Log in

Microbial communities from 20 different hydrogen-producing reactors studied by 454 pyrosequencing

  • Bioenergy and biofuels
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To provide new insight into the dark fermentation process, a multi-lateral study was performed to study the microbiology of 20 different lab-scale bioreactors operated in four different countries (Brazil, Chile, Mexico, and Uruguay). Samples (29) were collected from bioreactors with different configurations, operation conditions, and performances. The microbial communities were analyzed using 16S rRNA genes 454 pyrosequencing. The results showed notably uneven communities with a high predominance of a particular genus. The phylum Firmicutes predominated in most of the samples, but the phyla Thermotogae or Proteobacteria dominated in a few samples. Genera from three physiological groups were detected: high-yield hydrogen producers (Clostridium, Kosmotoga, Enterobacter), fermenters with low-hydrogen yield (mostly from Veillonelaceae), and competitors (Lactobacillus). Inocula, reactor configurations, and substrates influence the microbial communities. This is the first joint effort that evaluates hydrogen-producing reactors and operational conditions from different countries and contributes to understand the dark fermentation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig 4
Fig. 5

Similar content being viewed by others

References

  • Akutsu Y, Lee D-Y, Li YY, Noike T (2009) Hydrogen production potentials and fermentative characteristics of various substrates with different heat-pretreated natural microflora. Int J Hydrog Energy 34:5365–5372

    Article  CAS  Google Scholar 

  • Bhandari V, Gupta RS (2014) The phylum Thermotogae. Other Major Lineages of Bacteria and the Archaea, The Prokaryotes, Volume 9783642389542 pp. 989–1015

  • Castelló E, García y Santos C, Iglesias T, Paolino G, Wenzel J, Borzacconi L, Etchebehere C (2009) Feasibility of biohydrogen production from cheese whey using a UASB reactor: links between microbial community and reactor performance. Int J Hydrog Energy 34:5674–5682. doi:10.1016/j.ijhydene.2009.05.060

    Article  Google Scholar 

  • Castelló E, Perna V, Wenzel J, Borzacconi L, Etchebehere C (2011) Microbial community composition and reactor performance during hydrogen production in a UASB reactor fed with raw cheese whey inoculated with compost. Water Sci Technol 64:2265–2273. doi:10.2166/wst.2011.706

    Article  PubMed  Google Scholar 

  • Caporaso G, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello E, Fierer N, Pena A, Goodrich J, Gordon J, Huttley YG, Kelley S, Knights D, Koenig J, Ley R, Lozupone C, Mc Donald D, Muegge B, Pirrung M, Reeder J, Sevinsky J, Turnbaugh P, Walters W, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. PNAS 108:4516–4522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrillo-Reyes J, Celis LB, Alatriste-Mondragón F, Montoya L, Razo-Flores E (2014) Strategies to cope with methanogens in hydrogen producing UASB reactors: community dynamics. Int J Hydrog Energy 39:11423–11432

    Article  CAS  Google Scholar 

  • Chandrasekhar K, Lee Y-J, Lee D-W (2015) Biohydrogen production: strategies to improve process efficiency through microbial routes. Int J Mol Sci 16(4):8266–8293. doi:10.3390/ijms16048266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, Li J, Liu F (2011) Evaluation of different pretreatment methods for preparing hydrogen-producing seed inocula from waste activated sludge. Renew Energy 36(5):1517–1522

    Article  CAS  Google Scholar 

  • Dávila-Vázquez G, Cota-Navarro CB, Rosales-Colunga LM, de León-Rodríguez A, Razo-Flores E (2009) Continuous biohydrogen production using cheese whey: improving the hydrogen production rate. Int J Hydrog Energy 34:4296–4304

    Article  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Vrieze J, Saunders AM, He Y, Fang J, Nielsen PH, Verstraete W, Boon N (2015) Ammonia and temperature determine potential clustering in the anaerobic digestion microbiome. Water Res 75:312–323

    Article  PubMed  Google Scholar 

  • Demirel B, Scherer P (2008) The roles of acetotrophic and hydrogenotrophic methanogens during anaerobic conversion of biomass to methane: a review. Rev Environ Sci Biotechnol 7:173–190

    Article  CAS  Google Scholar 

  • DiPippo JL, Nesbø CL, Dahle H, Doolittle WF, Birkland N, Noll KM (2009) Kosmotoga olearia gen. nov., sp. nov., a thermophilic, anaerobic heterotroph isolated from an oil production fluid. Int J Syst Evol Microbiol 59:2991–3000

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    Article  CAS  PubMed  Google Scholar 

  • Ferraz Júnior ADN, Etchebehere C, Zaiat M (2015) High organic loading rate on thermophilic hydrogen production and metagenomic study at an anaerobic packed-bed reactor treating a residual liquid stream of a Brazilian biorefinery. Bioresour Technol 186:81–88

    Article  PubMed  Google Scholar 

  • Gottschalk G (1986) Bacterial metabolism, 2nd edn. Springer, New York

    Book  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software sackage for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hao L-P, Lu F, Li L, Shao L-M, He P-J (2012) Shift of pathways during initiation of thermophilic methanogenesis at different initial pH. Bioresour Technol. doi:10.1016/j.biortech.2011.12.072

    Google Scholar 

  • Hernández-Mendoza CE, Moreno-Andrade I, Buitrón G (2014a) Suppression of methanogenic activity in anaerobic granular biomass for hydrogen production. J Chem Technol Biotechnol 89(1):143–149

    Article  Google Scholar 

  • Hernández-Mendoza CE, Moreno-Andrade I, Buitrón G (2014b) Comparison of hydrogen-producing bacterial communities adapted in continuous and discontinuous reactors. Int J Hydrogen Energ 39:14234–14239

    Article  Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (eds) (1994) Bergey’s manual of determinative bacteriology, 9th edn. Williams & Wilkins, Baltimore (MD)

    Google Scholar 

  • Hu C, Giannis A, Chen C, Wang J (2014) Evaluation of hydrogen producing cultures using pretreated food waste. Int Jour Hydrogen Energy 39:19337–19342

    Article  CAS  Google Scholar 

  • Hung C-H, Chang Y-T, Chang Y-J (2011) Roles of microorganisms other than Clostridium and Enterobacter in anaerobic fermentative biohydrogen production systems—a review. Bioresour Technol 102:8437–8444

    Article  CAS  PubMed  Google Scholar 

  • Kraemer JT, Bagley DM (2007) Improving the yield from fermentative hydrogen production. Biotechnol Lett 29:685–695

    Article  CAS  PubMed  Google Scholar 

  • Koskinen PEP, Kaksonen AH, Puhakka JA (2007) The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidized-bed bioreactor. Biotechnol Bioeng 97:742–758

    Article  CAS  PubMed  Google Scholar 

  • Laothanachareon T, Kanchanasuta S, Mhuanthong W, Phalakornkule C, Pisutpaisal N, Champreda V (2014) Analysis of microbial community adaptation in mesophilic hydrogen fermentation from food waste by tagged 16S rRNA gene pyrosequencing. J Environ Manag 144:143–151

    Article  CAS  Google Scholar 

  • Lee D-Y, Xu K-Q, Kobayashi T, Li Y-Y, Inamori Y (2014) Effect of organic loading rate on continuous hydrogen production from food waste in submerged anaerobic membrane bioreactor. Int J Hydrog Energy 39:16863–16871

  • L’Haridon S, Jiang L, Alain K, Chalopin M, Rouxel O, Beauverger M, Xu H, Shao Z, Jebbar M (2014) Kosmotoga pacifica sp. nov., a thermophilic chemoorganoheterotrophic bacterium isolated from an East Pacific hydrothermal sediment. Extremophiles 18:81–88

    Article  PubMed  Google Scholar 

  • Li S-L, Whang L-M, Chao Y-C, Wang Y-H, Wang Y-F, Hsiao C-J, Tseng I-C, Bai M-D, Cheng S-S (2010) Effects of hydraulic retention time on anaerobic hydrogenation performance and microbial ecology of bioreactors fed with glucose–peptone and starch–peptone. Int J Hydrog Energy 35:61–70

    Article  CAS  Google Scholar 

  • Lu Y, Zhao H, Zhanga C, **ng X-H (2016) Insights into the global regulation of anaerobic metabolism for improved biohydrogen production. Biores Technol 200:35–41

    Article  CAS  Google Scholar 

  • Luo Y, Zhang H, Salerno M, Logan BE, Bruns MA (2008) Organic loading rates affect composition of soil-derived bacterial communities during continuous, fermentative biohydrogen production. Int J Hydrogen Energy 33:6566–6576.

  • Mohammadi PS, Ibrahim MS, Mohamad Annuar SL (2011) Effects of different pretreatment methods on anaerobic mixed microflora for hydrogen production and COD reduction from palm oil mill effluent. J Clean Prod 19:1654–1658

    Article  CAS  Google Scholar 

  • Moreno-Andrade I, Carrillo-Reyes J, Santiago SG, Bujanos-Adame MC (2015) Biohydrogen from food waste in a discontinuous process: Effect of HRT and microbial community analysis. Int J Hydrogen Energy In Press. doi:10.1016/j.ijhydene.2015.04.084

    Google Scholar 

  • Morra S, Arizzi M, Allegra P, La Licata B, Sagnelli F, Zitella P, Gilardi G, Valetti F (2014) Expression of different types of [FeFe]-hydrogenase genes in bacteria isolated from a population of a bio-hydrogen pilot-scale plant. Int J Hydrog Energy 39:9018–9027

    Article  CAS  Google Scholar 

  • Noike T, Takabatake H, Mizuno O, Ohba M (2002) Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int J Hydrog Energy 27:1367–1371

    Article  CAS  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MH, Wagner H (2012) Vegan community ecology package. R package version 2.0–5, http://CRAN.R project.org/package=vegan

  • Patel G, Sprott G, Fein J (1990) Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic, moderately acidiphilic methanogen. Int J Syst Bacteriol 40(1):12–18

    Article  Google Scholar 

  • Penteado ED, Lazaro CZ, Sakamoto IK, Zaiat M (2013) Influence of seed sludge and pretreatment method on hydrogen production in packed-bed anaerobic reactors. Int J Hydrog Energy 38:6137–6145

    Article  CAS  Google Scholar 

  • Pervin HM, Dennis PG, Lim HJ, Tyson GW, Batstone DJ, Bond PL (2013) Drivers of microbial community composition in mesophilic and thermophilic temperature-phased anaerobic digestion pre-treatment reactors. Water Res 47:7098–7108. doi:10.1016/j.watres.2013.07.053

    Article  CAS  PubMed  Google Scholar 

  • Quéméneur M, Hamelin J, Benomar S, Guidici-Orticoni M-T, Latrille E, Steyer J-P, Trably E (2011) Changes in hydrogenase genetic diversity and proteomic patterns in mixed-culture dark fermentation of mono-, di- and tri-saccharides. Int J Hydrog Energy 36:11654–11665

    Article  Google Scholar 

  • Ren N-Q, Guo W-Q, Wang X-J, **ang W-S, Liu B-F, Wang X-Z, Ding J, Chen Z-B (2008) Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. Int J Hydrog Energy 33(16):4318–4324

    Article  CAS  Google Scholar 

  • Rosa PRF, Santos SC, Sakamoto IK, Varesche MBA, Silva EL (2014a) Hydrogen production from cheese whey with ethanol-type fermentation: effect of hydraulic retention time on the microbial community composition. Bioresour Technol 161:10–19. doi:10.1016/j.biortech.2014.03.020

    Article  CAS  PubMed  Google Scholar 

  • Rosa PRF, Santos SC, Sakamoto IK, Varesche MBA, Silva EL (2014b) The effects of seed sludge and hydraulic retention time on the production of hydrogen from a cassava processing wastewater and glucose mixture in an anaerobic fluidized bed reactor. Intl J Hydrogen Energy 39(25):13118–13127

    Article  CAS  Google Scholar 

  • Saady NMC (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrog Energy 38(38):13172–13191

    Article  CAS  Google Scholar 

  • Si B, Liu Z, Zhang Y, Li J, **ng X-H, Li B, Duan N, Lu H (2015) Effect of reaction mode on biohydrogen production and its microbial diversity. Int J Hydrog Energy 40:3191–3200

    Article  CAS  Google Scholar 

  • Schleifer K-H (2009) Phylum XIII. Firmicutes Gibbons and Murray 1978, 5. Bergey’s manual of systematic bacteriology, Ed. Vos P, et al. (Springer, New York), 19–1317

  • Silva AJ, Hirasawa JS, Varesche MB, Foresti E, Zaiat M (2006) Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea. Anaerobe 12:93–98

    Article  CAS  PubMed  Google Scholar 

  • Stamatelatou K, Antonopoulou G, Tremouli A, Lyberatos G (2011) Production of gaseous biofuels and electricity from cheese whey. Ind Eng Chem Res 50:639–644

    Article  CAS  Google Scholar 

  • Steinberg LM, Regan JM (2008) Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl Environ Microbiol 74(21):6663–6671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tolvanen K, Karp MT (2011) Molecular methods for characterizing mixed microbial communities in hydrogen-fermenting systems. Int J Hydrog Energy 36:5280–5288

    Article  CAS  Google Scholar 

  • Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy 34:799–811

    Article  CAS  Google Scholar 

  • Werner JJ, Knights D, Garcia ML, Scalfone NB, Smith S, Yarasheski K, Cummings TA, Beers AR, Knight R, Angenent LT (2011) Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proc Natl Acad Sci U S A 108:4158–4163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Won SG, Baldwin SA, Lau AK, Rezadehbashi M (2013) Optimal operational conditions for biohydrogen production from sugar refinery wastewater in an ASBR. Int. J. Hydrogen Energy 38:13895–13906

    Article  CAS  Google Scholar 

  • Wu SY, Hung CH, Lin CY, Lin PJ, Lee KS, Lin CN, Chang FY, Chang JS (2008) HRT-dependent hydrogen production and bacterial community structure of mixed anaerobic microflora in suspended, granular and immobilized sludge systems using glucose as the carbon substrate. Int J Hydrog Energy 33:1542–1549

    Article  CAS  Google Scholar 

  • Yang Y, Yu K, **a Y, Lau FT, Tang DT, Fung WC, Fang HH, Zhang T (2014) Metagenomic analysis of sludge from full-scale anaerobic digesters operated in municipal wastewater treatment plants. Appl Microbiol Biotechno 98:5709–5718

    Article  CAS  Google Scholar 

  • Yokoi H, Tokushige T, Hirose J, Hayashi S, Takasaki Y (1998) H2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter aerogenes. Biotechnol Lett 20:143–147

    Article  CAS  Google Scholar 

  • Zaiat M, Anzola-Rojasa M, De Wevera H (2016) Improvement of hydrogen production via ethanol-type fermentation in an anaerobic down-flow structured bed reactor. Bioresour Technol. doi:10.1016/j.biortech.2015.11.084 In press

    PubMed  Google Scholar 

  • Zakrzewski M, Goesmann A, Jaenicke S, Jünemann S, Eikmeyer F, Szczepanowski R, Al-Soud WA, Sørensen S, Pühler A, Schlüter A (2012) Profiling of the metabolically active community from a production-scale biogas plant by means of high-throughput metatranscriptome sequencing. J Biotechnol 158(4):248–258

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z-P, Show K-Y, Tay J-H, Liang DT, Lee D-J, Jiang W-J (2006) Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 41:2118–2123

    Article  CAS  Google Scholar 

  • Zhang T, Shao M-F, L Y (2012) 454 Pyrosequencing reveals bacterial diversity of activated sludge from 14 sewage treatment plants. ISME J 6(6):1137–1147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao X, **ng D, Fu N, Liu B, Ren N (2011) Hydrogen production by the newly isolated Clostridium beijerinckii RZF-1108. Bioresour Technol 102:8432–8436

    Article  CAS  PubMed  Google Scholar 

  • Zhou X, Ren N (2007) Acid resistance of methanogenic bacteria in a two-stage anaerobic process treating high concentration methanol wastewater. Front Environ Sci Eng China 1:53–56

    Article  Google Scholar 

Download references

Acknowledgments

This work was performed in the frame of the Bio-hydrogen Latin America network. The following projects and institutions funded this work: ANII project FSE 6437 and FSE 102488 (Uruguay), SEP-CONACYT 240087 (UNAM, México), PAPIIT project IT 100113 (DGAPA-UNAM, México), SEP-CONACYT 132483 (IPICYT, México), KBBE-7PM GRAIL 613667 (Chile). L.F. and J.W. are funded by ANII-Uruguay grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudia Etchebehere.

Ethics declarations

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(PDF 189 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etchebehere, C., Castelló, E., Wenzel, J. et al. Microbial communities from 20 different hydrogen-producing reactors studied by 454 pyrosequencing. Appl Microbiol Biotechnol 100, 3371–3384 (2016). https://doi.org/10.1007/s00253-016-7325-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-016-7325-y

Keywords

Navigation