Roles for Claudins in Regulating Lung Barriers and Function

  • Chapter
  • First Online:
Tight Junctions
  • 592 Accesses

Abstract

The lung is a unique barrier forming tissue that has a large surface area exposed to the outside environment and that requires exquisite fluid balance in order to be properly hydrated to enable efficient gas exchange between the atmosphere and the bloodstream. Central to the maintenance of a pulmonary air-liquid barrier are tight junctions. Different anatomic regions of the lung differ in tight junction protein composition and morphology. The epithelia can be broadly divided into the conducting airways and alveolar epithelium, both of which are composed of heterogeneous epithelial monolayers. The alveolar epithelium also coordinates with the pulmonary vasculature to maintain the air-liquid barrier. This chapter focuses specifically on claudin-family tight junction proteins, which have been shown to form paracellular ion channels with different characteristics, including the formation of charge-specific ion channels. How the context of claudin expression influences their role in control of paracellular permeability is discussed. In addition to their ability to control tight junction paracellular permeability, claudins serve several functions to regulate lung tissue repair and epithelial cell phenotype. The involvement of claudins in lung epithelial homeostasis, as well as their potential as therapeutic targets to prevent lung disease, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Xu S, Xue X, You K, Fu J. Caveolin-1 regulates the expression of tight junction proteins during hyperoxia-induced pulmonary epithelial barrier breakdown. Respir Res. 2016;17(1):50.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Vyas-Read S, Vance RJ, Wang W, Colvocoresses-Dodds J, Brown LA, Koval M. Hyperoxia induces paracellular leak and alters claudin expression by neonatal alveolar epithelial cells. Pediatr Pulmonol. 2018;53(1):17-27.

    Article  PubMed  Google Scholar 

  3. Smallcombe CC, Harford TJ, Linfield DT, Lechuga S, Bokun V, Piedimonte G, et al. Titanium dioxide nanoparticles exaggerate respiratory syncytial virus-induced airway epithelial barrier dysfunction. Am J Physiol Lung Cell Mol Physiol. 2020;319(3):L481-L96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee YG, Lee SH, Hong J, Lee PH, Jang AS. Titanium dioxide particles modulate epithelial barrier protein, Claudin 7 in asthma. Mol Immunol. 2021;132:209-16.

    Article  CAS  PubMed  Google Scholar 

  5. Dino P, D'Anna C, Sangiorgi C, Di Sano C, Di Vincenzo S, Ferraro M, et al. Cigarette smoke extract modulates E-Cadherin, Claudin-1 and miR-21 and promotes cancer invasiveness in human colorectal adenocarcinoma cells. Toxicol Lett. 2019;317:102-9.

    Article  CAS  PubMed  Google Scholar 

  6. Tatsuta M, Kan OK, Ishii Y, Yamamoto N, Ogawa T, Fukuyama S, et al. Effects of cigarette smoke on barrier function and tight junction proteins in the bronchial epithelium: protective role of cathelicidin LL-37. Respir Res. 2019;20(1):251.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Tharakan A, Halderman AA, Lane AP, Biswal S, Ramanathan M, Jr. Reversal of cigarette smoke extract-induced sinonasal epithelial cell barrier dysfunction through Nrf2 Activation. Int Forum Allergy Rhinol. 2016;6(11):1145-50.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Shaykhiev R, Otaki F, Bonsu P, Dang DT, Teater M, Strulovici-Barel Y, et al. Cigarette smoking reprograms apical junctional complex molecular architecture in the human airway epithelium in vivo. Cell Mol Life Sci. 2011;68(5):877-92.

    Article  CAS  PubMed  Google Scholar 

  9. Yamamoto N, Kan OK, Tatsuta M, Ishii Y, Ogawa T, Shinozaki S, et al. Incense smoke-induced oxidative stress disrupts tight junctions and bronchial epithelial barrier integrity and induces airway hyperresponsiveness in mouse lungs. Sci Rep. 2021;11(1):7222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smallcombe CC, Linfield DT, Harford TJ, Bokun V, Ivanov AI, Piedimonte G, et al. Disruption of the airway epithelial barrier in a murine model of respiratory syncytial virus infection. Am J Physiol Lung Cell Mol Physiol. 2019;316(2):L358-L68.

    Article  CAS  PubMed  Google Scholar 

  11. Short KR, Kasper J, van der Aa S, Andeweg AC, Zaaraoui-Boutahar F, Goeijenbier M, et al. Influenza virus damages the alveolar barrier by disrupting epithelial cell tight junctions. Eur Respir J. 2016;47(3):954-66.

    Article  CAS  PubMed  Google Scholar 

  12. Bedi B, Maurice NM, Ciavatta VT, Lynn KS, Yuan Z, Molina SA, et al. Peroxisome proliferator-activated receptor-gamma agonists attenuate biofilm formation by Pseudomonas aeruginosa. FASEB J. 2017;31(8):3608-21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schmidt H, Braubach P, Schilpp C, Lochbaum R, Neuland K, Thompson K, et al. IL-13 Impairs Tight Junctions in Airway Epithelia. Int J Mol Sci. 2019;20(13).

    Google Scholar 

  14. Ahdieh M, Vandenbos T, Youakim A. Lung epithelial barrier function and wound healing are decreased by IL-4 and IL-13 and enhanced by IFN-gamma. Am J Physiol Cell Physiol. 2001;281(6):C2029-38.

    Article  CAS  PubMed  Google Scholar 

  15. Song MJ, Davidovich N, Lawrence GG, Margulies SS. Superoxide mediates tight junction complex dissociation in cyclically stretched lung slices. J Biomech. 2016;49(8):1330-5.

    Article  PubMed  Google Scholar 

  16. Mitra S, Epshtein Y, Sammani S, Quijada H, Chen W, Bandela M, et al. UCHL1, a deubiquitinating enzyme, regulates lung endothelial cell permeability in vitro and in vivo. Am J Physiol Lung Cell Mol Physiol. 2021;320(4):L497-L507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Molina SA, Moriarty HK, Infield DT, Imhoff BR, Vance RJ, Kim AH, et al. Insulin signaling via the PI3-kinase/Akt pathway regulates airway glucose uptake and barrier function in a CFTR-dependent manner. Am J Physiol Lung Cell Mol Physiol. 2017;312(5):L688-L702.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Molina SA, Stauffer B, Moriarty HK, Kim AH, McCarty NA, Koval M. Junctional abnormalities in human airway epithelial cells expressing F508del CFTR. Am J Physiol Lung Cell Mol Physiol. 2015;309(5):L475-87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Coyne CB, Vanhook MK, Gambling TM, Carson JL, Boucher RC, Johnson LG. Regulation of airway tight junctions by proinflammatory cytokines. Mol Biol Cell. 2002;13(9):3218-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. LeSimple P, Liao J, Robert R, Gruenert DC, Hanrahan JW. Cystic fibrosis transmembrane conductance regulator trafficking modulates the barrier function of airway epithelial cell monolayers. J Physiol. 2010;588(Pt 8):1195-209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Ruan YC, Wang Y, Da Silva N, Kim B, Diao RY, Hill E, et al. CFTR interacts with ZO-1 to regulate tight junction assembly and epithelial differentiation through the ZONAB pathway. J Cell Sci. 2014;127(Pt 20):4396-408.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Weiser N, Molenda N, Urbanova K, Bahler M, Pieper U, Oberleithner H, et al. Paracellular permeability of bronchial epithelium is controlled by CFTR. Cell Physiol Biochem. 2011;28(2):289-96.

    Article  CAS  PubMed  Google Scholar 

  23. Whitsett JA, Alenghat T. Respiratory epithelial cells orchestrate pulmonary innate immunity. Nat Immunol. 2014;16(1):27-35.

    Article  CAS  PubMed Central  Google Scholar 

  24. Tarran R, Button B, Boucher RC. Regulation of normal and cystic fibrosis airway surface liquid volume by phasic shear stress. Annu Rev Physiol. 2006;68:543-61.

    Article  CAS  PubMed  Google Scholar 

  25. Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER. Cell number and cell characteristics of the normal human lung. Am Rev Respir Dis. 1982;126(2):332-7.

    CAS  PubMed  Google Scholar 

  26. Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME. Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc. 2008;5(7):772-7.

    Google Scholar 

  27. Boggaram V. Regulation of lung surfactant protein gene expression. Front Biosci. 2003;8:d751-64.

    Article  CAS  PubMed  Google Scholar 

  28. Beers MF, Mulugeta S. Surfactant protein C biosynthesis and its emerging role in conformational lung disease. Annu Rev Physiol. 2005;67:663-96.

    Article  CAS  PubMed  Google Scholar 

  29. Crapo JD, Young SL, Fram EK, Pinkerton KE, Barry BE, Crapo RO. Morphometric characteristics of cells in the alveolar region of mammalian lungs. Am Rev Respir Dis. 1983;128(2 Pt 2):S42-6.

    CAS  PubMed  Google Scholar 

  30. Koval M. Claudin heterogeneity and control of lung tight junctions. Annu Rev Physiol. 2013;75:551-67.

    Article  CAS  PubMed  Google Scholar 

  31. Mehta D, Ravindran K, Kuebler WM. Novel regulators of endothelial barrier function. Am J Physiol Lung Cell Mol Physiol. 2014;307(12):L924-35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Albertine KH. Histopathology of Pulmonary Edema and the Acute Respiratory Distress Syndrome. In: Matthay MA, Ingbar DH, editors. Pulmonary Edema. Lung biology in health and disease. 116. New York, NY: Marcel Dekker, Inc.; 1998. p. 37-83.

    Google Scholar 

  33. Ware LB, Matthay MA. Alveolar fluid clearance is impaired in the majority of patients with acute lung injury and the acute respiratory distress syndrome. Am J Respir Crit Care Med. 2001;163(6):1376-83.

    Article  CAS  PubMed  Google Scholar 

  34. Eaton DC, Helms MN, Koval M, Bao HF, Jain L. The contribution of epithelial sodium channels to alveolar function in health and disease. Annu Rev Physiol. 2009;71:403-23.

    Article  CAS  PubMed  Google Scholar 

  35. Kim KJ, Malik AB. Protein transport across the lung epithelial barrier. Am J Physiol Lung Cell Mol Physiol. 2003;284(2):L247-59.

    Article  CAS  PubMed  Google Scholar 

  36. Mehta D, Bhattacharya J, Matthay MA, Malik AB. Integrated control of lung fluid balance. Am J Physiol Lung Cell Mol Physiol. 2004;287(6):L1081-90.

    Article  CAS  PubMed  Google Scholar 

  37. Flynn AN, Itani OA, Moninger TO, Welsh MJ. Acute regulation of tight junction ion selectivity in human airway epithelia. Proc Natl Acad Sci U S A. 2009;106(9):3591-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mitchell LA, Overgaard CE, Ward C, Margulies SS, Koval M. Differential effects of claudin-3 and claudin-4 on alveolar epithelial barrier function. Am J Physiol Lung Cell Mol Physiol. 2011;301(1):L40-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lafemina MJ, Rokkam D, Chandrasena A, Pan J, Bajaj A, Johnson M, et al. Keratinocyte growth factor enhances barrier function without altering claudin expression in primary alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2010;299(6):L724-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kaarteenaho R, Merikallio H, Lehtonen S, Harju T, Soini Y. Divergent expression of claudin -1, -3, -4, -5 and -7 in develo** human lung. Respir Res. 2010;11:59.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kaarteenaho-Wiik R, Soini Y. Claudin-1, -2, -3, -4, -5, and -7 in usual interstitial pneumonia and sarcoidosis. J Histochem Cytochem. 2009;57(3):187-95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Fulcher ML, Gabriel S, Burns KA, Yankaskas JR, Randell SH. Well-differentiated human airway epithelial cell cultures. Methods Mol Med. 2005;107:183-206.

    CAS  PubMed  Google Scholar 

  43. Lochbaum R, Schilpp C, Nonnenmacher L, Frick M, Dietl P, Wittekindt OH. Retinoic acid signalling adjusts tight junction permeability in response to air-liquid interface conditions. Cell Signal. 2020;65:109421.

    Article  CAS  PubMed  Google Scholar 

  44. Lv J, Sun B, Mai Z, Jiang M, Du J. CLDN-1 promoted the epithelial to migration and mesenchymal transition (EMT) in human bronchial epithelial cells via Notch pathway. Mol Cell Biochem. 2017;432(1-2):91-8.

    Article  CAS  PubMed  Google Scholar 

  45. Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C, et al. Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest. 2005;115(7):1765-76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Looi K, Buckley AG, Rigby PJ, Garratt LW, Iosifidis T, Zosky GR, et al. Effects of human rhinovirus on epithelial barrier integrity and function in children with asthma. Clin Exp Allergy. 2018;48(5):513-24.

    Article  CAS  PubMed  Google Scholar 

  47. Fujita H, Chalubinski M, Rhyner C, Indermitte P, Meyer N, Ferstl R, et al. Claudin-1 expression in airway smooth muscle exacerbates airway remodeling in asthmatic subjects. J Allergy Clin Immunol. 2011;127(6):1612-21 e8.

    Article  CAS  PubMed  Google Scholar 

  48. Schilpp C, Lochbaum R, Braubach P, Jonigk D, Frick M, Dietl P, et al. TGF-beta1 increases permeability of ciliated airway epithelia via redistribution of claudin 3 from tight junction into cell nuclei. Pflugers Arch. 2021;473(2):287-311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hagen SJ. Non-canonical functions of claudin proteins: Beyond the regulation of cell-cell adhesions. Tissue Barriers. 2017;5(2):e1327839.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Ikari A, Watanabe R, Sato T, Taga S, Shimobaba S, Yamaguchi M, et al. Nuclear distribution of claudin-2 increases cell proliferation in human lung adenocarcinoma cells. Biochim Biophys Acta. 2014;1843(9):2079-88.

    Article  CAS  PubMed  Google Scholar 

  51. Tokuhara Y, Morinishi T, Matsunaga T, Sakai M, Sakai T, Ohsaki H, et al. Nuclear expression of claudin-3 in human colorectal adenocarcinoma cell lines and tissues. Oncol Lett. 2018;15(1):99-108.

    PubMed  Google Scholar 

  52. Furuse M, Furuse K, Sasaki H, Tsukita S. Conversion of zonulae occludentes from tight to leaky strand type by introducing claudin-2 into Madin-Darby canine kidney I cells. J Cell Biol. 2001;153(2):263-72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Milatz S, Krug SM, Rosenthal R, Gunzel D, Muller D, Schulzke JD, et al. Claudin-3 acts as a sealing component of the tight junction for ions of either charge and uncharged solutes. Biochim Biophys Acta. 2010;1798(11):2048-57.

    Article  CAS  PubMed  Google Scholar 

  54. Daugherty BL, Ward C, Smith T, Ritzenthaler JD, Koval M. Regulation of heterotypic claudin compatibility. J Biol Chem. 2007;282(41):30005-13.

    Article  CAS  PubMed  Google Scholar 

  55. Furuse M, Sasaki H, Tsukita S. Manner of interaction of heterogeneous claudin species within and between tight junction strands. J Cell Biol. 1999;147(4):891-903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wray C, Mao Y, Pan J, Chandrasena A, Piasta F, Frank JA. Claudin-4 augments alveolar epithelial barrier function and is induced in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2009;297(2):L219-27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rokkam D, Lafemina MJ, Lee JW, Matthay MA, Frank JA. Claudin-4 Levels Are Associated with Intact Alveolar Fluid Clearance in Human Lungs. Am J Pathol. 2011;179(3):1081-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kage H, Flodby P, Gao D, Kim YH, Marconett CN, DeMaio L, et al. Claudin 4 knockout mice: normal physiological phenotype with increased susceptibility to lung injury. Am J Physiol Lung Cell Mol Physiol. 2014;307(7):L524-36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Pao HP, Liao WI, Tang SE, Wu SY, Huang KL, Chu SJ. Suppression of Endoplasmic Reticulum Stress by 4-PBA Protects Against Hyperoxia-Induced Acute Lung Injury via Up-Regulating Claudin-4 Expression. Front Immunol. 2021;12:674316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Das S, Smith TD, Sarma JD, Ritzenthaler JD, Maza J, Kaplan BE, et al. ERp29 restricts Connexin43 oligomerization in the endoplasmic reticulum. Mol Biol Cell. 2009;20(10):2593-604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Li G, Flodby P, Luo J, Kage H, Sipos A, Gao D, et al. Knockout mice reveal key roles for claudin 18 in alveolar barrier properties and fluid homeostasis. Am J Respir Cell Mol Biol. 2014;51(2):210-22.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Hayashi D, Tamura A, Tanaka H, Yamazaki Y, Watanabe S, Suzuki K, et al. Deficiency of Claudin-18 Causes Paracellular H(+) Leakage, Up-regulation of Interleukin-1beta, and Atrophic Gastritis in Mice. Gastroenterology. 2011;142(2):292-304.

    Article  PubMed  CAS  Google Scholar 

  63. Chen SP, Zhou B, Willis BC, Sandoval AJ, Liebler JM, Kim KJ, et al. Effects of transdifferentiation and EGF on claudin isoform expression in alveolar epithelial cells. J Appl Physiol. 2005;98(1):322-8.

    Article  CAS  PubMed  Google Scholar 

  64. Gunzel D, Yu AS. Claudins and the modulation of tight junction permeability. Physiol Rev. 2013;93(2):525-69.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Alexandre MD, Lu Q, Chen YH. Overexpression of claudin-7 decreases the paracellular Cl- conductance and increases the paracellular Na+ conductance in LLC-PK1 cells. J Cell Sci. 2005;118(Pt 12):2683-93.

    Article  CAS  PubMed  Google Scholar 

  66. Hou J, Renigunta A, Yang J, Waldegger S. Claudin-4 forms paracellular chloride channel in the kidney and requires claudin-8 for tight junction localization. Proc Natl Acad Sci U S A. 2010;107(42):18010-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tatum R, Zhang Y, Lu Q, Kim K, Jeansonne BG, Chen YH. WNK4 phosphorylates ser(206) of claudin-7 and promotes paracellular Cl(-) permeability. FEBS Lett. 2007;581(20):3887-91.

    Article  CAS  PubMed  Google Scholar 

  68. Thuma F, Heiler S, Schnolzer M, Zoller M. Palmitoylated claudin7 captured in glycolipid-enriched membrane microdomains promotes metastasis via associated transmembrane and cytosolic molecules. Oncotarget. 2016;7(21):30659-77.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lu Z, Kim DH, Fan J, Lu Q, Verbanac K, Ding L, et al. A non-tight junction function of claudin-7-Interaction with integrin signaling in suppressing lung cancer cell proliferation and detachment. Mol Cancer. 2015;14:120.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  70. Ding L, Lu Z, Foreman O, Tatum R, Lu Q, Renegar R, et al. Inflammation and disruption of the mucosal architecture in claudin-7-deficient mice. Gastroenterology. 2012;142(2):305-15.

    Article  CAS  PubMed  Google Scholar 

  71. Tatum R, Zhang Y, Salleng K, Lu Z, Lin JJ, Lu Q, et al. Renal salt wasting and chronic dehydration in claudin-7-deficient mice. Am J Physiol Renal Physiol. 2010;298(1):F24-34.

    Article  CAS  PubMed  Google Scholar 

  72. Hobbs CA, Da Tan C, Tarran R. Does epithelial sodium channel hyperactivity contribute to cystic fibrosis lung disease? J Physiol. 2013;591(Pt 18):4377-87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Verkman AS, Song Y, Thiagarajah JR. Role of airway surface liquid and submucosal glands in cystic fibrosis lung disease. Am J Physiol Cell Physiol. 2003;284(1):C2-15.

    Article  CAS  PubMed  Google Scholar 

  74. Schaefer J, Vilos AG, Vilos GA, Bhattacharya M, Babwah AV. Uterine kisspeptin receptor critically regulates epithelial estrogen receptor alpha transcriptional activity at the time of embryo implantation in a mouse model. Mol Hum Reprod. 2021;27(10).

    Google Scholar 

  75. Niimi T, Nagashima K, Ward JM, Minoo P, Zimonjic DB, Popescu NC, et al. claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol Cell Biol. 2001;21(21):7380-90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Jovov B, Van Itallie CM, Shaheen NJ, Carson JL, Gambling TM, Anderson JM, et al. Claudin-18: a dominant tight junction protein in Barrett's esophagus and likely contributor to its acid resistance. Am J Physiol Gastrointest Liver Physiol. 2007;293(6):G1106-13.

    Article  CAS  PubMed  Google Scholar 

  77. Daugherty BL, Mateescu M, Patel AS, Wade K, Kimura S, Gonzales LW, et al. Developmental regulation of claudin localization by fetal alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol. 2004;287(6):L1266-73.

    Article  CAS  PubMed  Google Scholar 

  78. Ohta H, Chiba S, Ebina M, Furuse M, Nukiwa T. Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis. Am J Physiol Lung Cell Mol Physiol. 2012;302(2):L193-205.

    Article  CAS  PubMed  Google Scholar 

  79. Lee PH, Hong J, Jang AS. N-acetylcysteine decreases airway inflammation and responsiveness in asthma by modulating claudin 18 expression. Korean J Intern Med. 2020;35(5):1229-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Sweerus K, Lachowicz-Scroggins M, Gordon E, LaFemina M, Huang X, Parikh M, et al. Claudin-18 deficiency is associated with airway epithelial barrier dysfunction and asthma. J Allergy Clin Immunol. 2017;139(1):72-81 e1.

    Article  CAS  PubMed  Google Scholar 

  81. LaFemina MJ, Sutherland KM, Bentley T, Gonzales LW, Allen L, Chapin CJ, et al. Claudin-18 deficiency results in alveolar barrier dysfunction and impaired alveologenesis in mice. Am J Respir Cell Mol Biol. 2014;51(4):550-8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Zhou B, Flodby P, Luo J, Castillo DR, Liu Y, Yu FX, et al. Claudin-18-mediated YAP activity regulates lung stem and progenitor cell homeostasis and tumorigenesis. J Clin Invest. 2018;128(3):970-84.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Gonzalez-Mariscal L, Betanzos A, Avila-Flores A. MAGUK proteins: structure and role in the tight junction. Semin Cell Dev Biol. 2000;11(4):315-24.

    Article  CAS  PubMed  Google Scholar 

  84. McCrea PD, Gottardi CJ. Beyond beta-catenin: prospects for a larger catenin network in the nucleus. Nat Rev Mol Cell Biol. 2016;17(1):55-64.

    Article  CAS  PubMed  Google Scholar 

  85. Shimobaba S, Taga S, Akizuki R, Hichino A, Endo S, Matsunaga T, et al. Claudin-18 inhibits cell proliferation and motility mediated by inhibition of phosphorylation of PDK1 and Akt in human lung adenocarcinoma A549 cells. Biochim Biophys Acta. 2016;1863(6 Pt A):1170-8.

    Article  CAS  PubMed  Google Scholar 

  86. Mahoney JE, Mori M, Szymaniak AD, Varelas X, Cardoso WV. The hippo pathway effector Yap controls patterning and differentiation of airway epithelial progenitors. Dev Cell. 2014;30(2):137-50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Zhao R, Fallon TR, Saladi SV, Pardo-Saganta A, Villoria J, Mou H, et al. Yap tunes airway epithelial size and architecture by regulating the identity, maintenance, and self-renewal of stem cells. Dev Cell. 2014;30(2):151-65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Szymaniak AD, Mahoney JE, Cardoso WV, Varelas X. Crumbs3-Mediated Polarity Directs Airway Epithelial Cell Fate through the Hippo Pathway Effector Yap. Dev Cell. 2015;34(3):283-96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Lappalainen U, Whitsett JA, Wert SE, Tichelaar JW, Bry K. Interleukin-1beta causes pulmonary inflammation, emphysema, and airway remodeling in the adult murine lung. Am J Respir Cell Mol Biol. 2005;32(4):311-8.

    Article  CAS  PubMed  Google Scholar 

  90. Saatian B, Rezaee F, Desando S, Emo J, Chapman T, Knowlden S, et al. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers. 2013;1(2):e24333.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Lappi-Blanco E, Lehtonen ST, Sormunen R, Merikallio HM, Soini Y, Kaarteenaho RL. Divergence of tight and adherens junction factors in alveolar epithelium in pulmonary fibrosis. Hum Pathol. 2013;44(5):895-907.

    Article  CAS  PubMed  Google Scholar 

  92. Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N, et al. Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol. 2003;161(3):653-60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen W, Sharma R, Rizzo AN, Siegler JH, Garcia JG, Jacobson JR. Role of claudin-5 in the attenuation of murine acute lung injury by simvastatin. Am J Respir Cell Mol Biol. 2014;50(2):328-36.

    PubMed  PubMed Central  Google Scholar 

  94. Wang L, Chiang ET, Simmons JT, Garcia JG, Dudek SM. FTY720-induced human pulmonary endothelial barrier enhancement is mediated by c-Abl. Eur Respir J. 2011;38(1):78-88.

    Article  PubMed  CAS  Google Scholar 

  95. Wang C, Armstrong SM, Sugiyama MG, Tabuchi A, Krauszman A, Kuebler WM, et al. Influenza Primes Human Lung Microvascular Endothelium to Leak upon Exposure to Staphylococcus aureus. Am J Respir Cell Mol Biol. 2015.

    Google Scholar 

  96. Armstrong SM, Wang C, Tigdi J, Si X, Dumpit C, Charles S, et al. Influenza infects lung microvascular endothelium leading to microvascular leak: role of apoptosis and claudin-5. PLoS One. 2012;7(10):e47323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jang AS, Concel VJ, Bein K, Brant KA, Liu S, Pope-Varsalona H, et al. Endothelial dysfunction and claudin 5 regulation during acrolein-induced lung injury. Am J Respir Cell Mol Biol. 2011;44(4):483-90.

    Article  CAS  PubMed  Google Scholar 

  98. Li H, Singh S, Potula R, Persidsky Y, Kanmogne GD. Dysregulation of claudin-5 in HIV-induced interstitial pneumonitis and lung vascular injury. Protective role of peroxisome proliferator-activated receptor-gamma. Am J Respir Crit Care Med. 2014;190(1):85-97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Haorah J, Knipe B, Gorantla S, Zheng J, Persidsky Y. Alcohol-induced blood-brain barrier dysfunction is mediated via inositol 1,4,5-triphosphate receptor (IP3R)-gated intracellular calcium release. J Neurochem. 2007;100(2):324-36.

    Article  CAS  PubMed  Google Scholar 

  100. Maier-Begandt D, Comstra HS, Molina SA, Kruger N, Ruddiman CA, Chen YL, et al. A venous-specific purinergic signaling cascade initiated by Pannexin 1 regulates TNFalpha-induced increases in endothelial permeability. Sci Signal. 2021;14(672).

    Google Scholar 

  101. Berndt P, Winkler L, Cording J, Breitkreuz-Korff O, Rex A, Dithmer S, et al. Tight junction proteins at the blood-brain barrier: far more than claudin-5. Cell Mol Life Sci. 2019;76(10):1987-2002.

    Article  CAS  PubMed  Google Scholar 

  102. Cornely RM, Schlingmann B, Shepherd WS, Chandler JD, Neujahr DC, Koval M. Two common human CLDN5 alleles encode different open reading frames but produce one protein isoform. Ann N Y Acad Sci. 2017;1397(1):119-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mehta D, Malik AB. Signaling mechanisms regulating endothelial permeability. Physiol Rev. 2006;86(1):279-367.

    Article  CAS  PubMed  Google Scholar 

  104. Overgaard CE, Mitchell LA, Koval M. Roles for claudins in alveolar epithelial barrier function. Ann N Y Acad Sci. 2012;1257:167-74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Smith P, Jeffers LA, Koval M. Effects of different routes of endotoxin injury on barrier function in alcoholic lung syndrome. Alcohol. 2019;80:81-9.

    Article  CAS  PubMed  Google Scholar 

  106. Koval M, Ward C, Findley MK, Roser-Page S, Helms MN, Roman J. Extracellular Matrix Influences Alveolar Epithelial Claudin Expression and Barrier Function. Am J Respir Cell Mol Biol. 2010;42(2):172-80.

    Article  CAS  PubMed  Google Scholar 

  107. Fernandez AL, Koval M, Fan X, Guidot DM. Chronic alcohol ingestion alters claudin expression in the alveolar epithelium of rats. Alcohol. 2007;41(5):371-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Wang F, Daugherty B, Keise LL, Wei Z, Foley JP, Savani RC, et al. Heterogeneity of claudin expression by alveolar epithelial cells. Am J Respir Cell Mol Biol. 2003;29(1):62-70.

    Article  CAS  PubMed  Google Scholar 

  109. Coyne CB, Gambling TM, Boucher RC, Carson JL, Johnson LG. Role of claudin interactions in airway tight junctional permeability. Am J Physiol Lung Cell Mol Physiol. 2003;285(5):L1166-78.

    Article  CAS  PubMed  Google Scholar 

  110. Ward C, Schlingmann B, Stecenko AA, Guidot DM, Koval M. NF-kB inhibitors impair lung epithelial tight junctions in the absence of inflammation. Tissue Barriers. 2015;3(1-2):e982424.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  111. Lynn KS, Easley KF, Martinez FJ, Reed RC, Schlingmann B, Koval M. Asymmetric distribution of dynamin-2 and beta-catenin relative to tight junction spikes in alveolar epithelial cells. Tissue Barriers. 2021;9(3):1929786.

    Article  PubMed  CAS  Google Scholar 

  112. Schlingmann B, Overgaard CE, Molina SA, Lynn KS, Mitchell LA, Dorsainvil White S, et al. Regulation of claudin/zonula occludens-1 complexes by hetero-claudin interactions. Nat Commun. 2016;7:12276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Overgaard CE, Daugherty BL, Mitchell LA, Koval M. Claudins: control of barrier function and regulation in response to oxidant stress. Antioxid Redox Signal. 2011;15(5):1179-93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Berkowitz DM, Danai PA, Eaton S, Moss M, Martin GS. Alcohol abuse enhances pulmonary edema in acute respiratory distress syndrome. Alcohol Clin Exp Res. 2009;33(10):1690-6.

    Article  PubMed  PubMed Central  Google Scholar 

  115. Moss M, Parsons PE, Steinberg KP, Hudson LD, Guidot DM, Burnham EL, et al. Chronic alcohol abuse is associated with an increased incidence of acute respiratory distress syndrome and severity of multiple organ dysfunction in patients with septic shock. Crit Care Med. 2003;31(3):869-77.

    Article  PubMed  Google Scholar 

  116. Moss M, Steinberg KP, Guidot DM, Duhon GF, Treece P, Wolken R, et al. The effect of chronic alcohol abuse on the incidence of ARDS and the severity of the multiple organ dysfunction syndrome in adults with septic shock: an interim and multivariate analysis. Chest. 1999;116(1 Suppl):97S-8S.

    Article  CAS  PubMed  Google Scholar 

  117. Downs CA, Trac DQ, Kreiner LH, Eaton AF, Johnson NM, Brown LA, et al. Ethanol alters alveolar fluid balance via Nadph oxidase (NOX) signaling to epithelial sodium channels (ENaC) in the lung. PLoS One. 2013;8(1):e54750.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Helms MN, Jain L, Self JL, Eaton DC. Redox regulation of epithelial sodium channels examined in alveolar type 1 and 2 cells patch-clamped in lung slice tissue. J Biol Chem. 2008;283(33):22875-83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lynn KS, Peterson RJ, Koval M. Ruffles and spikes: Control of tight junction morphology and permeability by claudins. Biochim Biophys Acta Biomembr. 2020;1862(9):183339.

    Article  CAS  Google Scholar 

  120. Kotton DN. Claudin-18: unexpected regulator of lung alveolar epithelial cell proliferation. J Clin Invest. 2018;128(3):903-5.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Vogl AW, Du M, Wang XY, Young JS. Novel clathrin/actin-based endocytic machinery associated with junction turnover in the seminiferous epithelium. Semin Cell Dev Biol. 2014;30:55-64.

    Article  CAS  PubMed  Google Scholar 

  122. Zou J, Li Y, Yu J, Dong L, Husain AN, Shen L, et al. Idiopathic pulmonary fibrosis is associated with tight junction protein alterations. Biochim Biophys Acta Biomembr. 2020;1862(5):183205.

    Article  CAS  Google Scholar 

  123. Capaldo CT, Farkas AE, Hilgarth RS, Krug SM, Wolf MF, Benedik JK, et al. Proinflammatory cytokine-induced tight junction remodeling through dynamic self-assembly of claudins. Mol Biol Cell. 2014;25(18):2710-9.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Kielgast F, Schmidt H, Braubach P, Winkelmann VE, Thompson KE, Frick M, et al. Glucocorticoids Regulate Tight Junction Permeability of Lung Epithelia by Modulating Claudin 8. Am J Respir Cell Mol Biol. 2016;54(5):707-17.

    Article  CAS  PubMed  Google Scholar 

  125. Van Itallie CM, Anderson JM. Architecture of tight junctions and principles of molecular composition. Semin Cell Dev Biol. 2014;36:157-65.

    Article  PubMed  CAS  Google Scholar 

  126. Zemke AC, Snyder JC, Brockway BL, Drake JA, Reynolds SD, Kaminski N, et al. Molecular staging of epithelial maturation using secretory cell-specific genes as markers. Am J Respir Cell Mol Biol. 2009;40(3):340-8.

    Article  CAS  PubMed  Google Scholar 

  127. Fukumoto J, Soundararajan R, Leung J, Cox R, Mahendrasah S, Muthavarapu N, et al. The role of club cell phenoconversion and migration in idiopathic pulmonary fibrosis. Aging (Albany NY). 2016;8(11):3091-109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Fukumoto J, Sidramagowda Patil S, Krishnamurthy S, Saji S, John I, Narala VR, et al. Altered expression of p63 isoforms and expansion of p63- and club cell secretory protein-positive epithelial cells in the lung as novel features of aging. Am J Physiol Cell Physiol. 2019;316(4):C492-C508.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Gunzel D, Stuiver M, Kausalya PJ, Haisch L, Krug SM, Rosenthal R, et al. Claudin-10 exists in six alternatively spliced isoforms that exhibit distinct localization and function. J Cell Sci. 2009;122(Pt 10):1507-17.

    Article  PubMed  CAS  Google Scholar 

  130. Stoltz DA, Meyerholz DK, Welsh MJ. Origins of cystic fibrosis lung disease. N Engl J Med. 2015;372(4):351-62.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  131. Schlingmann B, Molina SA, Koval M. Claudins: Gatekeepers of lung epithelial function. Semin Cell Dev Biol. 2015;42:47-57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The section “Multiplicity of epithelial cells lining the respiratory tract” is excerpted from [131] with permission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Koval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Koval, M. (2022). Roles for Claudins in Regulating Lung Barriers and Function. In: González-Mariscal, L. (eds) Tight Junctions. Springer, Cham. https://doi.org/10.1007/978-3-030-97204-2_10

Download citation

Publish with us

Policies and ethics

Navigation