Log in

CLDN-1 promoted the epithelial to migration and mesenchymal transition (EMT) in human bronchial epithelial cells via Notch pathway

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Claudin-1 (CLDN-1) is one of main tight junction components that play an important role in epithelial–mesenchymal transition (EMT). However, the effects of CLDN-1 on the migration and EMT induced by TGF-β1 in primary normal human bronchial epithelial (NHBE) and BEAS-2B cells have not been clear. The expression of CLDN-1 was quantified by Western blotting in NHBE and BEAS-2B cells. Cell migration and invasion were detected using transwell assays. The expression level of E-cadherin, N-cadherin, α-SMA, and Vimentin was evaluated by quantitative real-time PCR and Western blotting. Here we showed that the protein expression of CLDN-1 was increased exposed to TGF-β1 in a dose- and time-dependent manner. Knockdown of CLDN-1 using small interfering CLDN-1 RNA (siCLDN-1) prevented the migration and invasion in NHBE and BEAS-2B cells. Moreover, depletion of CLDN-1 promoted the E-cadherin expression and decreased the mRNA and protein levels of N-cadherin, α-SMA, and Vimentin induced by TGF-β1. Furthermore, CLDN-1 silencing resulted in the reduction of the Notch intracellular domain (NICD) and hairy enhancer of split-1 (Hes-1) in mRNA and protein level. Jagged-1, an activator of Notch signaling pathway, abrogated the protective function of siCLDN-1 in migration and EMT. In conclusion, CLDN-1 promoted the migration and EMT through the Notch signaling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Elliot HA, Sampson MD, Roslyn Jaffe Food Allergy Institute (2015) Asthma in teenagers and adults, 10th edn. Wiley, New York

    Google Scholar 

  2. Nelson HS., Davies DE et al (2003) Airway remodeling in asthma: new insights. J Allergy Clin Immunol 111:215–225

    Article  Google Scholar 

  3. Pascual RM., Peters SP (2005) Airway remodeling contributes to the progressive loss of lung function in asthma: An overview. J Allergy Clin Immunol 116:477–486

    Article  PubMed  Google Scholar 

  4. Pain M, Bermudez O et al (2014) Tissue remodelling in chronic bronchial diseases: from the epithelial to mesenchymal phenotype. Eur Respir Rev 23:118–130

    Article  PubMed  Google Scholar 

  5. Kalluri R (2009) EMT: when epithelial cells decide to become mesenchymal-like cells. J Clin Invest 119:1417–1419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lv ZD, Na D et al (2011) Human peritoneal mesothelial cell transformation into myofibroblasts in response to TGF-ß1 in vitro. Int J Mol Med 27:187–193

    CAS  PubMed  Google Scholar 

  7. Zeisberg M, Neilson EG (2009) Biomarkers for epithelial-mesenchymal transitions. J Clin Invest 119:1429–1437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sohal SS, Mahmood MQ et al (2014) Clinical significance of epithelial mesenchymal transition (EMT) in chronic obstructive pulmonary disease (COPD): potential target for prevention of airway fibrosis and lung cancer. Clin Transl Med 3:1–4

    Article  Google Scholar 

  9. Hei**k IH, Nawijn MC et al (2014) Airway epithelial barrier function regulates the pathogenesis of allergic asthma. Clin Exp Allergy J Br Soc Allergy Clin Immunol 44:620–630

    Article  CAS  Google Scholar 

  10. Kudo M, Ishigatsubo Y et al (2013) Pathology of asthma. Front Microbiol 4:263

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang Z-C et al (2013) Transforming growth factor-beta 1 induces bronchial epithelial cells to;mesenchymal transition by activating the Snail pathway and promotes airway remodeling in asthma. Mol Med Report 8:1663–1668

    CAS  Google Scholar 

  12. Horowitz JC, Thannickal VJ (2010) Epithelial-mesenchymal interactions in pulmonary fibrosis. Annu Rev Physiol 73:413–435

    Google Scholar 

  13. Furuse M, Hata M et al (2002) Claudin-based tight junctions are crucial for the mammalian epidermal barrier. J Cell Biol 156:1099–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Coyne CB, Gambling TM et al (2003) Role of claudin interactions in airway tight junctional permeability. Ajp Lung Cell Mol Physiol 285:6779–6785

    Article  Google Scholar 

  15. Kaarteenaho R, Merikallio H et al (2010) Divergent expression of claudin -1, -3, -4, -5 and -7 in develo** human lung. Respir Res 11:1–10

    Article  Google Scholar 

  16. Fujita H, Chalubinski M et al (2011) Claudin-1 expression in airway smooth muscle exacerbates airway remodeling in asthmatic subjects. J Allergy Clin Immunol 127:1612–1621(e1618)

    Article  CAS  PubMed  Google Scholar 

  17. Suh Y, Yoon CH et al (2013) Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene 32:4873–4882

    Article  CAS  PubMed  Google Scholar 

  18. Kamitani S, Yamauchi Y et al (2010) Simultaneous stimulation with TGF-β1 and TNF-α induces epithelial mesenchymal transition in bronchial epithelial cells. Int Arch Allergy Immunol 155:119–128

    Article  PubMed  Google Scholar 

  19. Tatsuya I, Kedes L et al (2003) HES and HERP families: Multiple effectors of the notch signaling pathway. J Cell Physiol 194:237–255

    Article  Google Scholar 

  20. Chen J, Hui C et al (2016) 3,6-Dihydroxyflavone suppresses the epithelial-mesenchymal transition in breast cancer cells by inhibiting the Notch signaling pathway. Sci Rep 6:28858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Weinmaster G (1998) Notch signaling: direct or what? Curr Opin Genet Dev 8:436–442

    Article  CAS  PubMed  Google Scholar 

  22. Matsuda M, Kubo A et al (2004) A peculiar internalization of claudins, tight junction-specific adhesion molecules, during the intercellular movement of epithelial cells. J Cell Sci 117:1247–1257

    Article  CAS  PubMed  Google Scholar 

  23. Swisshelm K, Macek R et al (2005) Role of claudins in tumorigenesis. Adv Drug Deliv Rev 57:919–928

    Article  CAS  PubMed  Google Scholar 

  24. Weber CR., Nalle SC et al (2008) Claudin-1 and claudin-2 expression are elevated in inflammatory bowel disease and may contribute to early neoplastic transformation. Lab Investig 88:1110–1120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaarteenahowiik R, Soini Y (2009) Claudin-1, -2, -3, -4, -5, and -7 in usual interstitial pneumonia and sarcoidosis. J Histochem Cytochem Off J Histochem Soc 57:187–195

    Article  CAS  Google Scholar 

  26. Willis BC, Borok Z (2007) TGF-β-induced EMT: mechanisms and implications for fibrotic lung disease. Ajp Lung Cell Mol Physiol 293:L525–534

    Article  CAS  Google Scholar 

  27. Gao J, Zhu Y et al (2014) TGF-β isoforms induce EMT independent migration of ovarian cancer cells. Cancer Cell Int 14:1–10

    Article  Google Scholar 

  28. Zhu Y, Nilsson M et al (2010) Phenotypic plasticity of the ovarian surface epithelium: TGF-beta 1 induction of epithelial to mesenchymal transition (EMT) in vitro. Endocrinology 151:5497–5505

    Article  CAS  PubMed  Google Scholar 

  29. Holgate ST, Lackie P et al (2000) Bronchial epithelium as a key regulator of airway allergen sensitization and remodeling in asthma. Am J Respir Crit Care Med 162:113–117

    Article  Google Scholar 

  30. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kiesslich T, Pichler M et al (2013) Epigenetic control of epithelial-mesenchymal-transition in human cancer. Mol Clin Oncol 1:3–11

    PubMed  Google Scholar 

  32. Yi JM (2013) Claudin-1 induces epithelial-mesenchymal transition through activation of the c-Abl-ERK signaling pathway in human liver cells. Oncogene 32:4873–4882

    Article  PubMed  Google Scholar 

  33. Shiozaki A, Shimizu H et al (2014) Claudin 1 mediates tumor necrosis factor alpha-induced cell migration in human gastric cancer cells. World J Gastroenterol 20:17863–17876

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Yoda S, Soejima K et al (2014) Claudin-1 is a novel target of miR-375 in non-small-cell lung cancer. Lung Cancer 85:366–372

    Article  PubMed  Google Scholar 

  35. Zhao X, Zou Y et al (2015) Lentiviral vector mediated claudin1 silencing inhibits epithelial to mesenchymal transition in breast cancer cells. Viruses 7:2965–2979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lee JM, Dedhar S et al (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172:973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang Z, Li Y et al (2010) The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr Drug Targets 11:745–751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Katoh M (2007) Notch signaling in gastrointestinal tract (review). Int J Oncol 30:247

    CAS  PubMed  Google Scholar 

  39. Huang F, Zhu X et al (2012) Mesenchymal stem cells modified with miR-126 release angiogenic factors and activate Notch ligand Delta-like-4, enhancing ischemic angiogenesis and cell survival. Int J Mol Med 31:484–492

    PubMed  Google Scholar 

  40. Miyamoto A, Weinmaster G (2009) Notch signal transduction: molecular and cellular mechanisms. Encycl Neurosci 9:1259–1268

    Article  Google Scholar 

  41. Cheng S (2008) Notch signaling mediates hypoxia-induced tumor cell migration and invasion. Proc Natl Acad Sci 105:6392–6397

    Article  Google Scholar 

  42. Wang Z, Li Y et al (2010) Down-regulation of Notch-1 and Jagged-1 inhibits prostate cancer cell growth, migration and invasion, and induces apoptosis via inactivation of Akt, mTOR, and NF-κB signaling pathways. J Cell Biochem 109:726–736

    CAS  PubMed  Google Scholar 

  43. Ozasa Y, Akazawa H et al (2013) Notch activation mediates angiotensin II-induced vascular remodeling by promoting the proliferation and migration of vascular smooth muscle cells. Hypertens Res 36:859–865

    Article  CAS  PubMed  Google Scholar 

  44. Pope JL (2013) Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling. Gut 63:622–634

    Article  PubMed  PubMed Central  Google Scholar 

  45. Pope JL, Ahmad R et al (2014) Claudin-1 Overexpression in intestinal epithelial cells enhances susceptibility to adenamatous polyposis coli-mediated colon tumorigenesis. Mol Cancer 13:1–13

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Sun.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Sun, B., Mai, Z. et al. CLDN-1 promoted the epithelial to migration and mesenchymal transition (EMT) in human bronchial epithelial cells via Notch pathway. Mol Cell Biochem 432, 91–98 (2017). https://doi.org/10.1007/s11010-017-3000-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-017-3000-6

Keywords

Navigation