Log in

Thermomechanical and crystallization behavior of polylactide-based flax fiber biocomposites

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work, the rheological, thermal and mechanical properties of melt-compounded flax fiber-reinforced polylactide composites were investigated. The effect of compounding on fiber length and diameter, and the relationship between fiber content and the crystallization behavior of the biocomposites, at various temperatures, were also examined. After melt-compounding, fiber bundles initially present were, to a large extent, broken into individual fibers and the fiber length was decreased by 75 %, while the aspect ratio was decreased by nearly 50 %. The crystallization half-time was found to decrease with increasing flax fiber content, and showed a minimum value at 105 °C for all systems. The elastic modulus was increased by 50 % in the presence of 20 wt% flax fibers. The addition of maleic anhydride-grafted polylactide had a positive effect on the mechanical properties of the biocomposite. This system is particularly interesting in the context of sustainable development as it is entirely based on renewable resources and biodegradable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Agarwal BD, Broutman LJ et al (2006) Analysis and performance of fiber composites. Wiley, New Jersey

    Google Scholar 

  • Alloin F, Alessandra DA et al (2011) Poly(oxyethylene) and ramie whiskers based nanocomposites: influence of processing: extrusion and casting/evaporation. Cellulose 18(4):957–973

    Article  CAS  Google Scholar 

  • Arbelaiz A, Fernandez B et al (2005) Mechanical properties of flax fibre/polypropylene composites. Influence of fibre/matrix modification and glass fibre hybridization. Compos A Appl Sci Manuf 36(12):1637–1644

    Article  Google Scholar 

  • Auras R, Harte B et al (2004) An overview of polylactides as packaging materials. Macromol Biosci 4(9):835–864

    Article  CAS  PubMed  Google Scholar 

  • Avella M, Bogoeva-Gaceva G et al (2008) Poly(lactic acid)-based biocomposites reinforced with kenaf fibers. J Appl Polym Sci 108(6):3542–3551

    Article  CAS  Google Scholar 

  • Avrami M (1939) Kinetics of phase change. I General theory. J Chem Phys 7(12):1103–1112

    Article  CAS  Google Scholar 

  • Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos A Appl Sci Manuf 33(7):939–948

    Article  Google Scholar 

  • Barkoula NM, Garkhail SK et al (2010) Effect of compounding and injection molding on the mechanical properties of flax fiber polypropylene composites. J Reinf Plast Compos 29(9):1366–1385

    Article  CAS  Google Scholar 

  • Bax B, Mussig J (2008) Impact and tensile properties of PLA/Cordenka and PLA/flax composites. Compos Sci Technol 68(7–8):1601–1607

    Article  CAS  Google Scholar 

  • Belgacem MN, Gandini A (2008) Surface modification of cellulose fibres. Monomers, polymers and composites from renewable resources. É. F. d. P. e. INPG pp 385–400

  • Bengtsson M, Baillif ML et al (2007) Extrusion and mechanical properties of highly filled cellulose fibre-polypropylene composites. Compos A Appl Sci Manuf 38(8):1922–1931

    Article  Google Scholar 

  • Biagiotti J, Puglia D et al (2004) A systematic investigation on the influence of the chemical treatment of natural fibers on the properties of their polymer matrix composites. Polym Compos 25(5):470–479

    Article  CAS  Google Scholar 

  • Bismarck A, Mishra S et al (2005) Plant fibers as reinforcement for green composites. In: Mohanty AK, Misra M, Drzal LT (eds) Natural fibers, biopolymers, and biocomposites. CRC Press Taylor & Francis Group, Boca Raton, pp 37–108

    Google Scholar 

  • Bledzki AK, Mamun AA et al (2007) Abaca fibre reinforced PP composites and comparison with jute and flax fibre PP composites. Express Polym Lett 1(11):755–762

    Article  CAS  Google Scholar 

  • Bodros E, Pillin I et al (2007) Could biopolymers reinforced by randomly scattered flax fibre be used in structural applications? Compos Sci Technol 67(3–4):462–470

    Article  CAS  Google Scholar 

  • Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14:617–630

    Article  CAS  Google Scholar 

  • Di Lorenzo ML (2005) Crystallization behavior of poly(L-lactic acid). Eur Polymer J 41(3):569–575

    Article  Google Scholar 

  • Fischer EW, Sterzel HJ et al (1973) Investigation of the structure of solution grown crystals of lactide copolymers by means of chemical reactions. Kolloid-Z Z Polym 251(11):980–990

    Article  CAS  Google Scholar 

  • Garlotta D (2001) A litterature review of poly(Lactic acid). J Polym Environ 9(2):63–84

    Article  CAS  Google Scholar 

  • George J, Klompen ETJ et al (2001) Thermal degradation of green and upgraded flax fibres. Adv Compos Lett 10(2):81–88

    Article  Google Scholar 

  • Harris AM, Lee EC (2008) Improving mechanical performance of injection molded PLA by controlling crystallinity. J Appl Polym Sci 107(4):2246–2255

    Article  CAS  Google Scholar 

  • Hermida E, Mega V (2007) Transcrystallization kinetics at the poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/hemp fibre interface. Compos A Appl Sci Manuf 38(5):1387–1394

    Article  Google Scholar 

  • Hwang SW, Lee SB et al (2012) Grafting of maleic anhydride on poly(L-lactic acid). Effects on physical and mechanical properties. Polym Test 31(2):333–344

    Article  CAS  Google Scholar 

  • John MJ, Anandjiwala RD (2008) Recent developments in chemical modification and characterization of natural fiber-reinforced composites. Polym Compos 29(2):187–207

    Article  CAS  Google Scholar 

  • Le Duigou A, Pillin I et al (2008) Effect of recycling on mechanical behaviour of biocompostable flax/poly(L-lactide) composites. Compos A Appl Sci Manuf 39(9):1471–1478

    Article  Google Scholar 

  • Le Troedec M, Sedan D et al (2008) Influence of various chemical treatments on the composition and structure of hemp fibres. Compos A Appl Sci Manuf 39(3):514–522

    Article  Google Scholar 

  • Li HB, Huneault MA (2007) Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 48(23):6855–6866

    Article  CAS  Google Scholar 

  • Li X, Tabil LG et al (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15(1):25–33

    Article  Google Scholar 

  • Madhavan Nampoothiri K, Nair NR et al (2010) An overview of the recent developments in polylactide (PLA) research. Bioresour Technol 101(22):8493–8501

    Article  CAS  PubMed  Google Scholar 

  • Martin O, Averous L (2001) Poly(lactic acid): plasticization and properties of biodegradable multiphase systems. Polymer 42(14):6209–6219

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K et al (2005) Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). J Appl Polym Sci 97(5):2014–2025

    Article  CAS  Google Scholar 

  • Mathew AP, Oksman K et al (2006) The effect of morphology and chemical characteristics of cellulose reinforcements on the crystallinity of polylactic acid. J Appl Polym Sci 101(1):300–310

    Article  CAS  Google Scholar 

  • Nabar Y, Raquez JM et al (2005) Production of starch foams by twin-screw extrusion: effect of maleated poly(butylene adipate-co-terephthalate) as a compatibilizer. Biomacromolecules 6(2):807–817

    Article  CAS  PubMed  Google Scholar 

  • Najafi N, Heuzey MC et al (2012) Crystallization behavior and morphology of polylactide (PLA) and PLA/clay nanocomposites in the presence of chain extenders. Polym Eng Sci, Manuscript accepted for publication

  • Nam JY, Ray SS et al (2003) Crystallization behavior and morphology of biodegradable polylactide/layered silicate nanocomposite. Macromolecules 36(19):7126–7131

    Article  CAS  Google Scholar 

  • Nam JY, Okamoto M et al (2006) Morphology and crystallization kinetics in a mixture of low-molecular weight aliphatic amide and polylactide. Polymer 47(4):1340–1347

    Article  CAS  Google Scholar 

  • Oksman K, Skrifvars M et al (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63(9):1317–1324

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP et al (2009) The influence of fibre microstructure on fibre breakage and mechanical properties of natural fibre reinforced polypropylene. Compos Sci Technol 69(11–12):1847–1853

    Article  CAS  Google Scholar 

  • Palade LI, Lehermeier HJ et al (2001) Melt rheology of high L-content poly(lactic acid). Macromolecules 34(5):1384–1390

    Article  CAS  Google Scholar 

  • Pandey JK, Ahn SH et al (2010) Recent advances in the application of natural fiber based composites. Macromol Mater Eng 295(11):975–989

    Article  CAS  Google Scholar 

  • Perego G, Cella GD et al (1996) Effect of molecular weight and crystallinity on poly(lactic acid) mechanical properties. J Appl Polym Sci 59(1):37–43

    Article  CAS  Google Scholar 

  • Qiu Z, Li Z (2011) Effect of orotic acid on the crystallization kinetics and morphology of biodegradable poly(L-lactide) as an efficient nucleating agent. Ind Eng Chem Res 50(21):12299–12303

    Article  CAS  Google Scholar 

  • Ramiah MV (1970) Thermogravimetric and differential thermal analysis of cellulose, hemicellulose, and lignin. J Appl Polym Sci 14(5):1323–1337

    Article  CAS  Google Scholar 

  • Shafizadeh F, Bradbury AGW (1979) Thermal degradation of cellulose in air and nitrogen at low temperatures. J Appl Polym Sci 23(5):1431–1442

    Article  CAS  Google Scholar 

  • Shanks RA, Hodzic A et al (2006) Composites of poly(lactic acid) with flax fibers modified by interstitial polymerization. J Appl Polym Sci 99(5):2305–2313

    Article  CAS  Google Scholar 

  • Shibata M, Ozawa K et al (2003) Biocomposites made from short abaca fiber and biodegradable polyesters. Macromol Mater Eng 288(1):35–43

    Article  CAS  Google Scholar 

  • Tsujia H, Tezukaa Y et al (2005) Spherulite growth of L-lactide copolymers: effects of tacticity and comonomers. Polymer 46(13):4917–4927

    Article  Google Scholar 

  • Van de Velde K, Baetens E (2001) Thermal and mechanical properties of flax fibres as potential composite reinforcement. Macromol Mater Eng 286(6):342–349

    Article  Google Scholar 

  • Wang C, Liu C-R (1999) Transcrystallization of polypropylene composites: nucleating ability of fibres. Polymer 40(2):289–298

    Article  Google Scholar 

  • **ao HW, Li P et al (2010) Isothermal crystallization kinetics and crystal structure of poly(lactic acid): effect of triphenyl phosphate and talc. J Appl Polym Sci 118(6):3558–3569

    Article  CAS  Google Scholar 

  • Yuryev Y, Wood-Adams P et al (2008) Crystallization of polylactide films: an atomic force microscopy study of the effects of temperature and blending. Polymer 49(9):2306–2320

    Article  CAS  Google Scholar 

  • Zafeiropoulos NE, Baillie CA et al (2001) A study of transcrystallinity and its effect on the interface in flax fibre reinforced composite materials. Compos A Appl Sci Manuf 32(3–4):525–543

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Natural Sciences and Engineering Research Council of Canada (NSERC) for funding. They also thank Gilles Ausias from Laboratoire d’Ingénierie des Matériaux de Bretagne (LIMATB) for providing the flax fibers, and Cristina Kawano for her help with the optical microscopy measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Claude Heuzey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arias, A., Heuzey, MC. & Huneault, M.A. Thermomechanical and crystallization behavior of polylactide-based flax fiber biocomposites. Cellulose 20, 439–452 (2013). https://doi.org/10.1007/s10570-012-9836-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-012-9836-8

Keywords

Navigation