Biohydrogen Production: A Focus on Dark Fermentation Technology

  • Chapter
  • First Online:
Wastewater Exploitation

Part of the book series: Springer Water ((SPWA))

  • 65 Accesses

Abstract

Hydrogen is considered a promising alternative to fossil fuels due to its clean combustion and high-energy content compared to other resources (i.e., methane or ethanol). However, hydrogen is produced from fossil-energy based processes leading to considerable greenhouse gas (GHG) emissions. One of the main solutions to hasten the energy transition is to develop efficient green processes for hydrogen production. Biological-based technologies have specifically demonstrated to have the least impact on the environment due to the low energy requirements (mild temperatures and pressures) and scarce GHG emissions. Among biological processes, Dark Fermentation (DF) appears to be the most effective and feasible technology for efficient hydrogen production at an industrial scale. DF has the advantage of valorizing a wide range of carbohydrate-rich organic waste without light energy through microbial consortia. Nonetheless, this technology deserves in-depth research since it still presents limited yields and productivity that hamper its industrial development. This book chapter aims to give an overview of DF biohydrogen production, presenting the state of the art. In this sense, DF's underlying mechanisms of biohydrogen production are detailed. The influence of operational parameters was assessed focusing on optimizing biohydrogen production and favoring the growth of biohydrogen-producing bacteria. Finally, the different roles of the microbial communities participating in the DF process are unraveled.

Jose Antonio Magdalena, Lucie Perat, Lucia Braga-Nan and Eric Trably authors contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Ramírez-Morales JE, Tapia-Venegas E, Toledo-Alarcón J, Ruiz-Filippi G (2015) Simultaneous production and separation of biohydrogen in mixed culture systems by continuous dark fermentation. Water Sci Technol 71:1271–1285. https://doi.org/10.2166/wst.2015.104

    Article  CAS  Google Scholar 

  2. Peters K, Sargent F (2023) Formate hydrogenlyase, formic acid translocation and hydrogen production: dynamic membrane biology during fermentation. Biochimica et Biophysica Acta (BBA)—Bioenergetics 1864:1–8. https://doi.org/10.1016/j.bbabio.2022.148919

  3. Sokol KP, Robinson WE, Oliveira AR et al (2019) Reversible and selective interconversion of hydrogen and carbon dioxide into formate by a semiartificial formate hydrogenlyase mimic. J Am Chem Soc 141:17498–17502. https://doi.org/10.1021/jacs.9b09575

    Article  CAS  Google Scholar 

  4. Morra S (2022) Fantastic [FeFe]-Hydrogenases and where to find them. Front Microbiol 13.https://doi.org/10.3389/fmicb.2022.853626

  5. Peters JW, Schut GJ, Boyd ES et al (2015) [FeFe]- and [NiFe]-hydrogenase diversity, mechanism, and maturation. Biochimica et Biophysica Acta—Molecular Cell Res 1853:1350–1369. https://doi.org/10.1016/j.bbamcr.2014.11.021

    Article  CAS  Google Scholar 

  6. Angenent LT, Karim K, Al-Dahhan MH et al (2004) Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485. https://doi.org/10.1016/j.tibtech.2004.07.001

    Article  CAS  Google Scholar 

  7. Guo XM, Trably E, Latrille E et al (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrogen Energy 35:10660–10673. https://doi.org/10.1016/j.ijhydene.2010.03.008

    Article  CAS  Google Scholar 

  8. Monlau F, Barakat A, Trably E et al (2013) Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit Rev Environ Sci Technol 43:260–322. https://doi.org/10.1080/10643389.2011.604258

    Article  CAS  Google Scholar 

  9. Guo X, Trably E, Latrille E et al (2014) Predictive and explicative models of fermentative hydrogen production from solid organic waste: role of butyrate and lactate pathways. Int J Hydrogen Energy 39:7476–7485. https://doi.org/10.1016/j.ijhydene.2013.08.079

    Article  CAS  Google Scholar 

  10. Lay J-J, Fan K-S, Chang J-1, Ku C-H (2003) Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. Int J Hydrogen Energy 28:1361–1367.https://doi.org/10.1016/S0360-3199(03)00027-2

  11. Dong L, Zhenhong Y, Yongming S et al (2009) Hydrogen production characteristics of the organic fraction of municipal solid wastes by anaerobic mixed culture fermentation. Int J Hydrogen Energy 34:812–820. https://doi.org/10.1016/j.ijhydene.2008.11.031

    Article  CAS  Google Scholar 

  12. Hanaki K, Matsuo T, Nagase M (1981) Mechanism of inhibition caused by long-chain fatty acids in anaerobic digestion process. Biotechnol Bioeng 23:1591–1610. https://doi.org/10.1002/bit.260230717

    Article  CAS  Google Scholar 

  13. Reyna-Gómez LM, Molina-Guerrero CE, Alfaro JM et al (2019) Effect of carbon/nitrogen ratio, temperature, and inoculum source on hydrogen production from dark codigestion of fruit peels and sewage sludge. Sustainability 11:1–13. https://doi.org/10.3390/su11072139

    Article  CAS  Google Scholar 

  14. Zhang Z, Zhang G, Li W et al (2016) Enhanced biogas production from sorghum stem by co-digestion with cow manure. Int J Hydrogen Energy 41:9153–9158. https://doi.org/10.1016/j.ijhydene.2016.02.042

    Article  CAS  Google Scholar 

  15. Yasin NHM, Mumtaz T, Hassan MA, Abd Rahman N (2013) Food waste and food processing waste for biohydrogen production: a review. J Environ Manage 130:375–385. https://doi.org/10.1016/j.jenvman.2013.09.009

    Article  CAS  Google Scholar 

  16. Bai MD, Cheng SS, Chao YC (2004) Effects of substrate components on hydrogen fermentation of multiple substrates. Water Sci Technol 50:209–216

    Article  CAS  Google Scholar 

  17. Anzola-Rojas M del P, Gonçalves da Fonseca S, Canedo da Silva C, et al (2015) The use of the carbon/nitrogen ratio and specific organic loading rate as tools for improving biohydrogen production in fixed-bed reactors. Biotechnol. Reports 5:46–54.https://doi.org/10.1016/j.btre.2014.10.010

  18. Argun H, Kargi F, Kapdan IK, Oztekin R (2008) Biohydrogen production by dark fermentation of wheat powder solution: effects of C/N and C/P ratio on hydrogen yield and formation rate. Int J Hydrogen Energy 33:1813–1819. https://doi.org/10.1016/j.ijhydene.2008.01.038

    Article  CAS  Google Scholar 

  19. Bundhoo MAZ, Mohee R, Hassan MA (2015) Effects of pre-treatment technologies on dark fermentative biohydrogen production: a review. J Environ Manage 157:20–48. https://doi.org/10.1016/j.jenvman.2015.04.006

    Article  CAS  Google Scholar 

  20. Rafieenia R, Lavagnolo MC, Pivato A (2018) Pre-treatment technologies for dark fermentative hydrogen production: current advances and future directions. Waste Manage 71:734–748. https://doi.org/10.1016/j.wasman.2017.05.024

    Article  CAS  Google Scholar 

  21. Pagliaccia P, Gallipoli A, Gianico A et al (2016) Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: impact of thermal pretreatment on hydrogen and methane production. Int J Hydrogen Energy 41:905–915. https://doi.org/10.1016/j.ijhydene.2015.10.061

    Article  CAS  Google Scholar 

  22. Cui M, Shen J (2012) Effects of acid and alkaline pretreatments on the biohydrogen production from grass by anaerobic dark fermentation. Int J Hydrogen Energy 37:1120–1124. https://doi.org/10.1016/j.ijhydene.2011.02.078

    Article  CAS  Google Scholar 

  23. Monlau F, Sambusiti C, Barakat A et al (2014) Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol Adv 32:934–951. https://doi.org/10.1016/j.biotechadv.2014.04.007

    Article  CAS  Google Scholar 

  24. Quéméneur M, Hamelin J, Barakat A et al (2012) Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int J Hydrogen Energy 37:3150–3159. https://doi.org/10.1016/j.ijhydene.2011.11.033

    Article  CAS  Google Scholar 

  25. Toledo-Alarcón J, Capson-Tojo G, Marone A et al (2018) Basics of bio-hydrogen production by dark fermentation. In: Liao Q, Chang J, Herrmann C, **a A (eds) Bioreactors for microbial biomass and energy conversion. Springer, Singapore, pp 199–220

    Chapter  Google Scholar 

  26. Khanal S, Chen, W-H, Li, L, Sung,S (2003) Biological hydrogen production: effects of pH and intermediate products. Int J Hydrogen Energy 1–9.https://doi.org/10.1016/j.ijhydene.2003.11.002

  27. Serebryakova LT, Sheremetieva ME (2006) Characterization of catalytic properties of hydrogenase isolated from the unicellular cyanobacterium Gloeocapsa alpicola CALU 743. Biochem Mosc 71:1370–1376. https://doi.org/10.1134/S0006297906120133

    Article  CAS  Google Scholar 

  28. Van Ginkel S, Logan BE (2005) Inhibition of biohydrogen production by undissociated acetic and butyric acids. Environ Sci Technol 39:9351–9356. https://doi.org/10.1021/es0510515

    Article  CAS  Google Scholar 

  29. Liu D, Zeng RJ, Angelidaki I (2008) Effects of pH and hydraulic retention time on hydrogen production versus methanogenesis during anaerobic fermentation of organic household solid waste under extreme-thermophilic temperature (70 °C). Biotechnol Bioeng 100:1108–1114. https://doi.org/10.1002/bit.21834

    Article  CAS  Google Scholar 

  30. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185. https://doi.org/10.1016/S0360-3199(03)00094-6

    Article  CAS  Google Scholar 

  31. Azman NF, Abdeshahian P, Kadier A et al (2016) Biohydrogen production from de-oiled rice bran as sustainable feedstock in fermentative process. Int J Hydrogen Energy 41:145–156. https://doi.org/10.1016/j.ijhydene.2015.10.018

    Article  CAS  Google Scholar 

  32. Koesnandar NN, Yamamoto A, Nagai S (1991) Enzymatic reduction of cystine into cysteine by cell-free extract of Clostridium thermoaceticum. J Ferment Bioeng 72:11–14. https://doi.org/10.1016/0922-338X(91)90138-7

    Article  CAS  Google Scholar 

  33. Sattar A, Arslan C, Ji C et al (2016) Quantification of temperature effect on batch production of bio-hydrogen from rice crop wastes in an anaerobic bio reactor. Int J Hydrogen Energy 41:11050–11061. https://doi.org/10.1016/j.ijhydene.2016.04.087

    Article  CAS  Google Scholar 

  34. De Gioannis G, Muntoni A, Polettini A, Pomi R (2013) A review of dark fermentative hydrogen production from biodegradable municipal waste fractions. Waste Manage 33:1345–1361. https://doi.org/10.1016/j.wasman.2013.02.019

    Article  CAS  Google Scholar 

  35. Shin H-S, Youn J-H, Kim S-H (2004) Hydrogen production from food waste in anaerobic mesophilic and thermophilic acidogenesis. Int J Hydrogen Energy 29:1355–1363. https://doi.org/10.1016/j.ijhydene.2003.09.011

    Article  CAS  Google Scholar 

  36. Ananthi V, Ramesh U, Balaji P, et al (2022) A review on the impact of various factors on biohydrogen production. Int J Hydrogen Energy 1–13.https://doi.org/10.1016/j.ijhydene.2022.08.046

  37. Hawkes FR, Hussy I, Kyazze G et al (2007) Continuous dark fermentative hydrogen production by mesophilic microflora: principles and progress. Int J Hydrogen Energy 32:172–184. https://doi.org/10.1016/j.ijhydene.2006.08.014

    Article  CAS  Google Scholar 

  38. Jung K-W, Kim D-H, Kim S-H, Shin H-S (2011) Bioreactor design for continuous dark fermentative hydrogen production. Biores Technol 102:8612–8620. https://doi.org/10.1016/j.biortech.2011.03.056

    Article  CAS  Google Scholar 

  39. Chen Y, Yin Y, Wang J (2021) Recent advance in inhibition of dark fermentative hydrogen production. Int J Hydrogen Energy 46:5053–5073. https://doi.org/10.1016/j.ijhydene.2020.11.096

    Article  CAS  Google Scholar 

  40. Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52:21–29. https://doi.org/10.2166/wst.2005.0494

    Article  CAS  Google Scholar 

  41. Ghimire A, Frunzo L, Pirozzi F et al (2015) A review on dark fermentative biohydrogen production from organic biomass : process parameters and use of by-products. Appl Energy 144:73–95. https://doi.org/10.1016/j.apenergy.2015.01.045

    Article  CAS  Google Scholar 

  42. Saady NMC (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: Unresolved challenge. Int J Hydrogen Energy 38:13172–13191. https://doi.org/10.1016/j.ijhydene.2013.07.122

    Article  CAS  Google Scholar 

  43. Chang S, Li J, Liu F, Yu Z (2012) Effect of different gas releasing methods on anaerobic fermentative hydrogen production in batch cultures. Front Environ Sci Eng 6:901–906. https://doi.org/10.1007/s11783-012-0403-1

    Article  CAS  Google Scholar 

  44. Kisielewska M, Dębowski M, Zieliński M (2015) Improvement of biohydrogen production using a reduced pressure fermentation. Bioprocess Biosyst Eng 38:1925–1933. https://doi.org/10.1007/s00449-015-1434-3

    Article  CAS  Google Scholar 

  45. Mizuno O, Dinsdale R, Hawkes FR et al (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Biores Technol 73:59–65. https://doi.org/10.1016/S0960-8524(99)00130-3

    Article  CAS  Google Scholar 

  46. Willquist K, Claassen PAM, van Niel E (2009) Evaluation of the influence of CO2 on hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrogen Energy 34:4718–4726. https://doi.org/10.1016/j.ijhydene.2009.03.056

    Article  CAS  Google Scholar 

  47. Júnior ADNF, Pages C, Latrille E et al (2020) Biogas sequestration from the headspace of a fermentative system enhances hydrogen production rate and yield. Int J Hydrogen Energy 45:11011. https://doi.org/10.1016/j.ijhydene.2020.02.064

    Article  CAS  Google Scholar 

  48. Siriwongrungson V, Zeng RJ, Angelidaki I (2007) Homoacetogenesis as the alternative pathway for H2 sink during thermophilic anaerobic degradation of butyrate under suppressed methanogenesis. Water Res 41:4204–4210. https://doi.org/10.1016/j.watres.2007.05.037

    Article  CAS  Google Scholar 

  49. Kraemer JT, Bagley DM (2006) Supersaturation of dissolved H2 and CO2 during fermentative hydrogen production with N2 Sparging. Biotechnol Lett 28:1485–1491. https://doi.org/10.1007/s10529-006-9114-7

    Article  CAS  Google Scholar 

  50. Palomo-Briones R, Razo-Flores E, Bernet N, Trably E (2017) Dark-fermentative biohydrogen pathways and microbial networks in continuous stirred tank reactors: Novel insights on their control. Appl Energy 198:77–87. https://doi.org/10.1016/j.apenergy.2017.04.051

    Article  CAS  Google Scholar 

  51. Chang J-J, Wu J-H, Wen F-S et al (2008) Molecular monitoring of microbes in a continuous hydrogen-producing system with different hydraulic retention time. Int J Hydrogen Energy 33:1579–1585. https://doi.org/10.1016/j.ijhydene.2007.09.045

    Article  CAS  Google Scholar 

  52. Ueno Y, Sasaki D, Fukui H et al (2006) Changes in bacterial community during fermentative hydrogen and acid production from organic waste by thermophilic anaerobic microflora. J Appl Microbiol 101:331–343. https://doi.org/10.1111/j.1365-2672.2006.02939.x

    Article  CAS  Google Scholar 

  53. Elbeshbishy E, Dhar BR, Nakhla G, Lee H-S (2017) A critical review on inhibition of dark biohydrogen fermentation. Renew Sustain Energy Rev 79:656–668. https://doi.org/10.1016/j.rser.2017.05.075

    Article  CAS  Google Scholar 

  54. Lin C-Y, Chang C-C, Hung C-H (2008) Fermentative hydrogen production from starch using natural mixed cultures. Int J Hydrogen Energy 33:2445–2453. https://doi.org/10.1016/j.ijhydene.2008.02.069

    Article  CAS  Google Scholar 

  55. Elreedy A, Fujii M, Tawfik A (2019) Psychrophilic hydrogen production from petrochemical wastewater via anaerobic sequencing batch reactor: techno-economic assessment and kinetic modelling. Int J Hydrogen Energy 44:5189–5202. https://doi.org/10.1016/j.ijhydene.2018.09.091

    Article  CAS  Google Scholar 

  56. Davila-Vazquez G, Cota-Navarro CB, Rosales-Colunga LM et al (2009) Continuous biohydrogen production using cheese whey: improving the hydrogen production rate. Int J Hydrogen Energy 34:4296–4304. https://doi.org/10.1016/j.ijhydene.2009.02.063

    Article  CAS  Google Scholar 

  57. Kim S-H, Han S-K, Shin H-S (2006) Effect of substrate concentration on hydrogen production and 16S rDNA-based analysis of the microbial community in a continuous fermenter. Process Biochem 41:199–207. https://doi.org/10.1016/j.procbio.2005.06.013

    Article  CAS  Google Scholar 

  58. Rincón B, Sánchez E, Raposo F et al (2008) Effect of the organic loading rate on the performance of anaerobic acidogenic fermentation of two-phase olive mill solid residue. Waste Manage 28:870–877. https://doi.org/10.1016/j.wasman.2007.02.030

    Article  CAS  Google Scholar 

  59. Palomo-Briones R, Trably E, López-Lozano NE et al (2018) Hydrogen metabolic patterns driven by Clostridium-Streptococcus community shifts in a continuous stirred tank reactor. Appl Microbiol Biotechnol 102:2465–2475. https://doi.org/10.1007/s00253-018-8737-7

    Article  CAS  Google Scholar 

  60. Show K-Y, Lee D-J, Chang J-S (2011) Bioreactor and process design for biohydrogen production. Biores Technol 102:8524–8533. https://doi.org/10.1016/j.biortech.2011.04.055

    Article  CAS  Google Scholar 

  61. Kim S-H, Han S-K, Shin H-S (2008) Optimization of continuous hydrogen fermentation of food waste as a function of solids retention time independent of hydraulic retention time. Process Biochem 43:213–218. https://doi.org/10.1016/j.procbio.2007.11.007

    Article  CAS  Google Scholar 

  62. Liu D, Liu D, Zeng RJ, Angelidaki I (2006) Hydrogen and methane production from household solid waste in the two-stage fermentation process. Water Res 40:2230–2236. https://doi.org/10.1016/j.watres.2006.03.029

    Article  CAS  Google Scholar 

  63. Carolin Christopher F, Kumar PS, Vo D-VN, Joshiba GJ (2021) A review on critical assessment of advanced bioreactor options for sustainable hydrogen production. Int J Hydrogen Energy 46:7113–7136. https://doi.org/10.1016/j.ijhydene.2020.11.244

    Article  CAS  Google Scholar 

  64. Han W, Wang B, Zhou Y et al (2012) Fermentative hydrogen production from molasses wastewater in a continuous mixed immobilized sludge reactor. Biores Technol 110:219–223. https://doi.org/10.1016/j.biortech.2012.01.057

    Article  CAS  Google Scholar 

  65. Sinharoy A, Kumar M, Pakshirajan K (2020) Chapter 14—an overview of bioreactor configurations and operational strategies for dark fermentative biohydrogen production. In: Singh L, Yousuf A, Mahapatra DM (eds) Bioreactors. Elsevier, pp 249–288

    Chapter  Google Scholar 

  66. Gavala HN, Skiadas IV, Ahring BK (2006) Biological hydrogen production in suspended and attached growth anaerobic reactor systems. Int J Hydrogen Energy 31:1164–1175. https://doi.org/10.1016/j.ijhydene.2005.09.009

    Article  CAS  Google Scholar 

  67. Kumar G, Mudhoo A, Sivagurunathan P et al (2016) Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Biores Technol 219:725–737. https://doi.org/10.1016/j.biortech.2016.08.065

    Article  CAS  Google Scholar 

  68. Magrini FE, de Almeida GM, da Maia SD et al (2021) Effect of different heat treatments of inoculum on the production of hydrogen and volatile fatty acids by dark fermentation of sugarcane vinasse. Biomass Conv Bioref 11:2443–2456. https://doi.org/10.1007/s13399-020-00687-0

    Article  CAS  Google Scholar 

  69. Luo L, Sriram S, Johnravindar D et al (2022) Effect of inoculum pretreatment on the microbial and metabolic dynamics of food waste dark fermentation. Biores Technol 358:1–9. https://doi.org/10.1016/j.biortech.2022.127404

    Article  CAS  Google Scholar 

  70. Luo G, Karakashev D, **e L et al (2011) Long-term effect of inoculum pretreatment on fermentative hydrogen production by repeated batch cultivations: homoacetogenesis and methanogenesis as competitors to hydrogen production. Biotechnol Bioeng 108:1816–1827. https://doi.org/10.1002/bit.23122

    Article  CAS  Google Scholar 

  71. Cabrol L, Marone A, Tapia-Venegas E et al (2017) Microbial ecology of fermentative hydrogen producing bioprocesses: useful insights for driving the ecosystem function. FEMS Microbiol Rev 41:158–181. https://doi.org/10.1093/femsre/fuw043

    Article  CAS  Google Scholar 

  72. Cao Y, Liu H, Liu W et al (2022) Debottlenecking the biological hydrogen production pathway of dark fermentation: insight into the impact of strain improvement. Microb Cell Fact 21:1–16. https://doi.org/10.1186/s12934-022-01893-3

    Article  CAS  Google Scholar 

  73. Ergal İ, Fuchs W, Hasibar B et al (2018) The physiology and biotechnology of dark fermentative biohydrogen production. Biotechnol Adv 36:2165–2186. https://doi.org/10.1016/j.biotechadv.2018.10.005

    Article  CAS  Google Scholar 

  74. Hovorukha V, Havryliuk O, Gladka G et al (2021) Hydrogen dark fermentation for degradation of solid and liquid food waste. Energies 14:1–12. https://doi.org/10.3390/en14071831

    Article  CAS  Google Scholar 

  75. Castelló E, Nunes Ferraz-Junior AD, Andreani C et al (2020) Stability problems in the hydrogen production by dark fermentation: possible causes and solutions. Renew Sustain Energy Rev 119:1–16. https://doi.org/10.1016/j.rser.2019.109602

    Article  CAS  Google Scholar 

  76. Tapia-Venegas E, Ramirez-Morales JE, Silva-Illanes F et al (2015) Biohydrogen production by dark fermentation: scaling-up and technologies integration for a sustainable system. Rev Environ Sci Biotechnol 14:761–785. https://doi.org/10.1007/s11157-015-9383-5

    Article  CAS  Google Scholar 

  77. Wang Q, Li H, Feng K, Liu J (2020) Oriented fermentation of food waste towards high-value products: a review. Energies 13:1–29. https://doi.org/10.3390/en13215638

    Article  CAS  Google Scholar 

  78. Madigan MT, Martinko JM, Bender KS, et al (2014) In: Brock biology of microorganisms, 14th edn. Pearson

    Google Scholar 

  79. Ferreira TB, Rego GC, Ramos LR et al (2018) Selection of metabolic pathways for continuous hydrogen production under thermophilic and mesophilic temperature conditions in anaerobic fluidized bed reactors. Int J Hydrogen Energy 43:18908–18917. https://doi.org/10.1016/j.ijhydene.2018.08.177

    Article  CAS  Google Scholar 

  80. Wong YM, Wu TY, Juan JC (2014) A review of sustainable hydrogen production using seed sludge via dark fermentation. Renew Sustain Energy Rev 34:471–482. https://doi.org/10.1016/j.rser.2014.03.008

    Article  CAS  Google Scholar 

  81. Eriksen NT, Riis ML, Holm NK, Iversen N (2011) H2 synthesis from pentoses and biomass in Thermotoga spp. Biotech Lett 33:293–300. https://doi.org/10.1007/s10529-010-0439-x

    Article  CAS  Google Scholar 

  82. Chou C-J, Shockley KR, Conners SB et al (2007) Impact of substrate glycoside linkage and elemental sulfur on bioenergetics of and hydrogen production by the hyperthermophilic archaeon Pyrococcus furiosus. Appl Environ Microbiol 73:6842–6853. https://doi.org/10.1128/AEM.00597-07

    Article  CAS  Google Scholar 

  83. Pawar SS, Van Niel EWJ, Niel EWJV (2013) Thermophilic biohydrogen production: how far are we? Appl Microbiol Biotechnol 97:7999–8009. https://doi.org/10.1007/s00253-013-5141-1

    Article  CAS  Google Scholar 

  84. Wang J, Yin Y (2021) Clostridium species for fermentative hydrogen production: an overview. Int J Hydrogen Energy 46:34599–34625. https://doi.org/10.1016/j.ijhydene.2021.08.052

    Article  CAS  Google Scholar 

  85. Xue C, Cheng C (2019) Chapter two—butanol production by Clostridium. In: Li Y, Ge X (eds) Advances in bioenergy. Elsevier, pp 35–77

    Google Scholar 

  86. Ferraz Júnior ADN, Etchebehere C, Zaiat M (2015) Highs organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Biores Technol 186:81–88. https://doi.org/10.1016/j.biortech.2015.03.035

    Article  CAS  Google Scholar 

  87. Mota VT, Ferraz Júnior ADN, Trably E, Zaiat M (2018) Biohydrogen production at pH below 3.0: Is it possible? Water Res 128:350–361. https://doi.org/10.1016/j.watres.2017.10.060

    Article  CAS  Google Scholar 

  88. Ren N, **ng D, Rittmann BE et al (2007) Microbial community structure of ethanol type fermentation in bio-hydrogen production. Environ Microbiol 9:1112–1125. https://doi.org/10.1111/j.1462-2920.2006.01234.x

    Article  CAS  Google Scholar 

  89. Etchebehere C, Castelló E, Wenzel J et al (2016) Microbial communities from 20 different hydrogen-producing reactors studied by 454 pyrosequencing. Appl Microbiol Biotechnol 100:3371–3384. https://doi.org/10.1007/s00253-016-7325-y

    Article  CAS  Google Scholar 

  90. Ohnishi A, Hasegawa Y, Fujimoto N, Suzuki M (2021) Biohydrogen production by Mixed Culture of Megasphaera elsdenii with lactic acid bacteria as lactate-driven dark fermentation. Biores Technol 343:1–9. https://doi.org/10.1016/j.biortech.2021.126076

    Article  CAS  Google Scholar 

  91. Oh Y-K, Kim H-J, Park S et al (2008) Metabolic-flux analysis of hydrogen production pathway in Citrobacter amalonaticus Y19. Int J Hydrogen Energy 33:1471–1482. https://doi.org/10.1016/j.ijhydene.2007.09.032

    Article  CAS  Google Scholar 

  92. Hamilton C, Hiligsmann S, Beckers L et al (2010) Optimization of culture conditions for biological hydrogen production by Citrobacter freundii CWBI952 in batch, sequenced-batch and semicontinuous operating mode. Int J Hydrogen Energy 35:1089–1098. https://doi.org/10.1016/j.ijhydene.2009.10.073

    Article  CAS  Google Scholar 

  93. Łukajtis R, Holowacz I, Kucharska K et al (2018) Hydrogen production from biomass using dark fermentation. Renew Sustain Energy Rev 91:665–694. https://doi.org/10.1016/j.rser.2018.04.043

    Article  CAS  Google Scholar 

  94. Kumar P, Patel SKS, Lee J-K, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. https://doi.org/10.1016/j.biotechadv.2013.08.007

    Article  CAS  Google Scholar 

  95. Mugnai G, Borruso L, Mimmo T et al (2021) Dynamics of bacterial communities and substrate conversion during olive-mill waste dark fermentation: prediction of the metabolic routes for hydrogen production. Biores Technol 319:1–12. https://doi.org/10.1016/j.biortech.2020.124157

    Article  CAS  Google Scholar 

  96. Hung C-H, Chang Y-T, Chang Y-J (2011) Roles of microorganisms other than clostridium and enterobacter in anaerobic fermentative biohydrogen production systems–a review. Bioresour Technol 102:8437–8444. https://doi.org/10.1016/j.biortech.2011.02.084

    Article  CAS  Google Scholar 

  97. Sivagurunathan P, Sen B, Lin CY (2014) Overcoming propionic acid inhibition of hydrogen fermentation by temperature shift strategy. Int J Hydrogen Energy 39:19232–19241. https://doi.org/10.1016/j.ijhydene.2014.03.260

    Article  CAS  Google Scholar 

  98. Zhou M, Yan B, Wong JWC, Zhang Y (2018) Enhanced volatile fatty acids production from anaerobic fermentation of food waste: a mini-review focusing on acidogenic metabolic pathways. Biores Technol 248:68–78. https://doi.org/10.1016/j.biortech.2017.06.121

    Article  CAS  Google Scholar 

  99. Dessì P, Porca E, Frunzo L et al (2018) Inoculum pretreatment differentially affects the active microbial community performing mesophilic and thermophilic dark fermentation of xylose. Int J Hydrogen Energy 43:9233–9245. https://doi.org/10.1016/j.ijhydene.2018.03.117

    Article  CAS  Google Scholar 

  100. Chatellard L, Trably E, Carrère H (2016) The type of carbohydrates specifically selects microbial community structures and fermentation patterns. Biores Technol 221:541–549. https://doi.org/10.1016/j.biortech.2016.09.084

    Article  CAS  Google Scholar 

  101. Sikora A, Błaszczyk M, Jurkowski M, et al (2013) Lactic acid bacteria in hydrogen-producing consortia: on purpose or by coincidence? In: Lactic acid bacteria—R & D for Food, health and livestock purposes. IntechOpen, pp 487–514

    Google Scholar 

  102. Chang J-J, Chou C-H, Ho C-Y et al (2008) Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production. Int J Hydrogen Energy 33:5137–5146. https://doi.org/10.1016/j.ijhydene.2008.05.021

    Article  CAS  Google Scholar 

  103. Li SL, Lin JS, Wang YH et al (2011) Strategy of controlling the volumetric loading rate to promote hydrogen-production performance in a mesophilic-kitchen-waste fermentor and the microbial ecology analyses. Biores Technol 102:8682–8687. https://doi.org/10.1016/j.biortech.2011.02.067

    Article  CAS  Google Scholar 

  104. García-Depraect O, Castro-Muñoz R, Muñoz R, et al (2021) A review on the factors influencing biohydrogen production from lactate: the key to unlocking enhanced dark fermentative processes. Bioresource Technol 324:124595. https://doi.org/10.1016/j.biortech.2020.124595

  105. Detman A, Mielecki D, Chojnacka A et al (2019) Cell factories converting lactate and acetate to butyrate: Clostridium butyricum and microbial communities from dark fermentation bioreactors. Microb Cell Fact 18:36. https://doi.org/10.1186/s12934-019-1085-1

    Article  Google Scholar 

  106. García-Depraect O, Muñoz R, Rodríguez E et al (2021) Microbial ecology of a lactate-driven dark fermentation process producing hydrogen under carbohydrate-limiting conditions. Int J Hydrogen Energy 46:11284–11296. https://doi.org/10.1016/j.ijhydene.2020.08.209

    Article  CAS  Google Scholar 

  107. García-Depraect O, Valdez-Vázquez I, Rene ER et al (2019) Lactate- and acetate-based biohydrogen production through dark co-fermentation of tequila vinasse and nixtamalization wastewater: metabolic and microbial community dynamics. Biores Technol 282:236–244. https://doi.org/10.1016/j.biortech.2019.02.100

    Article  CAS  Google Scholar 

  108. Lin C, Chen H (2006) Sulfate effect on fermentative hydrogen production using anaerobic mixed microflora. Int J Hydrogen Energy 31:953–960. https://doi.org/10.1016/j.ijhydene.2005.07.009

    Article  CAS  Google Scholar 

  109. Castelló E, García y Santos C, Iglesias T, et al (2009) Feasibility of biohydrogen production from cheese whey using a UASB reactor: links between microbial community and reactor performance. Int J Hydrogen Energy 34:5674–5682.https://doi.org/10.1016/j.ijhydene.2009.05.060

  110. Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190. https://doi.org/10.1007/s11157-008-9131-1

    Article  CAS  Google Scholar 

  111. Schuchmann K, Müller V (2016) Energetics and application of heterotrophy in acetogenic bacteria. Appl Environ Microbiol 82:4056–4069. https://doi.org/10.1128/AEM.00882-16

    Article  CAS  Google Scholar 

  112. Huang Y, Zong W, Yan X et al (2010) Succession of the bacterial community and dynamics of hydrogen producers in a hydrogen-producing bioreactor. Appl Environ Microbiol 76:3387–3390. https://doi.org/10.1128/AEM.02444-09

    Article  CAS  Google Scholar 

  113. Westerholm M, Dolfing J, Schnürer A (2019) Growth characteristics and thermodynamics of syntrophic acetate oxidizers. Environ Sci Technol 53:5512–5520. https://doi.org/10.1021/acs.est.9b00288

    Article  CAS  Google Scholar 

  114. Dinamarca C, Gañán M, Liu J, Bakke R (2011) H2 consumption by anaerobic non-methanogenic mixed cultures. Water Sci Technol 63:1582–1589. https://doi.org/10.2166/wst.2011.214

    Article  CAS  Google Scholar 

  115. Arooj MF, Han SK, Kim SH et al (2008) Effect of HRT on ASBR converting starch into biological hydrogen. Int J Hydrogen Energy 33:6509–6514. https://doi.org/10.1016/j.ijhydene.2008.06.077

    Article  CAS  Google Scholar 

  116. Arooj MF, Han SK, Kim SH et al (2008) Continuous biohydrogen production in a CSTR using starch as a substrate. Int J Hydrogen Energy 33:3289–3294. https://doi.org/10.1016/j.ijhydene.2008.04.022

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jose Antonio Magdalena would like to thank the Complutense University of Madrid for the financing of his contract at LBE-INRAE (France), with funds from the Ministry of Universities for the requalification of the Spanish University System for 2021–2023 (Modality 1. Margarita Salas), coming from the European Union-Next generation EU funding. This work was carried out in the framework of the HyDS Project (part of the ERDF-REACT-EU- H2VERT project). Lucie Perat would like to thank ENGIE Lab CRIGEN and the Occitanie region (in the context of Défi Clé Hydrogène projects) for the funding of her PhD in LBE-INRAE (France) in the MELINBIOH project.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jose Antonio Magdalena or Eric Trably .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Magdalena, J.A., Perat, L., Braga-Nan, L., Trably, E. (2024). Biohydrogen Production: A Focus on Dark Fermentation Technology. In: Alcaraz Gonzalez, V., Flores Estrella, R.A., Haarstrick, A., Gonzalez Alvarez, V. (eds) Wastewater Exploitation. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-031-57735-2_5

Download citation

Publish with us

Policies and ethics

Navigation