Nanoclay Based Natural Fibre Reinforced Polymer Composites: Mechanical and Thermal Properties

  • Chapter
  • First Online:
Nanoclay Reinforced Polymer Composites

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This chapter discussed the introduction of nanoclay into natural fibre reinforced composites (in practice, reinforced with lignocellulosic fibres from plants, therefore referred here as plant fibre composites, abbreviated as PFC) in terms of improvement of mechanical and thermal properties. A number of issues are to be accounted for, which include the specificity and hierarchical structure of the different lignocellulosic fibres, therefore their significant variability in mechanical terms, which results also in a substantial dimensional variability when introduced in the composite. More specifically, the main effects encountered by this introduction, in amounts normally variable between 1 and 5 wt %, would concern the reduction of viscoelastic behaviour of the composite and achieving improved dimensional control, provided a sufficient interaction of the nanoclay in the compositeĀ is obtained. This is particularly significant on one side aiming at an effective production of injection moulded PFCs and on the other side in connection with the use of biodegradable matrices, focusing on the production of a fully sustainable composite.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 85.59
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 106.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 106.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Alamri, H., Low, I.M., Alothman, Z.: Mechanical, thermal and microstructural characteristics of cellulose fibre reinforced epoxy/organoclay nanocomposites. Compos. B 43(7), 2762ā€“2771 (2012)

    ArticleĀ  Google ScholarĀ 

  • Ali, E.S., Ahmad, S.: Bionanocomposite hybrid polyurethane foam reinforced with empty fruit bunch and nanoclay. Compos. B 43(7), 2813ā€“2816 (2012)

    ArticleĀ  Google ScholarĀ 

  • Aly, M., Hashmi, M.S.J., Olabi, A.G., Messeiry, M., Hussain, A.I., Abadir, E.F.: Effect of nano-clay and waste glass powder on the properties of flax fibre reinforced mortar. ARPN J. Eng. Appl. Sci. 6(10), 19ā€“28 (2011)

    Google ScholarĀ 

  • Arrieta, M.P., LĆ³pez, J., FerrĆ”ndiz, S., Peltzer, M.A.: Characterization of PLA-limonene blends for food packaging applications. Polym. Testing 32(4), 760ā€“768 (2013)

    ArticleĀ  Google ScholarĀ 

  • Assaedi, H., Shaikh, F.U.A., Low, I.M.: Utilization of nanoclay to reinforce flax fabric-geopolymer composites. Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 9(12), 1297ā€“1305 (2015)

    Google ScholarĀ 

  • Barmar, M., Barikani, M., Fereidounnia, M.: Study of polyurethane/clay nanocomposites produced via melt intercalation method. Iran. Polym. J. 15(9), 709ā€“714 (2006)

    Google ScholarĀ 

  • Bensadoun, F., Kchit, N., Billotte, C., Bickerton, S., Trochu, F., Ruiz, E.: A study of nanoclay reinforcement of biocomposites made by liquid composite molding. Int. J. Polym. Sci. 964193 (2011)

    Google ScholarĀ 

  • Biswal, M., Mohanty, S., Nayak, S.K.: Influence of organically modified nanoclay on the performance of pineapple leaf fiber-reinforced polypropylene nanocomposites. J. Appl. Polym. Sci. 114(6), 4091ā€“4103 (2009)

    ArticleĀ  Google ScholarĀ 

  • Bordes, P., Pollet, E., AvĆ©rous, L.: Nano-biocomposites: biodegradable polyester/nanoclay systems. Prog. Polym. Sci. 34(2), 125ā€“155 (2009)

    ArticleĀ  Google ScholarĀ 

  • Chan, M., Lau, K., Wong, T., Ho, M., Hui, D.: Mechanism of reinforcement in a nanoclay/polymer composite. Compos. B 42(6), 1708ā€“1712 (2011)

    ArticleĀ  Google ScholarĀ 

  • Chen, L., Wong, S.C., Pisharath, S.: Fracture properties of nanoclay-filled polypropylene. J. Appl. Polym. Sci. 88(14), 3298ā€“3305 (2003)

    ArticleĀ  Google ScholarĀ 

  • Deepak, K., Reddy, N.S., Naidu, T.V.S.: Thermosetting polymer and nano clay based natural fiber bio- composites. Procedia Mater. Sci. 10, 626ā€“631 (2015a)

    ArticleĀ  Google ScholarĀ 

  • Deepak, K., Prabhakar Vattikuti, S.V., Venkatesh, B.: Experimental investigation of jute fiber reinforced nanoclay composite. Procedia Mater. Sci. 10, 238ā€“242 (2015b)

    ArticleĀ  Google ScholarĀ 

  • Deka, H., Karak, N.: Vegetable oil-based hyperbranched thermosetting polyurethane/clay nanocomposites. Nanoscale Res. Lett. 4, 758ā€“765 (2009)

    ArticleĀ  Google ScholarĀ 

  • Dewan, M.W., Hossain, M.K., Hosur, M., Jeelani, S.: Thermomechanical properties of alkali treated jute-polyester/nanoclay biocomposites fabricated by VARTM process. J. Appl. Polym. Sci. 128(6), 4110ā€“4123 (2013)

    ArticleĀ  Google ScholarĀ 

  • Divya, G.S., Kakhandaki, A., Suresha, B.: Wear behavior of coir reinforced treated and untreated hybrid composites. Int. J. Innovative Res. Dev. 3(5), paper no. 50754 (2014)

    Google ScholarĀ 

  • Faruk, O., Matuana, L.M.: Nanoclay reinforced HDPE as a matrix for wood-plastic composites. Compos. Sci. Technol. 68, 2073ā€“2077 (2008)

    ArticleĀ  Google ScholarĀ 

  • Faruk, O., Bledzki, A.K., Fink, H.-P., Sain, M.: Biocomposites reinforced with natural fibers: 2000ā€“2010. Prog. Polym. Sci. 37(11), 1552ā€“1596 (2012)

    ArticleĀ  Google ScholarĀ 

  • Gassan, J., Bledzki, A.K.: Effect of moisture content on the properties of silanized jute-epoxy composites. Polym. Compos. 18(2), 179ā€“184 (1997)

    ArticleĀ  Google ScholarĀ 

  • Gassan, J., Bledzki, A.K.: Thermal degradation of flax and jute fibers. J. Appl. Polym. Sci. 82(6), 1417ā€“1422 (2001)

    ArticleĀ  Google ScholarĀ 

  • George, J., Sreekala, M.S., Thomas, S.: A review on interface modification and characterization of natural fiber reinforced plastic composites. Polym. Eng. Sci. 41(9), 1471ā€“1485 (2001)

    ArticleĀ  Google ScholarĀ 

  • Hakamy, A., Shaikh, F.U.A., Low, I.M.: Microstructures and mechanical properties of hemp fabric reinforced organoclayā€“cement nanocomposites. Constr. Build. Mater. 49, 298ā€“307 (2013)

    ArticleĀ  Google ScholarĀ 

  • Hakamy, A., Shaikh, F.U.A., Low, I.M.: Characteristics of hemp fabric reinforced nanoclayā€“cement nanocomposites. Cement Concr. Compos. 50, 27ā€“35 (2014a)

    ArticleĀ  Google ScholarĀ 

  • Hakamy, A., Shaikh, F.U.A., Low, I.M.: Thermal and mechanical properties of hemp fabric-reinforced nanoclay-cement nano-composites. J. Mater. Sci. 49(4), 1684ā€“1694 (2014b)

    ArticleĀ  Google ScholarĀ 

  • Hakamy, A., Shaikh, F.U.A., Low, I.M.: Thermal and mechanical properties of NaOH treated hemp fabric and calcined nanoclay-reinforced cement nanocomposites. Mater. Des. 80, 70ā€“81 (2015)

    ArticleĀ  Google ScholarĀ 

  • Han, G., Lei, Y., Wu, Q., Kojima, Y., Suzuki, S.: Bambooā€“fiber filled high density polyethylene composites: effect of coupling treatment and nanoclay. J. Polym. Environ. 16(2), 123ā€“130 (2008)

    ArticleĀ  Google ScholarĀ 

  • Hapuarachchi, T.D., Peijs, T.: Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos. A 41(8), 954ā€“963 (2010)

    ArticleĀ  Google ScholarĀ 

  • Haq, M., BurgueƱo, R., Mohanty, A.K., Misra, M.: Hybrid bio-based composites from blends of unsaturated polyester and soybean oil reinforced with nanoclay and natural fibers. Compos. Sci. Technol. 68(15ā€“16), 3344ā€“3351 (2008)

    ArticleĀ  Google ScholarĀ 

  • Herrera-Franco, P.J., Valadez-GonzĆ”lez, A.: A study of the mechanical properties of short natural-fiber reinforced composites. Compos. B 36(8), 597ā€“608 (2005)

    ArticleĀ  Google ScholarĀ 

  • Holbery, J., Houston, D.: Natural-fiber-reinforced polymer composites in automotive applications. JOM 58(11), 80ā€“86 (2006)

    ArticleĀ  Google ScholarĀ 

  • Hossain, M.K., Dewan, M.W., Hosur, M., Jeelani, S.: Mechanical performances of surface modified jute fiber reinforced biopol nanophased green composites. Compos. B 42(6), 1701ā€“1707 (2011)

    ArticleĀ  Google ScholarĀ 

  • Huang, X., Netravali, A.: Characterization of flax fiber reinforced soy protein resin based green composites modified with nano-clay particles. Compos. Sci. Technol. 67(10), 2005ā€“2014 (2007)

    ArticleĀ  Google ScholarĀ 

  • Iman, M., Maji, T.K.: Effect of crosslinker and nanoclay on starch and jute fabric based green nanocomposites. Carbohydr. Polym. 89(1), 290ā€“297 (2012)

    ArticleĀ  Google ScholarĀ 

  • Iman, M., Bania, K.K., Maji, T.K.: Green jute-based cross-linked soy flour nanocomposites reinforced with cellulose whiskers and nanoclay. Ind. Eng. Chem. Res. 52(21), 6969ā€“6983 (2013)

    ArticleĀ  Google ScholarĀ 

  • Iman, M., Mandal, M., Maji, T.K.: Effect of zinc oxide and nanoclay on crosslinked jute-reinforced soy flour green nanocomposites. J. Compos. Mater. Published online before print, April 15, 2015. doi: 10.1177/0021998315580831

    Google ScholarĀ 

  • Islam, M.S., Hamdan, S., Talib, Z.A., Ahmed, A.S., Rahman Md, R.: Tropical wood polymer nanocomposite (WPNC): the impact of nanoclay on dynamic mechanical thermal properties. Compos. Sci. Technol. 72(16), 1995ā€“2001 (2012a) Ā 

    ArticleĀ  Google ScholarĀ 

  • Islam, M.S.,Ā Khan,Ā T., Park, J.K.:Ā Nanoreinforced bacterial celluloseā€“montmorillonite composites for biomedical applications. Carbohyd. Polym. 89(4),Ā 1189ā€“1197 (2012b)

    Google ScholarĀ 

  • Islam, M.S., Ahmad, M.B., Hasan, M., Aziz, S.A., Jawaid, M., Haafiz, M.K.M., Zakaria, S.A.H.: Natural fiber-reinforced hybrid polymer nanocomposites: effect of fiber mixing and nanoclay on physical, mechanical, and biodegradable properties. Bioresources 10(1), 1394ā€“1407 (2015)

    ArticleĀ  Google ScholarĀ 

  • Islam, M.S., Talib, Z.A., Hasan, M., Ramli, I., Haafiz, M.K.M., Jawaid, M., Islam, A., Inuwa, I.M.: Evaluation of mechanical, morphological, and biodegradable properties of hybrid natural fiber polymer nanocomposites. Polym. Compos. Available online, doi: 10.1002/pc.23616

    Google ScholarĀ 

  • Kaiser, M.R., Anuar, H.: Effect of nanoclay on thermal properties of polylactic acid-kenaf hybrid bio-composite. In: International Conference on Chemical Engineering (ICChE 2011), 29ā€“30 December 2011, Dhaka, Bangladesh, from http://irep.iium.edu.my/id/eprint/17072. Accessed 24 Jan 2016

  • Kaiser, M.R., Anuar, H., Samat, N.B., Razak, S.B.A.: Effect of processing routes on the mechanical, thermal and morphological properties of PLA-based hybrid biocomposite. Iran. Polym. J. 22(2), 123ā€“131 (2013)

    ArticleĀ  Google ScholarĀ 

  • Kalia, S., Kaith, B.S., Kaur, I.: Pretreatments of natural fibers and their application as reinforcing material in polymer compositesā€”a review. Polym. Eng. Sci. 49(7), 1253ā€“1272 (2009)

    ArticleĀ  Google ScholarĀ 

  • Kamardin, N.K., Taib, Y.M., Kalam, A.: The effects of kenaf fiber loading reinforced polypropylene and nanoclay. Jurnal Teknologi 76(3), 53ā€“56 (2015)

    ArticleĀ  Google ScholarĀ 

  • Katschnig, M., Battisti, M.: Processing of polymer-nanoclay composites, Chapter 3 in ā€œPolymer nanoclay compositesā€. In: Laske, S. (ed.) William Andrew Publishing, ISBN 978-0323299626 (2015)

    Google ScholarĀ 

  • Kiliaris, P., Papaspyrides, C.D.: Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog. Polym. Sci. 35(7), 902ā€“958 (2010)

    ArticleĀ  Google ScholarĀ 

  • Klemm, D., Heublein, B., Fink, H.-P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. 44(22), 3358ā€“3393 (2005)

    ArticleĀ  Google ScholarĀ 

  • Kord, B.: Effect of nanoparticles loading on properties of polymeric composite based on hemp fiber/polypropylene. J. Thermoplast. Compos. Mater. 25(7), 793ā€“806 (2012)

    ArticleĀ  Google ScholarĀ 

  • Ku, H., Wang, H., Pattarachaiyakoop, N., Trada, M.: A review on the tensile properties of natural fiber reinforced polymer composites. Compos. B 42(4), 856ā€“873 (2011)

    ArticleĀ  Google ScholarĀ 

  • Kumar, R., Yakubu, M.K., Anandjiwala, R.D.: Biodegradation of flax fiber reinforced poly lactic acid. Express Polym. Lett. 4(7), 423ā€“430 (2010a)

    ArticleĀ  Google ScholarĀ 

  • Kumar, R., Yakabu, M.K., Anandjiwala, R.D.: Effect of montmorillonite clay on flax fabric reinforced poly lactic acid composites with amphiphilic additives. Compos. A 41(11), 1620ā€“1627 (2010b)

    ArticleĀ  Google ScholarĀ 

  • La Mantia, F.P., Morreale, M.: Green composites: a brief review. Compos. A 42(6), 579ā€“588 (2011)

    ArticleĀ  Google ScholarĀ 

  • Lashgari, A., Eshghi, A., Farsi, M.A.: Study on some properties of polypropylene based nanocomposites made using almond shell flour and organoclay. Asian J. Chem. 25(2), 1043ā€“1049 (2013)

    Google ScholarĀ 

  • Li, H., Huneault, M.A.: Comparison of sorbitol and glycerol as plasticizers for thermoplastic starch in TPS/PLA blends. J. Appl. Polym. Sci. 119(4), 2439ā€“2448 (2011)

    ArticleĀ  Google ScholarĀ 

  • Li, X., Tabil, L.G., Panigrahi, S.: Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J. Polym. Environ. 15(1), 25ā€“33 (2007)

    ArticleĀ  Google ScholarĀ 

  • Lim, L.T., Auras, R., Rubino, M.: Processing technologies for poly(lactic acid). Prog. Polym. Sci. 33(8), 820ā€“852 (2008)

    ArticleĀ  Google ScholarĀ 

  • Majeed, K., Jawaid, M., Hassan, A., Bakar, A.A., Khalil, H.P.S.A., Salem, A.A., Inuwa, I.: Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 46, 391ā€“410 (2013)

    ArticleĀ  Google ScholarĀ 

  • Mohan, T.P., Kanny, K.: Water barrier properties of nanoclay filled sisal fibre reinforced epoxy composites. Compos. A 42(4), 385ā€“393 (2011)

    ArticleĀ  Google ScholarĀ 

  • Mohanty, S., Verma, S.K., Nayak, S.K.: Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos. Sci. Technol. 66(3ā€“4), 538ā€“547 (2006)

    ArticleĀ  Google ScholarĀ 

  • Mosiewicki, M.A., Aranguren, M.I.: A short review on novel biocomposites based on plant oil precursors. Eur. Polymer J. 49(6), 1243ā€“1256 (2013)

    ArticleĀ  Google ScholarĀ 

  • Pillin, I., Montrelay, N., Grohens, Y.: Thermo-mechanical characterization of plasticized PLA: is the miscibility the only significant factor? Polymer 47(13), 4676ā€“4682 (2006)

    ArticleĀ  Google ScholarĀ 

  • Rahman Md, R., Hamdan, S., Islam Md, S., Ahmed, A.S.: Main content areaInfluence of Nanoclay/Phenol Formaldehyde Resin on Wood Polymer Nanocomposites. J. Appl. Sci. 12(14), 1481ā€“1487 (2012)

    Google ScholarĀ 

  • Ra**i, N., Jappes, J.T.W., Jeyaraj, P., Rajakarunakaran, S., Bennet, C.: Effect of montmorillonite nanoclay on temperature dependence mechanical properties of naturally woven coconut sheath/polyester composite. J. Reinf. Plast. Compos. 32(11), 811ā€“822 (2013)

    ArticleĀ  Google ScholarĀ 

  • Ray, S.S., Bousmina, M.: Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog. Mater. Sci. 50(8), 962ā€“1079 (2005)

    ArticleĀ  Google ScholarĀ 

  • Ray, S.S., Okamoto, M.: Polymer/layered silicate nano-composites: a review from preparation to processing. Prog. Polym. Sci. 28, 1539ā€“1641 (2003)

    ArticleĀ  Google ScholarĀ 

  • Rozman, H.D., Rozyanty, A.R., Musa, L., Tay, G.S.: Ultra-violet radiation-cured biofiber composites from kenaf: the effect of montmorillonite on the flexural and impact properties. J. Wood Chem. Technol. 30(2), 152ā€“163 (2010)

    ArticleĀ  Google ScholarĀ 

  • Saheb, D.N., Jog, J.P.: Natural fiber polymer composites: a review. Adv. Polym. Technol. 18(4), 351ā€“363 (1999)

    ArticleĀ  Google ScholarĀ 

  • Saiful Md, I., Hasbullah, N.A.B., Hasan, M., Talib, Z.A., Jawaid, M., Haafiz, M.K.: Physical, mechanical and biodegradable properties of kenaf/coir hybrid fiber reinforced polymer nanocomposites. Mater Today Commun. 4, 69ā€“76 (2015)

    ArticleĀ  Google ScholarĀ 

  • Santulli, C.: Review. Impact properties of glass/plant fibre hybrid laminates. J. Mater. Sci. 42, 3699ā€“3707 (2007)

    ArticleĀ  Google ScholarĀ 

  • Satyanarayana, K.G., Kulkarni, A.G., Rohatgi, P.K.: Structure and properties of coir fibres. In: Proceedings of the Indian Academy of Sciences C 4(4), 419ā€“436 (1981)

    Google ScholarĀ 

  • Saw, S.K.: Static and dynamic mechanical analysis of coir fiber/montmorillonite nanoclay-filled novolac/epoxy hybrid nanocomposites, Eco-friendly Polymer Nanocomposites. In: Volume 75 of the series Advanced Structured Materials, 2015, 137ā€“154, ISBN 978-81-322-2469-3 (2015)

    Google ScholarĀ 

  • Sim, I.N., Han, S.O.: Effect on modified nanoclay on dynamic mechanical and thermomechanical properties of natural fiber/polypropylene biocomposites. J. Adhes. Sci. Technol. 27(12), 1313ā€“1323 (2013)

    ArticleĀ  Google ScholarĀ 

  • Singh, R.P., Ngo, T.D., Hu, W., Ton-That, T.M., Denault, J.: Performance improvement of green composites using nanoclays, Report of National Research Council, Canada, from nrc-cnrc.gc.ca. Accessed 10 Feb 2016 (2009)

  • Tateyama, H., Tsunematsu, K., Kimura, K., Hirosue, H., **nai, K., Furusawa, T.: Method for producing fluorine mica, Patent n. US 5204078 A, 20 Apr 1993

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Santulli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2016 Springer Science+Business Media Singapore

About this chapter

Cite this chapter

Santulli, C. (2016). Nanoclay Based Natural Fibre Reinforced Polymer Composites: Mechanical and Thermal Properties. In: Jawaid, M., Qaiss, A., Bouhfid, R. (eds) Nanoclay Reinforced Polymer Composites. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-10-0950-1_4

Download citation

Publish with us

Policies and ethics

Navigation