Log in

Improvement of biohydrogen production using a reduced pressure fermentation

  • Original Paper
  • Published:
Bioprocess and Biosystems Engineering Aims and scope Submit manuscript

Abstract

This study investigated the effect of reduced pressure on biohydrogen production in an upflow anaerobic sludge blanket (UASB) reactor from whey permeate. The results showed that the reduced pressure fermentation was more effective in enhancing biohydrogen production than dark fermentative hydrogen production at atmospheric pressure. Mesophilic fermentative biohydrogen production was investigated at a constant hydraulic retention time (HRT) of 24 h and increasing organic loading rates (OLRs) of 20, 25, 30, 35 kg COD/m3 day. The reduced pressure fermentation was successfully operated at all OLRs tested. The maximum proportion of hydrogen in biogas of 47.7 %, volumetric hydrogen production rate (VHPR) of 7.10 L H2/day and hydrogen yield of 4.55 mol H2/kg COD removed occurred at the highest OLR. Increase in OLR affected the hydrogen production in UASB reactor exploited at atmospheric pressure. The reduced pressure process was able to remarkably improve the biohydrogen performance at high OLRs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang XF, Zhang SY, Hu ZY, Yu G, Pei CH, Sa RN (2012) Identification of connection units with high GHG emissions for low-carbon product structure design. J Clean Prod 27:118–125

    Article  Google Scholar 

  2. Kim DH, Kim MS (2013) Development of a novel three-stage fermentation system converting food waste to hydrogen and methane. Bioresour Technol 127:267–274

    Article  CAS  Google Scholar 

  3. Keskin T, Abo-Hashesh M, Hallenbeck PC (2011) Photofermentative hydrogen production from wastes. Bioresour Technol 102:8557–8568

    Article  CAS  Google Scholar 

  4. Guo XM, Trably E, Latrille E, Carrère H, Steyer JP (2010) Hydrogen production from agricultural waste by dark fermentation: a review. Int J Hydrog Energy 35:10660–10673

    Article  CAS  Google Scholar 

  5. Chu CF, Xu KQ, Li YY, Inamori Y (2012) Hydrogen and methane potential based on the nature of food waste materials in a two-stage thermophilic fermentation process. Int J Hydrog Energy 37:10611–10618

    Article  CAS  Google Scholar 

  6. Lee KS, Tseng TS, Liu YW, Hsiao YD (2012) Enhancing the performance of dark fermentative hydrogen production using a reduced pressure fermentation strategy. Int J Hydrog Energy 37:15556–15562

    Article  CAS  Google Scholar 

  7. Kim DH, Kim SH, Kim HW, Kim MS, Shin HS (2011) Sewage sludge addition to food waste synergistically enhances hydrogen fermentation performance. Bioresour Technol 102:8501–8506

    Article  CAS  Google Scholar 

  8. Saady NMC (2013) Homoacetogenesis during hydrogen production by mixed cultures dark fermentation: unresolved challenge. Int J Hydrog Energy 38:13172–13191

    Article  CAS  Google Scholar 

  9. Dinamarca C, Bakke R (2012) Simultaneous hydrogen production and consumption in anaerobic mixed culture fermentation. Int J Energy Environ 3:323–332

    CAS  Google Scholar 

  10. Dinamarca C, Bakke R (2009) Apparent hydrogen consumption in acid reactors: observations and implications. Wat Sci Technol 59:1441–1447

    Article  CAS  Google Scholar 

  11. Nie YQ, Liu H, Du GC, Chen J (2009) Acetate production by a coupled syntrophic acetogenesis with homoacetogenesis process: effect of sludge inoculum concentration. Environ Technol 30:141–150

    Article  CAS  Google Scholar 

  12. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185

    Article  CAS  Google Scholar 

  13. Sonnleitner A, Peintner C, Wukovits W, Friedl A, Schnitzhofer W (2012) Process investigations of extreme thermophilic fermentations for hydrogen production: effect of bubble induction and reduced pressure. Bioresour Technol 118:170–176

    Article  CAS  Google Scholar 

  14. Zeidan AA, Van Niel EWJ (2010) A quantitative analysis of hydrogen production efficiency of the extreme thermophile Caldicellulosiruptor owensensis OLT. Int J Hydrog Energy 35:1128–1137

    Article  CAS  Google Scholar 

  15. Kim DH, Han SK, Kim SH, Shin HS (2006) Effect of gas sparging on continuous fermentative hydrogen production. Int J Hydrog Energy 31:2158–2169

    Article  CAS  Google Scholar 

  16. Mizuno O, Dinsdale R, Hawkes FR, Hawkes DL, Noike T (2000) Enhancement of hydrogen production from glucose by nitrogen gas sparging. Bioresour Technol 73:59–65

    Article  CAS  Google Scholar 

  17. Nguyen TAD, Han SJ, Kim JP, Kim MS, Sim SJ (2010) Hydrogen production of the hyperthermophilic eubacterium, Thermotoga neapolitana under N2 sparging condition. Bioresour Technol 101:38–41

    Article  Google Scholar 

  18. Ren NQ, Gong ML (2006) Acclimation strategy of a biohydrogen producing population in a continuous-flow reactor with carbohydrate fermentation. Eng Life Sci 6:403–409

    Article  CAS  Google Scholar 

  19. APHA (1995) Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association, New York

  20. Mandal B, Nath K, Das D (2006) Improvement of biohydrogen production under decreased partial pressure of H2 by Enterobacter cloacae. Biotechnol Lett 28:831–835

    Article  CAS  Google Scholar 

  21. Beckers L, Hiligsman S, Masset J, Hamilton C, Thonart P (2012) Effects of hydrogen partial pressure on fermentative biohydrogen production by a chemotropic Clostridium bacterium in a new horizontal rotating cylinder reactor. Energy Procedia 29:34–41

    Article  CAS  Google Scholar 

  22. Junghare M, Subudhi S, Lal B (2012) Improvement of hydrogen production under decreased partial pressure by newly isolated alkaline tolerant anaerobe, Clostridium butyricum TM-9A: optimization of process parameters. Int J Hydrog Energy 37:3160–3168

    Article  CAS  Google Scholar 

  23. Sivaramakrishna D, Sreekanth D, Himabindu V, Lakshmi Narasu M (2010) Thermo-acidophilic biohydrogen production from rice bran de-oiled wastewater by selectively enriched mixed culture. Int J Energy Environ 1:657–666

    CAS  Google Scholar 

  24. Cheong DY, Hansen CL (2006) Acidogenesis characteristics of natural, mixed anaerobes converting carbohydrate-rich synthetic wastewater to hydrogen. Process Biochem 41:1736–1745

    Article  CAS  Google Scholar 

  25. Kraemer JT, Bagley DM (2008) Measurement of H2 consumption and its role in continuous fermentative hydrogen production. Water Sci Technol 57:681–685

    Article  CAS  Google Scholar 

  26. Hussy I, Hawkes FR, Dinsdale R, Hawkes DL (2003) Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora. Biotechnol Bioeng 84:619–626

    Article  CAS  Google Scholar 

  27. Tanisho S, Kuromoto M, Kadokura N (1998) Effect of CO2 removal on hydrogen production by fermentation. Int J Hydrog Energy 3:559–563

    Article  Google Scholar 

  28. van Groenestijn JW, Hazewinkel JHO, Nienoord M, Bussmann PJT (2002) Energy aspects of biological hydrogen production in high rate bioreactors operated in the thermophilic temperature range. Int J Hydrog Energy 27:1141–1147

    Article  Google Scholar 

  29. Nguyen VD, Kosuge H, Auresenia J, Tan R, Brondial Y (2009) Effect of vacuum pressure on ethanol fermentation. J Appl Sci 9:3020–3026

    Article  CAS  Google Scholar 

  30. De Gioannis G, Friargiu M, Massi E, Muntoni A, Polettini A, Pomi R, Spiga D (2014) Biohydrogen production from dark fermentation of cheese whey: influence of pH. Int J Hydrog Energy 39:20930–20941

    Article  Google Scholar 

  31. Perna V, Castelló E, Wenzel J, Zampol C, Fontes Lima DM, Borzacconi L, Varesche MB, Zaiat M, Etchebehere C (2013) Hydrogen production in an upflow anaerobic packed bed reactor used to treat cheese whey. Int J Hydrog Energy 38:54–62

    Article  CAS  Google Scholar 

  32. Azbar N, Dokgöz F, Keskin T, Korkmaz KS, Syed HM (2009) Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int J Hydrog Energy 34:7441–7447

    Article  CAS  Google Scholar 

  33. Venetsaneas N, Antonopoulou G, Stamatelatou K, Kornaros M, Lyberatos G (2009) Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour Technol 100:3713–3717

    Article  CAS  Google Scholar 

  34. Kisielewska M, Wysocka I, Rynkiewicz MR (2014) Continuous biohydrogen and biomethane production from whey permeate in a two-stage fermentation process. Environ Prog Sustain Energy 33:1411–1418

    CAS  Google Scholar 

Download references

Acknowledgments

The research was supported by the National Science Centre, Poland (N N 523 555138) and the Project No. 18.610.008-300 from the University of Warmia and Mazury in Olsztyn.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kisielewska.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kisielewska, M., Dębowski, M. & Zieliński, M. Improvement of biohydrogen production using a reduced pressure fermentation. Bioprocess Biosyst Eng 38, 1925–1933 (2015). https://doi.org/10.1007/s00449-015-1434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00449-015-1434-3

Keywords

Navigation