Diego (UCSD) for the opportunity to undertake collaborative research on MMALE methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Aubram .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Aubram, D., Savidis, S.A., Rackwitz, F. (2016). Theory and Numerical Modeling of Geomechanical Multi-material Flow. In: Triantafyllidis, T. (eds) Holistic Simulation of Geotechnical Installation Processes. Lecture Notes in Applied and Computational Mechanics, vol 80. Springer, Cham. https://doi.org/10.1007/978-3-319-23159-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23159-4_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23158-7

  • Online ISBN: 978-3-319-23159-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

Navigation