Restricted or Liberal Fluid Therapy

  • Chapter
  • First Online:
Perioperative Fluid Management

Abstract

While extreme fluid deprivation and fluid overdose resulting from negligence or misinformed prescription are undoubtedly harmful, observations and experiments do not point to fluid therapy as a significant determinant of patient outcomes from major surgery. Therapy maintaining fluid balance less than 2 l is probably optimal. There are two interdependent fluid circulations (blood and interstitial fluid) serving the needs of cells and intracellular fluid. Filtration rate (J v) of fluid from the blood circulation to the interstitial circulation is a major determinant of the dynamic equilibrium between plasma volume and interstitial volume. It is affected by anesthesia and by vasoactive agents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boling EA, Davis JM, Mcmurrey JD, Moore FD. The evaluation of body composition in surgical disease processes utilizing a method for the simultaneous determination of red blood cell volume, plasma volume, blood volume, total body water, extracellular water and total exchangeable chloride, sodium and potassium. Surg Forum. 1956;6:14–8.

    CAS  PubMed  Google Scholar 

  2. Moore FD. Common patterns of water and electrolyte change in injury, surgery and disease. N Engl J Med. 1958;258:277–85.

    Article  CAS  PubMed  Google Scholar 

  3. Shires T, Williams J, Brown F. Acute change in extracellular fluids associated with major surgical procedures. Ann Surg. 1961;154:803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Carrico CJ, Coln CD, Lightfoot SA, Allsman A, Shires GT. Extracellular fluid volume replacement in hemorrhagic shock. Surg Forum. 1963;14:10–2.

    CAS  PubMed  Google Scholar 

  5. Carrico CJ, Coln CD, Shires GT. Salt administration during surgery. Surg Forum. 1966;17:59–61.

    CAS  PubMed  Google Scholar 

  6. Moore FD, Shires GT. Moderation. Anesth Analg. 1968;47:506–8.

    CAS  PubMed  Google Scholar 

  7. Twigley AJ, Hillman KM. The end of the crystalloid era? A new approach to peri-operative fluid administration. Anaesthesia. 1985;40:860–71.

    Article  CAS  PubMed  Google Scholar 

  8. Vercueil A, Grocott MP, Mythen MG. Physiology, pharmacology, and rationale for colloid administration for the maintenance of effective hemodynamic stability in critically ill patients. Transfus Med Rev. 2005;19:93–109.

    Article  PubMed  Google Scholar 

  9. Lobo DN, Lewington AJP, Allison SP. Basic concepts of fluid and electrolyte therapy. Germany: Bibliomed; 2013. http://www.bbraun.com/documents/Knowledge/Basic_Concepts_of_Fluid_and_Electrolyte_Therapy.pdf.

    Google Scholar 

  10. Levick JR, Michel CC. Microvascular fluid exchange and the revised Starling principle. Cardiovasc Res. 2010;87:198–210.

    Article  CAS  PubMed  Google Scholar 

  11. Adamson RH, Lenz JF, Zhang X, Adamson GN, Weinbaum S, Curry FE. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. J Physiol. 2004;557:889–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Levick JR. Revision of the Starling principle: new views of tissue fluid balance. J Physiol. 2004;557:704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Levick JR. Chapters 9–11. An introduction to cardiovascular physiology. London: Hodder Arnold; 2010.

    Google Scholar 

  14. Woodcock TE, Woodcock TM. Revised Starling equation and the glycocalyx model of transvascular fluid exchange: an improved paradigm for prescribing intravenous fluid therapy. Br J Anaesth. 2012;108:384–94.

    Article  CAS  PubMed  Google Scholar 

  15. Finfer S, Bellomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350:2247–56.

    Article  CAS  PubMed  Google Scholar 

  16. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367:1901–11.

    Article  CAS  PubMed  Google Scholar 

  17. Maitland K, Kiguli S, Opoka RO, Engoru C, Olupot-Olupot P, Akech SO, et al. Mortality after fluid bolus in African children with severe infection. N Engl J Med. 2011;364:2483–95.

    Article  CAS  PubMed  Google Scholar 

  18. Glassford NJ, Eastwood GM, Bellomo R. Physiological changes after fluid bolus therapy in sepsis: a systematic review of contemporary data. Crit Care. 2014;18:696.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Aman J, Groeneveld AB, van Nieuw Amerongen GP. Predictors of pulmonary edema formation during fluid loading in the critically ill with presumed hypovolemia*. Crit Care Med. 2012;40:793–9.

    Article  PubMed  Google Scholar 

  20. Woodcock TM, Woodcock TE. Revised Starling equation predicts pulmonary edema formation during fluid loading in the critically ill with presumed hypovolemia. Crit Care Med. 2012;40:2741–2. author reply 2742.

    Article  PubMed  Google Scholar 

  21. Mac Sweeney R, McKendry RA, Bedi A. Perioperative intravenous fluid therapy for adults. Ulster Med J. 2013;82:171–8.

    Google Scholar 

  22. Vincent JL, Russell JA, Jacob M, Martin G, Guidet B, Wernerman J, et al. Albumin administration in the acutely ill: what is new and where next? Crit Care. 2014;18:231.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hahn RG. Fluid therapy might be more difficult than you think. Anesth Analg. 2007;105:304–5.

    Article  PubMed  Google Scholar 

  24. Hahn RG, Drobin D, Zdolsek J. Distribution of crystalloid fluid changes with the rate of infusion: a population-based study. Acta Anaesthesiol Scand. 2016.

    Google Scholar 

  25. Monk R. Wittgenstein: The Duty of Genius. London: Penguin; 1990.

    Google Scholar 

  26. Vineis P. Methodological insights: fuzzy sets in medicine. J Epidemiol Community Health. 2008;62:273–8.

    Article  CAS  PubMed  Google Scholar 

  27. Ghaferi AA, Birkmeyer JD, Dimick JB. Variation in hospital mortality associated with inpatient surgery. N Engl J Med. 2009;361:1368–75.

    Article  CAS  PubMed  Google Scholar 

  28. Varadhan KK, Lobo DN. A meta-analysis of randomised controlled trials of intravenous fluid therapy in major elective open abdominal surgery: getting the balance right. Proc Nutr Soc. 2010;69:488–98.

    Article  PubMed  Google Scholar 

  29. Gupta R, Gan TJ. Peri-operative fluid management to enhance recovery. Anaesthesia. 2016;71 Suppl 1:40–5.

    Article  PubMed  Google Scholar 

  30. Doherty M, Buggy DJ. Intraoperative fluids: how much is too much. Br J Anaesth. 2012;109:69–79.

    Article  CAS  PubMed  Google Scholar 

  31. Brandstrup B, Tønnesen H, Beier-Holgersen R, Hjortsø E, Ørding H, Lindorff-Larsen K, et al. Effects of intravenous fluid restriction on postoperative complications: comparison of two perioperative fluid regimens: a randomized assessor-blinded multicenter trial. Ann Surg. 2003;238:641–8.

    Article  PubMed  PubMed Central  Google Scholar 

  32. MacKay G, Fearon K, McConnachie A, Serpell MG, Molloy RG, O’Dwyer PJ. Randomized clinical trial of the effect of postoperative intravenous fluid restriction on recovery after elective colorectal surgery. Br J Surg. 2006;93:1469–74.

    Article  CAS  PubMed  Google Scholar 

  33. Holte K, Klarskov B, Christensen DS, Lund C, Nielsen KG, Bie P, et al. Liberal versus restrictive fluid administration to improve recovery after laparoscopic cholecystectomy: a randomized, double-blind study. Ann Surg. 2004;240:892–9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Holte K, Foss NB, Andersen J, Valentiner L, Lund C, Bie P, et al. Liberal or restrictive fluid administration in fast-track colonic surgery: a randomized, double-blind study. Br J Anaesth. 2007;99:500–8.

    Article  CAS  PubMed  Google Scholar 

  35. Holte K, Kristensen BB, Valentiner L, Foss NB, Husted H, Kehlet H. Liberal versus restrictive fluid management in knee arthroplasty: a randomized, double-blind study. Anesth Analg. 2007;105:465–74.

    Article  PubMed  Google Scholar 

  36. Janvrin SB, Davies G, Greenhalgh RM. Postoperative deep vein thrombosis caused by intravenous fluids during surgery. Br J Surg. 1980;67:690–3.

    Article  CAS  PubMed  Google Scholar 

  37. Nossaman VE, Richardson WS, Wooldridge JB, Nossaman BD. Role of intraoperative fluids on hospital length of stay in laparoscopic bariatric surgery: a retrospective study in 224 consecutive patients. Surg Endosc. 2015;29:2960–9.

    Article  PubMed  Google Scholar 

  38. Lai CW, Starkie T, Creanor S, Struthers RA, Portch D, Erasmus PD, et al. Randomized controlled trial of stroke volume optimization during elective major abdominal surgery in patients stratified by aerobic fitness. Br J Anaesth. 2015;115:578–89.

    Article  CAS  PubMed  Google Scholar 

  39. Wuethrich PY, Burkhard FC, Thalmann GN, Stueber F, Studer UE. Restrictive deferred hydration combined with preemptive norepinephrine infusion during radical cystectomy reduces postoperative complications and hospitalization time: a randomized clinical trial. Anesthesiology. 2014;120:365–77.

    Article  CAS  PubMed  Google Scholar 

  40. Phan TD, D’Souza B, Rattray MJ, Johnston MJ, Cowie BS. A randomised controlled trial of fluid restriction compared to oesophageal Doppler-guided goal-directed fluid therapy in elective major colorectal surgery within an Enhanced Recovery After Surgery program. Anaesth Intensive Care. 2014;42:752–60.

    CAS  PubMed  Google Scholar 

  41. Starling EH. On the absorption of fluids from the connective tissue spaces. J Physiol. 1896;19:312–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van der Kloott W. William Maddock Bayliss? therapy for wound shock. Notes Rec R Soc Lond. 2010;64:271–86.

    Article  PubMed  Google Scholar 

  43. Bradley RD. Diagnostic right-heart catheterisation with miniature catheters in severely ill patients. Lancet. 1964;2:941–2.

    Article  CAS  PubMed  Google Scholar 

  44. Swan HJ, Ganz W, Forrester J, Marcus H, Diamond G, Chonette D. Catheterization of the heart in man with use of a flow-directed balloon-tipped catheter. N Engl J Med. 1970;283:447–51.

    Article  CAS  PubMed  Google Scholar 

  45. Civetta JM. A new look at the Starling equation. Crit Care Med. 1979;7:84–91.

    Article  CAS  PubMed  Google Scholar 

  46. Virgilio RW, Rice CL, Smith DE, James DR, Zarins CK, Hobelmann CF, et al. Crystalloid vs. colloid resuscitation: is one better? A randomized clinical study. Surgery. 1979;85:129–39.

    CAS  PubMed  Google Scholar 

  47. Tranbaugh RF, Lewis FR. Crystalloid versus colloid for fluid resuscitation of hypovolemic patients. Adv Shock Res. 1983;9:203–16.

    CAS  PubMed  Google Scholar 

  48. Sivak ED, Richmond BJ, O’Donavan PB, Borkowski GP. Value of extravascular lung water measurement vs portable chest x-ray in the management of pulmonary edema. Crit Care Med. 1983;11:498–501.

    Article  CAS  PubMed  Google Scholar 

  49. Levick JR. Fluid exchange across endothelium. Int J Microcirc Clin Exp. 1997;17:241–7.

    Article  CAS  PubMed  Google Scholar 

  50. Emery EF, Greenough A, Gamsu HR. Randomised controlled trial of colloid infusions in hypotensive preterm infants. Arch Dis Child. 1992;67:1185–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. So KW, Fok TF, Ng PC, Wong WW, Cheung KL. Randomised controlled trial of colloid or crystalloid in hypotensive preterm infants. Arch Dis Child Fetal Neonatal Ed. 1997;76:F43–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Hu X, Weinbaum S. A new view of Starling? Hypothesis at the microstructural level. Microvasc Res. 1999;58:281–304.

    Article  CAS  PubMed  Google Scholar 

  53. van der Heijden M, Verheij J, van Nieuw Amerongen GP, Groeneveld AB. Crystalloid or colloid fluid loading and pulmonary permeability, edema, and injury in septic and nonseptic critically ill patients with hypovolemia. Crit Care Med. 2009;37:1275–81.

    Article  PubMed  Google Scholar 

  54. Yates DR, Davies SJ, Milner HE, Wilson RJ. Crystalloid or colloid for goal-directed fluid therapy in colorectal surgery. Br J Anaesth. 2014;112:281–9.

    Article  CAS  PubMed  Google Scholar 

  55. Mutter TC, Ruth CA, Dart AB. Hydroxyethyl starch (HES) versus other fluid therapies: effects on kidney function. Cochrane Database Syst Rev. 2013;7, CD007594.

    Google Scholar 

  56. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;2, CD000567.

    Google Scholar 

  57. Qureshi SH, Rizvi SI, Patel NN, Murphy GJ. Meta-analysis of colloids versus crystalloids in critically ill, trauma and surgical patients. Br J Surg. 2016;103:14–26.

    Article  CAS  PubMed  Google Scholar 

  58. Hahn RG. Volume kinetics for infusion fluids. Anesthesiology. 2010;113:470–81.

    Article  PubMed  Google Scholar 

  59. Jacob M, Chappell D, Hofmann-Kiefer K, Helfen T, Schuelke A, Jacob B, et al. The intravascular volume effect of Ringer’s lactate is below 20%: a prospective study in humans. Crit Care. 2012;16:R86.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bhave G, Neilson EG. Body fluid dynamics: back to the future. J Am Soc Nephrol. 2011;22:2166–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lee WL, Slutsky AS. Sepsis and endothelial permeability. N Engl J Med. 2010;363:689–91.

    Article  CAS  PubMed  Google Scholar 

  62. Curry FR, Adamson RH. Tonic regulation of vascular permeability. Acta Physiol (Oxf). 2013;207:628–49.

    Article  CAS  Google Scholar 

  63. Moritz ML, Ayus JC. Water water everywhere: standardizing postoperative fluid therapy with 0.9% normal saline. Anesth Analg. 2010;110:293–5.

    Article  PubMed  Google Scholar 

  64. Thongrong C, Kong N, Govindarajan B, Allen D, Mendel E, Bergese SD. Current purpose and practice of hypertonic saline in neurosurgery: a review of the literature. World Neurosurg. 2014;82:1307–18.

    Article  PubMed  Google Scholar 

  65. Lavu H, Sell NM, Carter TI, Winter JM, Maguire DP, Gratch DM, et al. The HYSLAR Trial: a prospective randomized controlled trial of the use of a restrictive fluid regimen with 3% hypertonic saline versus lactated ringers in patients undergoing pancreaticoduodenectomy. Ann Surg. 2014;260:445–55.

    Article  PubMed  Google Scholar 

  66. Minto G, Mythen MG. Perioperative fluid management: science, art or random chaos. Br J Anaesth. 2015;114:717–21.

    Article  CAS  PubMed  Google Scholar 

  67. Moritz ML, Ayus JC. Maintenance intravenous fluids in acutely ill patients. N Engl J Med. 2015;373:1350–60.

    Article  PubMed  Google Scholar 

  68. Woodcock T. GIFTAHo; an improvement on GIFTASuP? New NICE guidelines on intravenous fluids. Anaesthesia. 2014;69:410–5.

    Article  CAS  PubMed  Google Scholar 

  69. Burdett E, Dushianthan A, Bennett-Guerrero E, Cro S, Gan TJ, Grocott MP, et al. Perioperative buffered versus non-buffered fluid administration for surgery in adults. Cochrane Database Syst Rev. 2012;12, CD004089.

    PubMed  Google Scholar 

  70. Padhi S, Bullock I, Li L, Stroud M, National Institute for Health and Care Excellence (NICE) Guideline Development Group. Intravenous fluid therapy for adults in hospital: summary of NICE guidance. BMJ. 2013;347:f7073.

    Article  PubMed  Google Scholar 

  71. Garcia-Alvarez M, Marik P, Bellomo R. Sepsis-associated hyperlactatemia. Crit Care. 2014;18:503.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Sprint WP, Woodcock TE, Cook TM, Gupta KJ, Hartle A. Arterial line blood sampling: preventing hypoglycaemic brain injury 2014: the Association of Anaesthetists of Great Britain and Ireland. Anaesthesia. 2014;69:380–5.

    Article  Google Scholar 

  73. Stone AB, Grant MC, Pio Roda C, Hobson D, Pawlik T, Wu CL, et al. Implementation costs of an enhanced recovery after surgery program in the United States: a financial model and sensitivity analysis based on experiences at a quaternary academic medical center. J Am Coll Surg. 2016.

    Google Scholar 

  74. Membership of the Working Party, Barker P, Creasey PE, Dhatariya K, Levy N, Lipp A, Nathanson MH, et al. Peri-operative management of the surgical patient with diabetes 2015: Association of Anaesthetists of Great Britain and Ireland.[letter]. Anaesthesia. 2015;70(12):1427–40.

    Google Scholar 

  75. MacDonald N, Ahmad T, Mohr O, Kirk-Bayley J, Moppett I, Hinds CJ, et al. Dynamic preload markers to predict fluid responsiveness during and after major gastrointestinal surgery: an observational substudy of the OPTIMISE trial. Br J Anaesth. 2015;114:598–604.

    Article  CAS  PubMed  Google Scholar 

  76. Brandstrup B, Svendsen PE, Rasmussen M, Belhage B, Rodt SÅ, Hansen B, et al. Which goal for fluid therapy during colorectal surgery is followed by the best outcome: near-maximal stroke volume or zero fluid balance. Br J Anaesth. 2012;109:191–9.

    Article  CAS  PubMed  Google Scholar 

  77. Grocott MP, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K. Optimisation Systematic Review Steering Group Perioperative increase in global blood flow to explicit defined goals and outcomes after surgery: a Cochrane Systematic Review. Br J Anaesth. 2013;111:535–48.

    Article  CAS  PubMed  Google Scholar 

  78. Moppett IK, Rowlands M, Mannings A, Moran CG, Wiles MD, NOTTS Investigators. LiDCO-based fluid management in patients undergoing hip fracture surgery under spinal anaesthesia: a randomized trial and systematic review. Br J Anaesth. 2015;114:444–59.

    Article  CAS  PubMed  Google Scholar 

  79. Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, OPTIMISE Study Group, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311:2181–90.

    Article  CAS  PubMed  Google Scholar 

  80. Lazrove S, Waxman K, Shippy C, Shoemaker WC. Hemodynamic, blood volume, and oxygen transport responses to albumin and hydroxyethyl starch infusions in critically ill postoperative patients. Crit Care Med. 1980;8:302–6.

    Article  CAS  PubMed  Google Scholar 

  81. Waxman K, Lazrove S, Shoemaker WC. Physiologic responses to operation in high risk surgical patients. Surg Gynecol Obstet. 1981;152:633–8.

    CAS  PubMed  Google Scholar 

  82. ARISE Investigators; ANZICS Clinical Trials Group, Peake SL, Delaney A, Bailey M, Bellomo R, Cameron PA, Cooper DJ, et al. Goal-directed resuscitation for patients with early septic shock. N Engl J Med. 2014;371:1496–506.

    Google Scholar 

  83. ProCESS Investigators, Yealy DM, Kellum JA, Huang DT, Barnato AE, Weissfeld LA, Pike F, et al. A randomized trial of protocol-based care for early septic shock. N Engl J Med. 2014;370(18):1683–93.

    Google Scholar 

  84. Mouncey PR, Osborn TM, Power GS, Harrison DA, Sadique MZ, Grieve RD, et al; ProMISe Trial Investigators. Trial of early, goal-directed resuscitation for septic shock. N Engl J Med. 2015;372:1301–11.

    Google Scholar 

  85. Li YH, Zhu HB, Zheng X, Chen HJ, Shao L, Hahn RG. Low doses of esmolol and phenylephrine act as diuretics during intravenous anesthesia. Crit Care. 2012;16:R18.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas E. Woodcock MB, BS, MPhil .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Woodcock, T.E. (2016). Restricted or Liberal Fluid Therapy. In: Farag, E., Kurz, A. (eds) Perioperative Fluid Management. Springer, Cham. https://doi.org/10.1007/978-3-319-39141-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-39141-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-39139-7

  • Online ISBN: 978-3-319-39141-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation