Okra Fibres as Potential Reinforcement in Biocomposites

  • Chapter
  • First Online:
Biomass and Bioenergy

Abstract

The need to find environmentally friendly alternatives to traditional synthetic fibres such as glass fibres to be used as reinforcement in polymer matrix composites has attracted a growing interest in natural plant fibres in the last decade. In this regard, this chapter provides a comprehensive overview on a less common, but promising, natural fibre known botanically as Abelmoschus esculentus. It focuses on the origin, history and use of this plant with a particular emphasis on the fibres extracted from the stem of this plant, also known as okra fibres. A comprehensive mechanical, morphological and thermal characterization of the fibres is addressed in this work aiming at investigating their possible use as reinforcement in polymer matrix composites. The addition of okra fibres in thermoplastic and thermosetting matrices is reviewed, while the last part of the chapter is devoted to the development of cellulose-based nanocomposites, which is unanimously perceived as one of the most promising research fields related to plant-based products. The extraction of cellulose nanocrystals from okra fibres and their incorporation in thermoplastic composites is described. The problems that appear as limiting factors for possible application of okra fibres as reinforcement for semi-structural components are highlighted and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Akil HM, Omar MF, Mazuki AAM et al (2011) Kenaf fiber reinforced composites: a review. Mater Des 32:4107–4121

    Article  CAS  Google Scholar 

  • Alamri MS, Mohamed AA, Hussain S (2012) Effect of okra gum on the pasting, thermal, and viscous properties of rice and sorghum starches. Carbohydr Polym 89:199–207

    Article  CAS  PubMed  Google Scholar 

  • Albano C, Gonzalez J, Ichazo M, Kaiser D (1999) Thermal stability of blends of polyolefins and sisal fiber. Polym Degrad Stab 66:179–190

    Article  CAS  Google Scholar 

  • Al-Khanbashi A, Al-Kaabi K, Hammami A (2005) Date palm fibers as polymeric matrix reinforcement: fiber characterization. Polym Compos 26:486–497

    Article  CAS  Google Scholar 

  • Angelini L, Lazzeri A, Levita G, Fontanelli D, Bozzi C (2000) Ramie (Boehmeria nivea (L.) and Spanish Broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind Crops Prod 11:145–161

    Article  Google Scholar 

  • Araki J, Wada M, Kuga S, Okano T (1998) Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose. Colloids Surf A Physicochem Eng Asp 142:75–82

    Article  CAS  Google Scholar 

  • Arias A, Heuzey M-C, Huneault MA (2013) Thermomechanical and crystallization behavior of polylactide-based flax fiber biocomposites. Cellulose 20:439–452

    Article  CAS  Google Scholar 

  • Arifuzzaman Khan GM, Shaheruzzaman M, Rahman MH et al (2009) Surface modification of okra bast fiber and its physico-chemical characteristics. Fibers Polym 10:65–70

    Article  CAS  Google Scholar 

  • Athijayamani A, Thiruchitrambalam M, Natarajan U, Pazhanivel B (2009) Effect of moisture absorption on the mechanical properties of randomly oriented natural fibers/polyester hybrid composite. Mater Sci Eng A 517:344–353

    Article  Google Scholar 

  • Athijayamani A, Thiruchitrambalam M, Natarajan U, Pazhanivel B (2010) Influence of alkali-treated fibers on the mechanical properties and machinability of roselle and sisal fiber hybrid polyester composite. Polym Compos 31:723–731

    CAS  Google Scholar 

  • Avachat A, Dash R, Shrotriya S (2011) Recent investigations of plant based natural gums, mucilages and resins in novel drug delivery systems. Indian J Pharm Educ Res 45:86–99

    Google Scholar 

  • Ayre BG, Stevens K, Chapman KD et al (2009) Viscoelastic properties of kenaf bast fiber in relation to stem age. Text Res J 79:973–980

    Article  CAS  Google Scholar 

  • Aziz SH, Ansell MP (2004) The effect of alkalization and fibre alignment on the mechanical and thermal properties of kenaf and hemp bast fibre composites: part 1—polyester resin matrix. Compos Sci Technol 64:1219–1230

    Article  CAS  Google Scholar 

  • Azizi Samir MAS, Alloin F, Dufresne A (2005) Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field. Biomacromolecules 6:612–626

    Article  PubMed  Google Scholar 

  • Barkoula N, Garkhail S, Peijs T (2009) Effect of compounding and injection molding on the mechanical properties of flax fiber polypropylene composites. J Reinforced Plast Compos 29:1366–1385

    Article  Google Scholar 

  • Beck-Candanedo S, Roman M, Gray DG (2005) Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions. Biomacromolecules 6:1048–1054

    Article  CAS  PubMed  Google Scholar 

  • Belgacem M, Gandini A (2008) Monomers, polymers and composites from renewable resources. Elsevier, Amsterdam

    Google Scholar 

  • BeMiller JN, Whistler RL, Barkalow DG, Chen C-C (1993) In: Whistler RL, BeMiller JN (eds) Industrial gums: polysaccharides and their derivatives, 3rd edn. Academic, San Diego, p 227–256

    Google Scholar 

  • Bledzki A, Reihmane S, Gassan J (1996) Properties and modification methods for vegetable fibers for natural fiber composites. J Appl Polym Sci 59:1329–1336

    Article  CAS  Google Scholar 

  • Brinchi L, Cotana F, Fortunati E, Kenny JM (2013) Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydr Polym 94:154–169

    Article  CAS  PubMed  Google Scholar 

  • Carr D, Cruthers N, Laing R, Niven B (2005) Fibers from three cultivars of New Zealand flax (phormium tenax). Text Res J 75:93–98

    Article  CAS  Google Scholar 

  • Chattopadhyay H, Sarkar P (1946) A new method for the estimation of cellulose. Proc Natl Inst Sci India 12:23–46

    CAS  Google Scholar 

  • Da Silva LJ, Panzera TH, Velloso VR et al (2012) Hybrid polymeric composites reinforced with sisal fibres and silica microparticles. J Compos B Eng 43:3436–3444

    Article  Google Scholar 

  • De Rosa IM, Kenny JM, Puglia D et al (2010a) Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Compos Sci Technol 70:116–122

    Article  Google Scholar 

  • De Rosa IM, Santulli C, Sarasini F (2010b) Mechanical and thermal characterization of epoxy composites reinforced with random and quasi-unidirectional untreated Phormium tenax leaf fibers. Mater Des 31:2397–2405. doi:10.1016/j.matdes.2009.11.059

    Article  Google Scholar 

  • De Rosa IM, Kenny JM, Maniruzzaman M et al (2011) Effect of chemical treatments on the mechanical and thermal behaviour of okra (Abelmoschus esculentus) fibres. Compos Sci Technol 71:246–254

    Article  Google Scholar 

  • De Souza Lima MM, Borsali R (2004) Rodlike cellulose microcrystals: structure, properties, and applications. Macromol Rapid Commun 25:771–787

    Article  Google Scholar 

  • Dong XM, Revol J-F, Gray DG (1998) Effect of microcrystallite preparation conditions on the formation of colloid crystals of cellulose. Cellulose 5:19–32

    Article  CAS  Google Scholar 

  • Dufresne A (2008) Polysaccharide nanocrystal reinforced nanocomposites. Can J Chem Eng 86:484–494

    Article  CAS  Google Scholar 

  • Dufresne A (2010) Processing of polymer nanocomposites reinforced with polysaccharide nanocrystals. Molecules 15:4111–4128

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Lemes A, Seabra A (2012) Review of cellulose nanocrystals patents: preparation, composites and general applications. Recent Pat Nanotechnol 6:16–28

    Article  CAS  PubMed  Google Scholar 

  • Eichhorn S, Dufresne A, Aranguren M et al (2010) Review: current international research into cellulose nanofibres. J Mater Sci 45:1–33

    Article  CAS  Google Scholar 

  • Fortunati E, Armentano I, Zhou Q et al (2012a) Multifunctional bionanocomposite films of poly(lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydr Polym 87:1596–1605

    Article  CAS  Google Scholar 

  • Fortunati E, Armentano I, Zhou Q et al (2012b) Microstructure and nonisothermal cold crystallization of PLA composites based on silver nanoparticles and nanocrystalline cellulose. Polym Degrad Stab 97:2027–2036

    Article  CAS  Google Scholar 

  • Fortunati E, Peltzer M, Armentano I et al (2012c) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90:948–956

    Article  CAS  PubMed  Google Scholar 

  • Fortunati E, Puglia D, Monti M et al (2012d) Extraction of cellulose nanocrystals from phormium tenax fibres. J Polym Environ 21:319–328

    Article  Google Scholar 

  • Fortunati E, Luzi F, Puglia D et al (2013a) Ternary PVA nanocomposites containing cellulose nanocrystals from different sources and silver particles: part II. Carbohydr Polym 97:837–848

    Article  CAS  PubMed  Google Scholar 

  • Fortunati E, Puglia D, Luzi F et al (2013b) Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I. Carbohydr Polym 97:825–836

    Article  CAS  PubMed  Google Scholar 

  • Fortunati E, Puglia D, Monti M et al (2013c) Okra (Abelmoschus esculentus) fibre based PLA composites: mechanical behaviour and biodegradation. J Polym Environ 21:726–737

    Article  CAS  Google Scholar 

  • Fortunati E, Puglia D, Monti M et al (2013d) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230

    Article  CAS  Google Scholar 

  • Fuqua M, Huo S, Ulven C (2012) Natural fiber reinforced composites. Polym Rev 52:259–320

    Article  CAS  Google Scholar 

  • Goda K, Sreekala M, Gomes A, Kaji T, Ohgi J (2006) Improvement of plant based natural fibers for toughening green composites-effect of load application during mercerization of ramie fibers. Compos A Appl Sci Manuf 37:2213–2220

    Article  Google Scholar 

  • Gogus F, Maskan M (1999) Water adsorption and drying characteristics of okra Hibiscus Esculentus L. Dry Technol 17:883–894

    Article  CAS  Google Scholar 

  • Gomes A, Matsuo T, Goda K, Ohgi J (2007) Development and effect of alkali treatment on tensile properties of curaua fiber green composites. Compos A Appl Sci Manuf 38:1811–1820. doi:10.1016/j.compositesa.2007.04.010

    Article  Google Scholar 

  • Graupner N, Herrmann AS, Mussig J (2009) Natural and man-made cellulose fibre-reinforced poly(lactic acid)(PLA) composites: an overview about mechanical characteristics and application areas. Compos A Appl Sci Manuf 40:810–821

    Article  Google Scholar 

  • Habibi Y, Lucia L, Rojas O (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110:3479–3500

    Article  CAS  PubMed  Google Scholar 

  • Hamad W (2006) On the development and applications of cellulosic nanofibrillar and nanocrystalline materials. Can J Chem Eng 84:513–519

    Article  CAS  Google Scholar 

  • Herrera-Franco PJ, Valadez-Gonzalez A (2005) A study of the mechanical properties of short natural fiber reinforced composites. Compos B Eng 36:597–608

    Article  Google Scholar 

  • Hubbe M, Rojas O, Lucia L, Sain M (2008) Cellulosic nanocomposites: a review. Bioresources 3:929–980

    Google Scholar 

  • Jayaraman K (2003) Manufacturing sisal/polypropylene composites with minimum fibre degradation. Compos Sci Technol 63:367–374

    Article  CAS  Google Scholar 

  • John M, Thomas S (2008) Biofibres and biocomposites. Carbohydr Polym 71:343–364

    Article  CAS  Google Scholar 

  • Juntuek P, Ruksakulpiwat C, Chumsamrong P, Ruksakulpiwat Y (2012) Comparison between mechanical and thermal properties of polylactic acid and natural rubber blend using calcium carbonate and vetiver grass fiber as fillers. Adv Mater Res 410:59–62

    Article  CAS  Google Scholar 

  • Kalia S, Kaith BS, Kaur I (2011) Cellulose fibers: bio- and nano- polymer composites. Springer, London

    Google Scholar 

  • Kirwan K, Johnson RM, Jacobs DK et al (2007) Enhancing properties of dissolution compounded Miscanthus giganteus reinforced polymer composite systems. Ind Crops Prod 26:14–27

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink H, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl 44:3358–3393

    Article  CAS  PubMed  Google Scholar 

  • Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Mohd Ishak ZA, Mat Taib R et al (2012) Mechanical, thermal and water absorption properties of kenaf-fiber-based polypropylene and poly(butylene succinate) composites. J Polym Environ 21:293–302

    Article  CAS  Google Scholar 

  • Lu J, Askeland P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer (Guildf) 49:1285–1296

    Article  CAS  Google Scholar 

  • Malkapuram R, Kumar V, Negi YS (2009) Recent development in natural fiber reinforced polypropylene composites. J Reinforced Plast Compos 28:1169–1189

    Article  CAS  Google Scholar 

  • Methacanon P, Weerawatsophon U, Sumransin N et al (2010) Properties and potential application of the selected natural fibers as limited life geotextiles. Carbohydr Polym 82:1090–1096

    Article  CAS  Google Scholar 

  • Mishra S, Mohanty AK, Drzal LT, Misra M, Hinrichsen G (2004) A review on pineapple leaf fibers, sisal fibers and their biocomposites. Macromol Mater Eng 289:955–974. doi:10.1002/mame.200400132

    Article  CAS  Google Scholar 

  • Mohanty A, Misra M, Drzal L (2005) Natural fibers, biopolymers, and biocomposites. Taylor & Francis, Boca Raton, FL

    Book  Google Scholar 

  • Moniruzzaman M, Maniruzzaman M, Gafur MA, Santulli C (2009) Lady’s finger fibres for possible use as a reinforcement in composite materials. J Biobased Mater Bioenergy 3:286–290

    Article  CAS  Google Scholar 

  • Monteiro SN, Calado V, Rodriguez RJS, Margem FM (2012) Thermogravimetric stability of polymer composites reinforced with less common lignocellulosic fibers—an overview. J Mater Res Technol 1:117–126

    Article  CAS  Google Scholar 

  • Munawar SS, Umemura K, Kawai S (2006) Characterization of the morphological, physical, and mechanical properties of seven nonwood plant fiber bundles. J Wood Sci 53:108–113. doi:10.1007/s10086-006-0836-x

    Article  Google Scholar 

  • Na Y, Cho G (2010) Sound absorption and viscoelastic property of acoustical automotive nonwovens and their plasma treatment. Fibers Polym 11:782–789

    Article  CAS  Google Scholar 

  • Oke I (2010) Nanoscience in nature: cellulose nanocrystals. Stud Undergrad Res Guelph 3:77–80

    Google Scholar 

  • Russo P, Carfagna C, Cimino F et al (2013) Biodegradable composites reinforced with kenaf fibers: thermal, mechanical, and morphological issues. Adv Polym Technol 32:E313–E322

    Article  CAS  Google Scholar 

  • Saha S, Das B, Ray P, Pandey S, Goswami K (1990) SEM studies of the surface fracture morphology of pineapple leaf fibres. Text Res J 60:726–731

    Article  CAS  Google Scholar 

  • Saxena IM, Brown RM (2005) Cellulose biosynthesis: current views and evolving concepts. Ann Bot 96:9–21

    Article  CAS  PubMed  Google Scholar 

  • Shamsul Alam M, Arifuzzaman Khan GM (2007) Chemical analysis of okra bast fiber (Abelmoschus Esculentus) and its physico-chemical properties. J Text Apparel Technol Manag 5:1–9

    Google Scholar 

  • Shibata M, Takachiyo K-I, Ozawa K, Yosomiya R, Takeishi H (2002) Biodegradable polyester composites reinforced with short abaca fiber. J Appl Polym Sci 85:129–138. doi:10.1002/app.10665

    Article  CAS  Google Scholar 

  • Siqueira G, Bras J, Dufresne A (2010) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers (Basel) 2:728–765

    Article  CAS  Google Scholar 

  • Sreenivasan V, Somasundaram S, Ravindran D, Manikandan V, Narayanasamy R (2011) Microstructural, physico-chemical and mechanical characterisation of Sansevieria cylindrica fibres-an exploratory investigation. Mater Des 32:453–461

    Article  CAS  Google Scholar 

  • Srinivasababu N, Rao KMM (2009) Tensile properties characterization of okra woven fiber reinforced polyester composites. Int J Eng 3:403–412

    Google Scholar 

  • Srinivasababu N, Rao KMM, Kumar JS (2009) Experimental determination of tensile properties of okra, sisal and banana fiber reinforced polyester composites. Indian J Sci Technol 2:35–38

    CAS  Google Scholar 

  • Sun R, Fang J, Goodwin A, Lawther J, Bolton A (1998) Fractionation and characterization of polysaccharides from abaca fibre. Carbohydr Polym 37:351–359

    Article  CAS  Google Scholar 

  • Symington MC, Banks WM, West OD, Pethrick RA (2009) Tensile testing of cellulose based natural fibers for structural composite applications. J Compos Mater 43:1083–1108

    Article  CAS  Google Scholar 

  • Visakh PM, Thomas S (2010) Preparation of bionanomaterials and their polymer nanocomposites from waste and biomass. Waste Biomass Valorization 1:121–134

    Article  CAS  Google Scholar 

  • Wambua P, Ivens J, Verpoest I (2003) Natural fibres: can they replace glass in fibre reinforced plastics? Compos Sci Technol 63:1259–1264

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Santulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Santulli, C., Sarasini, F., Fortunati, E., Puglia, D., Kenny, J.M. (2014). Okra Fibres as Potential Reinforcement in Biocomposites. In: Hakeem, K., Jawaid, M., Rashid, U. (eds) Biomass and Bioenergy. Springer, Cham. https://doi.org/10.1007/978-3-319-07641-6_11

Download citation

Publish with us

Policies and ethics

Navigation