Fluid and Electrolytes

  • Chapter
  • First Online:
Surgical Metabolism

Abstract

The physiologic principles that provide the basis for fluid therapy are reviewed. The concepts of total body water, the body fluid compartments, volume control mechanisms, and baseline water and electrolyte requirements are described. The application of these principles to clinical fluid management in the surgical patient is outlined. Specifically, parenteral solution choices, maintenance fluid therapy, and resuscitative fluid therapy are reviewed. The crystalloid-colloid debate is addressed from a historical perspective, and recent paradigms in principles of fluid resuscitation in specific surgical populations are noted. Finally, the relationship between disorders of water balance and sodium metabolism as well as the physiology and management of disorders of sodium, potassium, calcium, magnesium, and phosphorus metabolism is delineated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cosnett JE. The origins of intravenous fluid therapy. Lancet. 1989;1(8641):768–71.

    Article  CAS  PubMed  Google Scholar 

  2. Sabiston DC. The fundamental contributions of Alfred Blalock to the pathogenesis of shock. Arch Surg. 1995;130(7):736–7.

    Article  PubMed  Google Scholar 

  3. Ritz P, Vol S, Berrut G, Tack I, Arnaud MJ, Tichet J. Influence of gender and body composition on hydration and body water spaces. Clin Nutr. 2008;27:740–6.

    Article  CAS  PubMed  Google Scholar 

  4. Edelman IS, Leibman J. Anatomy of body water and electrolytes. Am J Med. 1959;27:256–77.

    Article  CAS  PubMed  Google Scholar 

  5. Wait RB, DeBusk MG, Nahmias J. Fluids, electrolytes, and acid–base balance. In: Mulholland MW, Lillemoe KD, Doherty GM, Upchurch GR, Alam H, Pawlik TM, editors. Greenfield’s surgery: scientific principles and practice. Philadelphia: Wolters Kluwer; 2017. p. 192–213.

    Google Scholar 

  6. Shires T, Williams J, Brown F. Acute changes in extracellular fluids associated with major surgical procedures. Ann Surg. 1961;154:803–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shires GT. Shock and metabolism. Surg Gynecol Obstet. 1967;124:803–10.

    Google Scholar 

  8. Edwards MR, Grocott MPW. Perioperative fluid and electrolyte therapy. In: Miller RD, Cohen NH, Eriksson LI, Fleisher LA, Wiener-Kronish JP, Young WL, editors. Miller’s anesthesia. Philadelphia: Elsevier Saunders; 2015. p. 1767–810.

    Google Scholar 

  9. Chan STF, Kapadia CR, Johnson AW, Radcliffe AG, Dudley HAF. Extracellular fluid volume expansion and third space sequestration at the site of small bowel anastomoses. Br J Surg. 1983;70:36–9.

    Article  CAS  PubMed  Google Scholar 

  10. Brandstrup B, Svensen C, Engquist A. Hemorrhage and operation cause a contraction of the extracellular space needing replacement–evidence and implications? A systematic review. Surgery. 2006;139:419–32.

    Article  PubMed  Google Scholar 

  11. Brandstrup B. Fluid therapy for the surgical patient. Best Pract Res Clin Anaesthesiol. 2006;20:265–83.

    Article  PubMed  Google Scholar 

  12. Vallet B, Robin E, Lebuffe G. Resuscitation from circulatory shock. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care. Philadelphia: Elsevier Inc.; 2017. p. 623–7.

    Google Scholar 

  13. Baldwin AL, Thurston G. Mechanics of endothelial cell architecture and vascular permeability. Crit Rev Biomed Eng. 2001;29(2):247–78.

    Article  CAS  PubMed  Google Scholar 

  14. Emerson TE. Unique features of albumin: a brief review. Crit Care Med. 1989;17(7):690–4.

    Article  PubMed  Google Scholar 

  15. Bent-Hansen L. Whole body capillary exchange of albumin. Acta Physiol Scand Suppl. 1991;603:5–10.

    CAS  PubMed  Google Scholar 

  16. Rose BD, Post TW. Regulation of plasma osmolality. In: Rose BD, Post TW, editors. Clinical physiology of acid–base and electrolyte disorders. New York: McGraw-Hill; 2001. p. 285–98.

    Google Scholar 

  17. Agre P. The aquaporin water channels. Proc Am Thorac Soc. 2006;3(1):5–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carbrey JM, Agre P. Discovery of the aquaporins and development of the field. Handb Exp Pharmacol. 2009;90:3–28.

    Article  Google Scholar 

  19. Gonen T, Walz T. The structure of aquaporins. Q Rev Biophys. 2006;39(4):361–96.

    Article  CAS  PubMed  Google Scholar 

  20. Fu D, Lu M. The structural basis of water permeation and proton exclusion in aquaporins. Mol Membr Biol. 2007;24(5–6):366–74.

    Article  CAS  PubMed  Google Scholar 

  21. Fenton RA, Moeller HB. Recent discoveries in vasopressin-regulated aquaporin-2 trafficking. Prog Brain Res. 2008;170:571–9.

    Article  CAS  PubMed  Google Scholar 

  22. Moen MD, Keating GM. Intravenous conivaptan. Am J Cardiovasc Drugs. 2008;8(5):341–8.

    Article  CAS  PubMed  Google Scholar 

  23. Metzger BL, DeVita MV, Michelis MF. Observations regarding the use of the aquaretic agent conivaptan for treatment of hyponatremia. Int Urol Nephrol. 2008;40:725–30.

    Article  CAS  PubMed  Google Scholar 

  24. Bhandari S, Peri A, Cranston I, McCool R, Shaw A, Glanville J, et al. A systematic review of known interventions for the treatment of chronic nonhypovolaemic hypotonic hyponatraemia and a meta-analysis of the vaptans. Clin Endocrinol. 2017;86:761–71.

    Article  Google Scholar 

  25. Lee CY, Burnett JC. Natriuretic peptides and therapeutic implications. Heart Fail Rev. 2007;12:131–42.

    Article  CAS  PubMed  Google Scholar 

  26. McGrath MF, de Bold ML, de Bold AJ. The endocrine function of the heart. Trends Endocrinol Metab. 2005;16:469–77.

    Article  CAS  PubMed  Google Scholar 

  27. Wait RB, Kahng KU. Renal failure complicating obstructive jaundice. Am J Surg. 1989;157:256–63.

    Article  CAS  PubMed  Google Scholar 

  28. Remuzzi G, Benigni A. Endothelins in the control of cardiovascular and renal function. Lancet. 1993;342:589–93.

    Article  CAS  PubMed  Google Scholar 

  29. Bachmann S, Mundel P. Nitric oxide and the kidney: synthesis, localization, and function. Am J Kidney Dis. 1994;24(1):112–29.

    Article  CAS  PubMed  Google Scholar 

  30. Kaplan LJ, Frangos S. Clinical review: acid–base abnormalities in the intensive care unit. Crit Care. 2005;9(2):198–203.

    Article  PubMed  Google Scholar 

  31. Kramer GC. Hypertonic resuscitation: physiologic mechanisms and recommendations for trauma care. J Trauma. 2003;54(5 Suppl):S89–99.

    PubMed  Google Scholar 

  32. Finfer S, Bollomo R, Boyce N, French J, Myburgh J, Norton R. A comparison of albumin and saline for fluid resuscitation in the intensive care unit. N Engl J Med. 2004;350(2):2247–56.

    CAS  PubMed  Google Scholar 

  33. Vincent JL, Sakr Y, Reinhart K. Is albumin administration in the acutely ill associated with increased mortality? Results of the SOAP study. Crit Care. 2005;96(6):R745–54.

    Article  Google Scholar 

  34. Schortgen F, Girou E, Deye N, Brochard L. The risk associated with hyperoncotic colloids in patients with shock. Intensive Care Med. 2008;34(12):2157–68.

    Article  PubMed  Google Scholar 

  35. Hartmann AF, Senn MJ. Studies in the metabolism of sodium r-lactate. III. Response of human subjects with liver damage, disturbed water and mineral balance, and renal insufficiency to the intravenous injection of sodium r-lactate. J Clin Invest. 1932;11:345–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Cordell AR. Milestones in the development of cardioplegia. Ann Thorac Surg. 1995;60:793–6.

    Article  CAS  PubMed  Google Scholar 

  37. Rhee P, Burris D, Kaufmann C, Pikoulis M, Austin B, Ling G, et al. Lactated Ringer’s solution resuscitation causes neutrophil activation after hemorrhagic shock. J Trauma. 1998;44(2):313–9.

    Article  CAS  PubMed  Google Scholar 

  38. Deb S, Martin B, Sun L, Ruff P, Burris D, Rich N, et al. Resuscitation with lactated Ringer’s solution in rats with hemorrhagic shock induces immediate apoptosis. J Trauma. 1999;46(4):582–8.

    Article  CAS  PubMed  Google Scholar 

  39. Cai B, Chen F, Lin X, Miller E, Szabo C, Deithch EA, et al. Anti-inflammatory adjuvant in resuscitation fluids improves survival in hemorrhage. Crit Care Med. 2009;37(3):860–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Cochrane Injuries Group Albumin Reviewers. Human albumin administration in critically ill patients: systematic review of randomized controlled trials. BMJ. 1998;317(7153):235–40.

    Article  Google Scholar 

  41. Human albumin solution for resuscitation and volume expansion in critically ill patients. Cochrane Database Syst Rev. 2004;4:CD001208.

    Google Scholar 

  42. Perner A, Haase N, Guttormsen AB, Tenhunen J, Klemenzson G, Aneman A, et al. Hydroxyethyl starch 130/0.42 versus Ringer’s acetate in severe sepsis. N Engl J Med. 2012;367(2):124–34.

    Article  CAS  PubMed  Google Scholar 

  43. Myburgh JA, Finfer S, Bellomo R, Billot L, Cass A, Gattas D, et al. Hydroxyethyl starch or saline for fluid resuscitation in intensive care. N Engl J Med. 2012;367(20):1901–11.

    Article  CAS  PubMed  Google Scholar 

  44. Bayer O, Reinhart K, Kohl M, Kabisch B, Marshall J, Sakr Y, et al. Effects of fluid resuscitation with synthetic colloids or crystalloids alone on shock reversal, fluid balance, and patient outcomes in patients with severe sepsis: a prospective sequential analysis. Crit Care Med. 2012;40:2543–51.

    Article  CAS  PubMed  Google Scholar 

  45. Zarychanski R, Abou-Setta AM, Turgeon AF, Houston BL, McIntyre L, Marshall JC, et al. Association of hydroxyethyl starch administration with mortality and acute kidney injury in critically ill patients requiring volume resuscitation. A systematic review and meta-analysis. JAMA. 2013;309:678–88.

    Article  CAS  PubMed  Google Scholar 

  46. Wiedermann CJ, Eisendle K. Comparison of hydroxyethyl starch regulatory summaries from the Food and Drug Administration and the European Medicines Agency. J Pham Policy Pract. 2017;10:12. https://doi.org/10.1186/s40545-016-0090-6. eCollection 2017.

    Article  Google Scholar 

  47. Perel P, Roberts I, Ker K. Colloids versus crystalloids for fluid resuscitation in critically ill patients. Cochrane Database Syst Rev. 2013;2:CD000567.

    Google Scholar 

  48. Raghunathan K, Shaw A, Nathanson B, Sturmer T, Brookhart A, Stefan MS, Setoguchi S, et al. Association between the choice of IV crystalloid and in-hospital mortality among critically ill adults with sepsis. Crit Care Med. 2014;42:1585–91.

    Article  CAS  PubMed  Google Scholar 

  49. Jaber S, Paugam C, Futier E, Lefrant JY, Lasocki S, Lescot T, et al. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicenter, open-label, randomized controlled, phase 3 trial. Lancet. 2018;392:31–40.

    Article  CAS  PubMed  Google Scholar 

  50. Leisman DE, Doerfler ME, Schneider SM, Masick KD, D’Amore JA, D’Angelo JK. Predictors, prevalence, and outcomes of early crystalloid responsiveness among initially hypotensive patients with sepsis and septic shock. Crit Care Med. 2018;46:189–98.

    Article  PubMed  Google Scholar 

  51. Hayakawa K. Aggressive fluid management in the critically ill: pro. J Intensive Care. 2019;7:9. https://doi.org/10.1186/s40560-019-0361-9. eCollection 2019.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Semler MW, Janz DR, Casey JD, Self WH, Rice TW. Conservative fluid management after sepsis resuscitation: a pilot randomized trial. J Intensive Care Med. 2019;10:885066618823183. https://doi.org/10.1177/0885066618823183.

    Article  Google Scholar 

  53. Brown RM, Semler MW. Fluid management in sepsis. J Intensive Care Med. 2018;1:885066618784861. https://doi.org/10.1177/0885066618784861.

    Article  Google Scholar 

  54. Leisman DE, Goldman C, Doerfler ME, Masick KD, Dries S, Hamilton E, et al. Patterns and outcomes associated with timeliness of initial crystalloid resuscitation in a prospective sepsis and septic shock cohort. Crit Care Med. 2017;45:1596–606.

    Article  PubMed  Google Scholar 

  55. Malbrain MLNG, Van Regenmortel N, Saugel B, De Tavernier B, Van Gaal PJ, Joannes-Boyau O, et al. Principles of fluid management and stewardship in septic shock: it is time to consider the four D’s and the four phases of fluid therapy. Ann Intensive Care. 2018;8(1):66. https://doi.org/10.1186/s13613-018-0402-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Simmons JW, Dobyns JB, Paiste J. Enhanced recovery after surgery: intraoperative fluid management strategies. Surg Clin N Am. 2018;98:1185–200.

    Article  PubMed  Google Scholar 

  57. Makaryus R, Miller TE, Gan TJ. Current concepts of fluid management in enhanced recovery pathways. Br J Anaesth. 2018;120:376–83.

    Article  CAS  PubMed  Google Scholar 

  58. Zhu ACC, Agarwala A, Bao X. Perioperative fluid management in the enhanced recovery after surgery (ERAS) pathway. Clin Colon Rectal Surg. 2019;32:114–20.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Myles PS, Bellomo R, Corcoran T, Forbes A, Peyton P, Story D, et al. Restrictive versus liberal fluid therapy for major abdominal surgery. N Engl J Med. 2018;378:2263–74.

    Article  PubMed  Google Scholar 

  60. Wait RB, Kahng KU, Mustafa IA. Fluid, electrolytes, and acid–base balance. In: Greenfield LJ, Mulhholland MW, Oldham KT, Zelenock GB, Lillemoe KD, editors. Surgery: scientific principles and practice. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 244–69.

    Google Scholar 

  61. Fried E, Weissman C. Water metabolism. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care. Philadelphia: Elsevier Inc.; 2017. p. 743–50.

    Google Scholar 

  62. Upadhyay A, Jabber BL, Madias NE. Incidence and prevalence of hyponatremia. Am J Med. 2006;119(7 Suppl 1):S30–5.

    Article  CAS  PubMed  Google Scholar 

  63. Lee DS, Austin PC, Rouleau JL, Liu PP, Naimark D, Tu JV. Predicting mortality among patients hospitalized for heart failure: derivation and validation of a clinical model. JAMA. 2003;290:2581–7.

    Article  CAS  PubMed  Google Scholar 

  64. Londono MC, Guevera M, Rimola A, Navasa M, Tauara P, Mas A, et al. Hyponatremia impairs early post transplantation outcome in patients with cirrhosis undergoing liver transplantation. Gastroenterology. 2006;130:1135–43.

    Article  PubMed  Google Scholar 

  65. Zilberberg MD, Exuzides A, Spalding J, Foreman A, Jones AG, Colby C, et al. Hyponatremia and hospital outcomes among patients with pneumonia: a retrospective cohort study. BMC Pulm Med. 2008;8:16. PubMed PMID: 18710521.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Singh SP. Hypernatremia and hyponatremia. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care. Philadelphia: Elsevier Inc.; 2017. p. 49–51.

    Google Scholar 

  67. Adrogue HJ, Madias NE. Hyponatremia. N Engl J Med. 2000;342(21):1581–9.

    Article  CAS  PubMed  Google Scholar 

  68. Schrier RW. Pathogenesis of sodium and water retention in high output and low output cardiac failure, nephritic syndrome, cirrhosis, and pregnancy (2). N Engl J Med. 1988;319(17):1127–34.

    Article  CAS  PubMed  Google Scholar 

  69. Schrier RW. Pathogenesis of sodium and water retention in high output and low output cardiac failure, nephritic syndrome, cirrhosis, and pregnancy (1). N Engl J Med. 1988;319(16):1065–72.

    Article  CAS  PubMed  Google Scholar 

  70. Sedlaceck M, Schoolwerth AC, Remillard BD. Electrolyte disturbances in the intensive care unit. Semin Dial. 2006;19(6):496–501.

    Article  Google Scholar 

  71. Swart RM, Hoorn EJ, Betjes MG, Zieste R. Hyponatremia and inflammation: the emerging role of interleukin-6 in osmoregulation. Nephron Physiol. 2011;118:45–51.

    Article  PubMed  CAS  Google Scholar 

  72. Fraser CL, Arieff AI. Epidemiology, pathophysiology, and management of hyponatremic encephalopathy. Am J Med. 1997;102:67–77.

    Article  CAS  PubMed  Google Scholar 

  73. Ayus JC, Arieff AI. Chronic hyponatremic encephalopathy in postmenopausal women: association of therapies with morbidity and mortality. JAMA. 1999;81:2299–304.

    Article  Google Scholar 

  74. Stems RH. Severe hyponatremia: the case for conservative management. Crit Care Med. 1992;20:534–9.

    Article  Google Scholar 

  75. Cohen BJ, Jordan MH, Chapin SD, Cape B, Laureno R. Pontine myelinolysis after correction of hyponatremia during burn resuscitation. J Burn Care Rehabil. 1991;12:153–6.

    Article  CAS  PubMed  Google Scholar 

  76. Laurene R. Central pontine myelinolysis following rapid correction of hyponatremia. Ann Neurol. 1983;13:232–42.

    Article  Google Scholar 

  77. Laurene R, Karp BI. Myelinolysis after correction of hyponatremia. Ann Intern Med. 1997;126:57–62.

    Article  Google Scholar 

  78. Laureno R, Karp BI. Pontine and extrapontine myelinolysis following rapid correction of hyponatraemia. Lancet. 1988;1:1439–41.

    Article  CAS  PubMed  Google Scholar 

  79. Karp BI, Laureno R. Pontine and extrapontine myelinolysis: a neurologic disorder following rapid correction of hyponatremia. Medicine. 1993;72:359–73.

    Article  CAS  PubMed  Google Scholar 

  80. Stems RH. Neurological deterioration following treatment for hyponatremia. Am J Kidney Dis. 1989;13:434–7.

    Article  Google Scholar 

  81. Sterns RH, Cappuccio JD, Silver SM, Cohen EP. Neurologic sequelae after treatment of severe hyponatremia: a multicenter perspective. J Am Soc Nephrol. 1994;4:1522–30.

    CAS  PubMed  Google Scholar 

  82. Stems RH, Riggs JE, Schochet SS Jr. Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med. 1986;14:1535–42.

    Google Scholar 

  83. Lehrich RW, Greenberg A. Hyponatremia and the use of vasopressin receptor antagonists in critically ill patients. J Intensive Care Med. 2012;27(4):207–18.

    Article  PubMed  Google Scholar 

  84. Adrogué HJ, Madias NE. Mechanisms of disease: sodium and potassium in the pathogenesis of hypertension. N Engl J Med. 2007;356:1966–78.

    Article  PubMed  Google Scholar 

  85. Naparstek Y, Gutman A. Case report: spurious hypokalemia in myeloproliferative disorders. Am J Med Sci. 1984;288:175–7.

    Article  CAS  PubMed  Google Scholar 

  86. Romito B, Dhillon A. Hyperkalemia and hypokalemia. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care. Philadelphia: Elsevier Inc.; 2017. p. 52–5.

    Google Scholar 

  87. Slovis C, Jenkins R. ABC of clinical electrocardiography: conditions not primarily affecting the heart. BMJ. 2002;324:1320–3.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Schulman M, Narins RG. Hypokalemia and cardiovascular disease. Am J Cardiol. 1990;65:4E–9.

    Article  CAS  PubMed  Google Scholar 

  89. Gennari FJ. Hypokalemia. N Engl J Med. 1998;339:451–8.

    Article  CAS  PubMed  Google Scholar 

  90. Whang R, Welt LA. Observations in experimental magnesium depletion. J Clin Invest. 1963;42:305–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Wong NLM, Sutton RA, Navichak V, Quame GA, Dirks JH. Enhanced distal absorption of potassium by magnesium-deficient rats. Clin Sci. 1985;69:626–39.

    Article  Google Scholar 

  92. Burnell JM, Scribner BH, Uyeno BT, Villamil MF. The effect in humans of extracellular pH change on the relationship between serum potassium concentration and intracellular potassium. J Clin Invest. 1956;35:935–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Hassan M, Cooney RN. Hypocalcemia and hypercalcemia. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care. Philadelphia: Elsevier Inc.; 2017. p. 61–3.

    Google Scholar 

  94. Zivin JR, Gooley T, Zager RA, Ryan MJ. Hypocalcemia. A pervasive metabolic abnormality in the critically ill. Am J Kidney Dis. 2001;37:689–98.

    Article  CAS  PubMed  Google Scholar 

  95. Zaloga GP. Ionized hypocalcemia during sepsis. Crit Care Med. 2000;28:266–8.

    Article  CAS  PubMed  Google Scholar 

  96. Müller B, Becker KL, Kränzlin M, Schächinger H, Huber PR, Nylèn ES, et al. Disordered calcium homeostasis of sepsis: association with calcitonin precursors. Eur J Clin Investig. 2000;30:823–31.

    Article  Google Scholar 

  97. Lier H, Krep H, Schroeder S, Stuber F. Preconditions of hemostasis in trauma: a review. The influence of acidosis, hypocalcemia, anemia, and hypothermia on functional hemostasis in trauma. J Trauma. 2008;65(4):951–60.

    Article  PubMed  Google Scholar 

  98. Zaloga GP. Hypocalcemia in critically ill patients. Crit Care Med. 1992;20:251–61.

    Article  CAS  PubMed  Google Scholar 

  99. Aguilera IM, Vaughan RS. Calcium and the anaesthetist. Anaesthesia. 2000;55:779–90.

    Article  CAS  PubMed  Google Scholar 

  100. Carlstedt F, Lind L. Hypocalcemic syndromes. Crit Care Clin. 2001;17:139–53.

    Article  CAS  PubMed  Google Scholar 

  101. Strubelt O, Diederich KW. Experimental investigations of the antidotal treatment of nifedipine overdosage. J Toxicol Clin Toxicol. 1986;24(2):135–49.

    Article  CAS  PubMed  Google Scholar 

  102. Tai YT, Lo CW, Chow WH, Cheng CH. Successful resuscitation and survival following massive overdose of metoprolol. Br J Clin Pract. 1990;44:746–7.

    CAS  PubMed  Google Scholar 

  103. Forster J, Querusio L, Burchard KW, Gann DS. Hypercalcemia in critically ill surgical patients. Ann Surg. 1985;202:512–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bringhurst FR, Demay MB, Kronenberg HM. Hormones and disorders of mineral metabolism. In: Melmed S, Polonsky K, Larsen PR, Kronenberg H, editors. Williams textbook of endocrinology. Philadelphia: W.B. Saunders; 2011. p. 1237–304.

    Chapter  Google Scholar 

  105. Johansson M. Weak relationship between ionized and total magnesium in serum of patients requiring magnesium status. Biol Trace Elem Res. 2007;115(1):13–21.

    Article  CAS  Google Scholar 

  106. Ben Rayana MC, Burnett RW, Covington AK, D’Orazio P, Fogh-Andersen N, Jacobs E, et al. IFCC guideline for sampling, measuring and reporting ionized magnesium in plasma. Clin Chem Lab Med. 2008;46(1):21–6.

    Article  CAS  PubMed  Google Scholar 

  107. Gudzenko V. Hypomagnesemia. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care medicine. Philadelphia: Elsevier Inc.; 2017. p. 59–60.

    Google Scholar 

  108. Norhona JL, Matuschak GM. Magnesium in critical illness: metabolism, assessment, and treatment. Intensive Care Med. 2002;28:667–79.

    Article  Google Scholar 

  109. Topf JM, Murray PT. Hypomagnesemia and hypermagnesemia. Rev Endocr Metab Disord. 2003;4:195–206.

    Article  PubMed  Google Scholar 

  110. Dacey MJ. Hypomagnesemic disorders. Crit Care Clin. 2001;17:155–73.

    Article  CAS  PubMed  Google Scholar 

  111. Fox C, Ramsoomair D, Carter C. Magnesium: its proven and potential clinical significance. South Med J. 2001;94:1195–201.

    Article  CAS  PubMed  Google Scholar 

  112. Zalman AS. Hypomagnesemia. J Am Soc Nephrol. 1999;10(7):1616–22.

    Google Scholar 

  113. Daily WH, Tonnesen AS, Allen SJ. Hypophosphatemia: incidence, etiology and prevention in the trauma patient. Crit Care Med. 1990;18:1210–4.

    Article  CAS  PubMed  Google Scholar 

  114. Vanneste J, Hage J. Acute severe hypophosphatemia mimicking Wernicke’s encephalopathy. Lancet. 1986;1(8471):44.

    Article  CAS  PubMed  Google Scholar 

  115. Singhal PC, Kumar A, Desroches L, Gibbons N, Mattana J. Prevalence and predictors of rhabdomyolysis in patients with hypophosphatemia. Am J Med. 1992;92:458–64.

    Article  CAS  PubMed  Google Scholar 

  116. Aubier M, Murciano D, Lecocguic Y, Viires N, Jacquens Y, Squara P, Pariente R. Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N Engl J Med. 1985;313:420–4.

    Article  CAS  PubMed  Google Scholar 

  117. Newman JH, Neff TA, Ziporin P. Acute respiratory failure associated with hypophosphatemia. N Engl J Med. 1977;296(19):1101–3.

    Article  CAS  PubMed  Google Scholar 

  118. Bollaert PE, Levy B, Nace L, Laterre PF, Larcan A. Hemodynamic and metabolic effects of rapid correction of hypophosphatemia in patients with septic shock. Chest. 1995;107(6):1698–701.

    Article  CAS  PubMed  Google Scholar 

  119. Vachvanichsanong P, Maipang M, Dissaneewate P, Wongchanchailert M, Laosombat V. Severe hyperphosphatemia following acute tumor lysis syndrome. Med Pediatr Oncol. 1995;24:63–6.

    Article  CAS  PubMed  Google Scholar 

  120. Sutlers M, Gaboury CL, Bennett WM. Severe hyperphosphatemia and hypocalcemia: a dilemma in patient management. J Am Soc Nephrol. 1996;7(10):2056–61.

    Google Scholar 

  121. Rejai S, Singh SP. Hyperphosphatemia and hypophosphatemia. In: Vincent JL, Abraham E, Moore FA, Kochanek PM, Fink MP, editors. Textbook of critical care. Philadelphia: Elsevier Inc.; 2017. p. 56–8.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linda L. Maerz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhattacharya, B., Maerz, L.L. (2020). Fluid and Electrolytes. In: Davis, K., Rosenbaum, S. (eds) Surgical Metabolism. Springer, Cham. https://doi.org/10.1007/978-3-030-39781-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-39781-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-39780-7

  • Online ISBN: 978-3-030-39781-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics

Navigation