Nanomaterials for Magnetic Hyperthermia

  • Chapter
  • First Online:
Technological Applications of Nanomaterials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

Cancer is a disease with a tremendous mortality rate, in which the lack of early diagnosis, the cytotoxicity created by conventional techniques, and resistance to conventional therapies make its treatment difficult. In this sense, materials development on a nanometric scale has offered significant industrial and scientific advances, especially in biomedicine. In this chapter, we present the necessary characteristics and properties for nanomaterials in the field of magnetic hyperthermia. The basic concepts of magnetism suitable for the application and the structural and morphological characteristics necessary to apply nanomaterials in this field are addressed. Superparamagnetism is the main property to be achieved for applications in this area. Superparamagnetic nanoparticles can be oriented and located on the therapeutic target and heat up with the application of a magnetic field. From this understanding, it is concluded that magnetic hyperthermia is an up-and-coming technology for applications in cancer treatment, overcoming the limitations of conventional approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. National Cancer Institute: Why Global Cancer Research Is Critical to Progress against the Disease (2021)

    Google Scholar 

  2. INCA: O que é câncer? In: 03/04/2019 (2019)

    Google Scholar 

  3. Yu, X., Ding, S., Yang, R., et al.: Research progress on magnetic nanoparticles for magnetic induction hyperthermia of malignant tumor. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.11.049

    Article  Google Scholar 

  4. Beik, J., Abed, Z., Ghoreishi, F.S., et al.: Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. J. Control Release 235, 205–221 (2016). https://doi.org/10.1016/j.jconrel.2016.05.062

    Article  CAS  Google Scholar 

  5. Rajan, S.A., Sahu, N.K.: Inductive calorimetric assessment of iron oxide nano-octahedrons for magnetic fluid hyperthermia. Colloids Surf. Physicochem. Eng. Asp 603, 125210 (2020). https://doi.org/10.1016/j.colsurfa.2020.125210

    Article  CAS  Google Scholar 

  6. Danewalia, S.S., Singh, K.: Bioactive glasses and glass–ceramics for hyperthermia treatment of cancer: state-of-art, challenges, and future perspectives. Mater. Today Bio. 10, 100100 (2021). https://doi.org/10.1016/j.mtbio.2021.100100

    Article  CAS  Google Scholar 

  7. Bañobre-López, M., Teijeiro, A., Rivas, J.: Magnetic nanoparticle-based hyperthermia for cancer treatment. Reports Pract. Oncol. Radiother. (2013)

    Google Scholar 

  8. Hedayatnasab, Z, Abnisa, F., Mohd Ashri Wan Daud, W.: Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application (2017). https://doi.org/10.1016/j.matdes.2017.03.036

  9. Lima-Tenório, M.K.,, Gómez Pineda, E.A., Ahmad, N.M. et al.: Magnetic nanoparticles: In Vivo Cancer Diagnosis And Therapy. Int. J. Pharm. (2015)

    Google Scholar 

  10. Dey, C., Ghosh, A., Ahir, M., et al.: Improvement of anticancer drug release by cobalt ferrite magnetic nanoparticles through combined ph and temperature responsive technique. Chem. Phys. Chem. 19, 2872–2878 (2018). https://doi.org/10.1002/cphc.201800535

    Article  CAS  Google Scholar 

  11. Chatterjee, D.K., Diagaradjane, P., Krishnan, S.: Nanoparticle-mediated hyperthermia in cancer therapy. Ther. Deliv. 2, 1001–1014 (2011). https://doi.org/10.4155/tde.11.72

    Article  CAS  Google Scholar 

  12. Das, P., Colombo, M., Prosperi, D.: Recent advances in magnetic fluid hyperthermia for cancer therapy. Colloids Surf. B Biointerfaces 174, 42–55 (2019). https://doi.org/10.1016/J.COLSURFB.2018.10.051

    Article  CAS  Google Scholar 

  13. Sargentelli, V., Ferreira, A.P.: Nanopartícilas Magnéticas: O Cobalto. Eclet Quim 35,153–163. https://doi.org/10.1590/S0100-46702010000400020

  14. Fontanive, V.C.P., Khalil, N.M., Cotica, L.F., Mainardes, R.M.: Aspectos físicos e biológicos de nanopartículas de ferritas magnéticas. Rev Ciencias Farm Basica e Apl 35, 549–558 (2014)

    Google Scholar 

  15. Ibach H, Lüth H (2010) Solid-state physics: An introduction to principles of materials science

    Google Scholar 

  16. Magnetism in the solid state. Mater Today (2013). https://doi.org/10.1016/s1369-7021(03)00433-4

  17. Fotukian, S.M., Barati, A., Soleymani, M., Alizadeh, A.M.: Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. J. Alloys Compd. 152548 (2019). https://doi.org/10.1016/j.jallcom.2019.152548

  18. Néel, L., Louis Néel Professeur à la, P.M.: Théorie du traînage magnétique des substances massives dans le domaine de Rayleigh Théorie Du Traînage Magnétique Des Substances Massives Dans Le Domaine De Rayleigh. J. Phys. Radium. 11 (1950). https://doi.org/10.1051/jphysrad:0195000110204900ï

  19. Mohn, P.: Magnetism in the Solid State : An Introduction. Springer (2006)

    Google Scholar 

  20. Soares, P.I.P., Romão, J., Matos, R., et al.: Design and engineering of magneto-responsive devices for cancer theranostics: Nano to macro perspective. Prog. Mater. Sci. 116, 100742 (2021). https://doi.org/10.1016/j.pmatsci.2020.100742

    Article  CAS  Google Scholar 

  21. Rahmani, R., Gharanfoli, M., Gholamin, M., et al.: Plant-mediated synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) using aloe vera and flaxseed extracts and evaluation of their cellular toxicities. Ceram Int. 46, 3051–3058 (2020). https://doi.org/10.1016/j.ceramint.2019.10.005

    Article  CAS  Google Scholar 

  22. Sawatzky, G.A., Van Der Woude, F., Morrish, A.H.: Mössbauer study of several ferrimagnetic spinels. Phys. Rev. 187, 747–757 (1969). https://doi.org/10.1103/PhysRev.187.747

    Article  CAS  Google Scholar 

  23. Bushkova, V.S., Yaremiy, I.P.: Magnetic, electric, mechanical, and optical properties of NiCrxFe2−xO4ferrites. J. Magn. Magn. Mater. 461, 37–47 (2018). https://doi.org/10.1016/j.jmmm.2018.04.025

    Article  CAS  Google Scholar 

  24. Kefeni, K.K., Msagati, T.A.M., Mamba, B.B.: Ferrite nanoparticles: Synthesis, characterisation, and applications in electronic device. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. (2017)

    Google Scholar 

  25. Laurent, S., Dutz, S., Häfeli, U.O., Mahmoudi, M.: Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. (2011)

    Google Scholar 

  26. Dadfar, S.M., Roemhild, K.,, Drude, N.I. et al.: Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv. Drug Deliv. Rev. (2019)

    Google Scholar 

  27. Berry, C.C., Curtis, A.S.G.: Functionalisation of magnetic nanoparticles for applications in biomedicine. J. Phys. D Appl. Phys. 36, R198–R206 (2003). https://doi.org/10.1088/0022-3727/36/13/203

    Article  CAS  Google Scholar 

  28. Lévy, M., Wilhelm, C., Siaugue, J.M., et al.: Magnetically induced hyperthermia: Size-dependent heating power of γ-Fe2O3 nanoparticles. J. Phys. Condens. Matter. (2008). https://doi.org/10.1088/0953-8984/20/20/204133

    Article  Google Scholar 

  29. Gawali, S.L., Shelar, S.B., Gupta, J., et al.: Immobilization of protein on Fe3O4 nanoparticles for magnetic hyperthermia application. Int. J. Biol. Macromol. 166, 851–860 (2021). https://doi.org/10.1016/j.ijbiomac.2020.10.241

    Article  CAS  Google Scholar 

  30. Asgari, M., Miri, T., Soleymani, M., Barati, A.: A novel method for in situ encapsulation of curcumin in magnetite-silica core-shell nanocomposites: A multifunctional platform for controlled drug delivery and magnetic hyperthermia therapy. J. Mol. Liq. 324, 114731 (2021). https://doi.org/10.1016/j.molliq.2020.114731

    Article  CAS  Google Scholar 

  31. Ge, X., Fu, M., Kong, X.: Atomic layer deposition of γ-Fe2O3 nanoparticles on multi-wall carbon nanotubes for magnetic drug delivery and liver cancer treatment. Ceram. Int. 46, 26557–26563 (2020). https://doi.org/10.1016/j.ceramint.2020.07.123

    Article  CAS  Google Scholar 

  32. Shaw, S.K., Kailashiya, J., Gangwar, A., et al.: γ-Fe2O3 nanoflowers as efficient magnetic hyperthermia and photothermal agent. Appl. Surf. Sci. 560, 150025 (2021). https://doi.org/10.1016/j.apsusc.2021.150025

    Article  CAS  Google Scholar 

  33. Wang, W., Li, F., Li, S., et al.: M2 macrophage-targeted iron oxide nanoparticles for magnetic resonance image-guided magnetic hyperthermia therapy. J. Mater. Sci. Technol. 81, 77–87 (2021). https://doi.org/10.1016/j.jmst.2020.11.058

    Article  Google Scholar 

  34. Khmara, I., Strbak, O., Zavisova, V., et al.: Chitosan-stabilized iron oxide nanoparticles for magnetic resonance imaging. J. Magn. Magn. Mater. 474, 319–325 (2019). https://doi.org/10.1016/j.jmmm.2018.11.026

    Article  CAS  Google Scholar 

  35. Manohar, A., Geleta, D.D., Krishnamoorthi, C., Lee, J.: Synthesis, characterization and magnetic hyperthermia properties of nearly monodisperse CoFe2O4 nanoparticles. Ceram. Int. 46, 28035–28041 (2020). https://doi.org/10.1016/j.ceramint.2020.07.298

    Article  CAS  Google Scholar 

  36. Munjal, S., Khare, N., Sivakumar, B., Sakthikumar, D.N.: Citric acid coated CoFe2O4 nanoparticles transformed through rapid mechanochemical ligand exchange for efficient magnetic hyperthermia applications. J. Magn. Magn. Mater. 477, 388–395 (2019). https://doi.org/10.1016/j.jmmm.2018.09.007

    Article  CAS  Google Scholar 

  37. Phong, P.T., Phuc, N.X., Nam, P.H., et al.: Size-controlled heating ability of CoFe2O4 nanoparticles for hyperthermia applications. Phys. B Condens. Matter. 531, 30–34 (2018). https://doi.org/10.1016/j.physb.2017.12.010

    Article  CAS  Google Scholar 

  38. Suleman, M., Riaz, S.: In silico study of hyperthermia treatment of liver cancer using core-shell CoFe2O4@MnFe2O4 magnetic nanoparticles. J. Magn. Magn. Mater. 498, 166143 (2020). https://doi.org/10.1016/j.jmmm.2019.166143

    Article  CAS  Google Scholar 

  39. Egizbek, K., Kozlovskiy, A.L., Ludzik, K., et al.: Stability and cytotoxicity study of NiFe2O4 nanocomposites synthesized by coprecipitation and subsequent thermal annealing. Ceram. Int. 46, 16548–16555 (2020). https://doi.org/10.1016/j.ceramint.2020.03.222

    Article  CAS  Google Scholar 

  40. Lemine, O.M., Madkhali, N., Hjiri, M., et al.: Comparative heating efficiency of hematite (α-Fe2O3) and nickel ferrite nanoparticles for magnetic hyperthermia application. Ceram. Int. 46, 28821–28827 (2020). https://doi.org/10.1016/j.ceramint.2020.08.047

    Article  CAS  Google Scholar 

  41. Fotukian, S.M., Barati, A., Soleymani, M., Alizadeh, A.M.: Solvothermal synthesis of CuFe2O4 and Fe3O4 nanoparticles with high heating efficiency for magnetic hyperthermia application. J. Alloys Compd. 816, 152548 (2020). https://doi.org/10.1016/j.jallcom.2019.152548

    Article  CAS  Google Scholar 

  42. Kombaiah, K., Vijaya, J.J., Kennedy, L.J., et al.: Conventional and microwave combustion synthesis of optomagnetic CuFe2O4 nanoparticles for hyperthermia studies. J. Phys. Chem. Solids 115, 162–171 (2018). https://doi.org/10.1016/j.jpcs.2017.12.024

    Article  CAS  Google Scholar 

  43. Kerroum, M.A.A., Essyed, A., Iacovita, C., et al.: The effect of basic pH on the elaboration of ZnFe2O4 nanoparticles by coprecipitation method: Structural, magnetic and hyperthermia characterization. J. Magn. Magn. Mater. 478, 239–246 (2019). https://doi.org/10.1016/j.jmmm.2019.01.081

    Article  CAS  Google Scholar 

  44. Amiri, M., Gholami, T., Amiri, O., et al.: The magnetic inorganic-organic nanocomposite based on ZnFe2O4-Imatinib-liposome for biomedical applications, in vivo and in vitro study. J. Alloys Compd. 849, 156604 (2020). https://doi.org/10.1016/j.jallcom.2020.156604

    Article  CAS  Google Scholar 

  45. Patade, S.R., Andhare, D.D., Somvanshi, S.B., et al.: Self-heating evaluation of superparamagnetic MnFe2O4 nanoparticles for magnetic fluid hyperthermia application towards cancer treatment. Ceram. Int. 46, 25576–25583 (2020). https://doi.org/10.1016/j.ceramint.2020.07.029

    Article  CAS  Google Scholar 

  46. Mondal, D.K., Borgohain, C., Paul, N., Borah, J.P.: Improved heating efficiency of bifunctional MnFe2O4/ZnS nanocomposite for magnetic hyperthermia application. Phys. B Condens. Matter. 567, 122–128 (2019). https://doi.org/10.1016/j.physb.2018.11.068

    Article  CAS  Google Scholar 

  47. Mondal, D.K., Borgohain, C., Paul, N., Borah, J.P.: Tuning hyperthermia efficiency of MnFe2O4/ZnS nanocomposites by controlled ZnS concentration. J. Mater. Res. Technol. 8, 5659–5670 (2019). https://doi.org/10.1016/j.jmrt.2019.09.034

    Article  CAS  Google Scholar 

  48. Tonelli, A.M., Venturini, J., Arcaro, S., et al.: Novel core-shell nanocomposites based on TiO2-covered magnetic Co3O4 for biomedical applications. J. Biomed. Mater. Res. - Part B Appl. Biomater. 108, 1879–1887 (2020). https://doi.org/10.1002/jbm.b.34529

    Article  CAS  Google Scholar 

  49. Avancini, T.G., Souza, M.T., de Oliveira, A.P.N., et al.: Magnetic properties of magnetite-based nano-glass-ceramics obtained from a Fe-rich scale and borosilicate glass wastes. Ceram. Int. 45, 4360–4367 (2019). https://doi.org/10.1016/j.ceramint.2018.11.111

    Article  CAS  Google Scholar 

  50. Phumying, S., Labuayai, S., Swatsitang, E., et al.: Nanocrystalline spinel ferrite (MFe2O4, M = Ni Co, Mn, Mg, Zn) powders prepared by a simple aloe vera plant-extracted solution hydrothermal route. Mater. Res. Bull. 48, 2060–2065 (2013). https://doi.org/10.1016/J.MATERRESBULL.2013.02.042

    Article  CAS  Google Scholar 

  51. Vitor, P.A.M., Venturini, J., da Cunha, J.B.M., Bergmann, C.P.: The influence of cation distribution on the magnetic properties of mixed Co1-yNiyFe2O4 nanoferrites produced by the sol-gel method. J. Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2020.156799

    Article  Google Scholar 

  52. Shaterabadi, Z., Nabiyouni, G., Soleymani, M.: Optimal size for heating efficiency of superparamagnetic dextran-coated magnetite nanoparticles for application in magnetic fluid hyperthermia. Phys. C Supercond. Appl. 549, 84–87 (2018). https://doi.org/10.1016/j.physc.2018.02.060

    Article  CAS  Google Scholar 

  53. Asri, N.S., Tetuko, A.P., Esmawan, A., et al.: Syntheses of ferrofluids using polyethylene glycol (PEG) coated magnetite (Fe3O4), citric acid, and water as the working liquid in a cylindrical heat pipe. Nano-Struct. Nano-Objects 25, 100654 (2021). https://doi.org/10.1016/j.nanoso.2020.100654

    Article  CAS  Google Scholar 

  54. Jouyandeh, M., Ganjali, M.R., Ali, J.A., et al.: Curing epoxy with polyvinylpyrrolidone (PVP) surface-functionalized NixFe3-xO4 magnetic nanoparticles. Prog. Org. Coat. 136, 105259 (2019). https://doi.org/10.1016/j.porgcoat.2019.105259

    Article  CAS  Google Scholar 

  55. Shagholani, H., Ghoreishi, S.M., Mousazadeh, M.: Improvement of interaction between PVA and chitosan via magnetite nanoparticles for drug delivery application. Int. J. Biol. Macromol. 78, 130–136 (2015). https://doi.org/10.1016/j.ijbiomac.2015.02.042

    Article  CAS  Google Scholar 

  56. Pan, B.-F., Gao, F., Ao, L.-M.: Investigation of interactions between dendrimer-coated magnetite nanoparticles and bovine serum albumin. J. Magn. Magn. Mater. 293, 252–258 (2005). https://doi.org/10.1016/j.jmmm.2005.02.018

    Article  CAS  Google Scholar 

  57. Han, Y., Lei, S., Lu, J., et al.: Potential use of SERS-assisted theranostic strategy based on Fe3O4/Au cluster/shell nanocomposites for bio-detection, MRI, and magnetic hyperthermia. Mater. Sci. Eng. C 64, 199–207 (2016). https://doi.org/10.1016/j.msec.2016.03.090

    Article  CAS  Google Scholar 

  58. Hirosawa, F., Iwasaki, T.: A comparative study of the magnetic induction heating properties of rare earth (RE = Y, La, Ce, Pr, Nd, Gd and Yb)-substituted magnesium–zinc ferrites. Solid State Sci. 118, 106655 (2021). https://doi.org/10.1016/j.solidstatesciences.2021.106655

    Article  CAS  Google Scholar 

  59. Koutsoumbou, X., Tsiaoussis, I., Bulai, G.A., et al.: CoFe2-xRExO4 (RE=Dy, Yb, Gd) magnetic nanoparticles for biomedical applications. Phys. B Condens. Matter. 606, 412849 (2021). https://doi.org/10.1016/j.physb.2021.412849

    Article  CAS  Google Scholar 

  60. Yu, X., Wang, L., Li, K. et al.: Tuning dipolar effects on magnetic hyperthermia of Zn0.3Fe2.7O4/SiO2 nanoparticles by silica shell. J. Magn. Magn. Mater. 521, 167483 (2021). https://doi.org/10.1016/j.jmmm.2020.167483

  61. Vasilakaki, M., Gemenetzi, F., Devlin, E., et al.: Size effects on the magnetic behavior of γ-Fe2O3 core/SiO2 shell nanoparticle assemblies. J. Magn. Magn. Mater. 522, 167570 (2021). https://doi.org/10.1016/j.jmmm.2020.167570

    Article  CAS  Google Scholar 

  62. Islam, M.S., Kusumoto, Y., Abdulla-Al-Mamun, M., Horie, Y.: Photocatalytic and AC magnetic-field induced enhanced cytotoxicity of Fe3O4–TiO2 core-shell nanocomposites against HeLa cells. Catal. Commun. 16, 39–44 (2011). https://doi.org/10.1016/j.catcom.2011.08.039

    Article  CAS  Google Scholar 

  63. Zhang, L., He, R., Gu, H.-C.: Oleic acid coating on the monodisperse magnetite nanoparticles. Appl. Surf. Sci.. 253, 2611–2617 (2006). https://doi.org/10.1016/j.apsusc.2006.05.023

    Article  CAS  Google Scholar 

  64. Urian, Y.A., Atoche-Medrano, J.J., Quispe, L.T., et al.: Study of the surface properties and particle-particle interactions in oleic acid-coated Fe3O4 nanoparticles. J. Magn. Magn. Mater. 525, 167686 (2021). https://doi.org/10.1016/j.jmmm.2020.167686

    Article  CAS  Google Scholar 

  65. Gholibegloo, E., Mortezazadeh, T., Salehian, F., et al.: Folic acid decorated magnetic nanosponge: An efficient nanosystem for targeted curcumin delivery and magnetic resonance imaging. J. Colloid. Interface Sci. 556, 128–139 (2019). https://doi.org/10.1016/j.jcis.2019.08.046

    Article  CAS  Google Scholar 

  66. Ivanova, A.V., Nikitin, A.A., Gabashvily, A.N., et al.: Synthesis and intensive analysis of antibody labeled single core magnetic nanoparticles for targeted delivery to the cell membrane. J. Magn. Magn. Mater. 521, 167487 (2021). https://doi.org/10.1016/j.jmmm.2020.167487

    Article  CAS  Google Scholar 

  67. Lemine, O.M., Omri, K., Iglesias, M., et al.: γ-Fe2O3 by sol–gel with large nanoparticles size for magnetic hyperthermia application. J. Alloys Compd. 607, 125–131 (2014). https://doi.org/10.1016/j.jallcom.2014.04.002

    Article  CAS  Google Scholar 

  68. PhD, S.O.A., Alnasir, M.H., Botha, S., et al.: The role of polyethylene glycol on the microstructural, magnetic, and specific absorption rate in thermoablation properties of Mn-Zn ferrite nanoparticles by sol–gel protocol. Eur. Polym. J. 132, 109739 (2020). https://doi.org/10.1016/j.eurpolymj.2020.109739

    Article  CAS  Google Scholar 

  69. Jasso-Terán, R.A., Cortés-Hernández, D.A., Sánchez-Fuentes, H.J., et al.: Synthesis, characterization and hemolysis studies of Zn(1–x)CaxFe2O4 ferrites synthesized by sol-gel for hyperthermia treatment applications. J. Magn. Magn. Mater. 427, 241–244 (2017). https://doi.org/10.1016/j.jmmm.2016.10.099

    Article  CAS  Google Scholar 

  70. Sánchez, J., Cortés-Hernández, D.A., Escobedo-Bocardo, J.C., et al.: Sol-gel synthesis of MnxGa1−xFe2O4 nanoparticles as candidates for hyperthermia treatment. Ceram. Int. 42, 13755–13760 (2016). https://doi.org/10.1016/j.ceramint.2016.05.174

    Article  CAS  Google Scholar 

  71. Mohammadi, H., Nekobahr, E., Akhtari, J., et al.: Synthesis and characterization of magnetite nanoparticles by coprecipitation method coated with biocompatible compounds and evaluation of in-vitro cytotoxicity. Toxicol. Rep. 8, 331–336 (2021). https://doi.org/10.1016/j.toxrep.2021.01.012

    Article  CAS  Google Scholar 

  72. Kusigerski, V., Illes, E., Blanusa, J., et al.: Magnetic properties and heating efficacy of magnesium doped magnetite nanoparticles obtained by coprecipitation method. J. Magn. Magn. Mater. 475, 470–478 (2019). https://doi.org/10.1016/j.jmmm.2018.11.127

    Article  CAS  Google Scholar 

  73. Klencsár, Z., Ábrahám, A., Szabó, L., et al.: The effect of preparation conditions on magnetite nanoparticles obtained via chemical coprecipitation. Mater. Chem. Phys. (2018). https://doi.org/10.1016/j.matchemphys.2018.10.049

    Article  Google Scholar 

  74. Oanh Vuong, T.K., Le, T.T., Do, H.D., et al.: PMAO-assisted thermal decomposition synthesis of high-stability ferrofluid based on magnetite nanoparticles for hyperthermia and MRI applications. Mater. Chem. Phys. 245, 122762 (2020). https://doi.org/10.1016/j.matchemphys.2020.122762

    Article  CAS  Google Scholar 

  75. Zargar, T., Kermanpur, A., Labbaf, S., et al.: PEG coated Zn0.3Fe2.7O4 nanoparticles in the presence of <alpha>Fe2O3 phase synthesized by citric acid assisted hydrothermal reduction process for magnetic hyperthermia applications. Mater. Chem. Phys. 212, 432–439 (2018). https://doi.org/10.1016/j.matchemphys.2018.03.054

    Article  CAS  Google Scholar 

  76. Chin, A.B., Yaacob, I.I.: Synthesis and characterization of magnetic iron oxide nanoparticles via w/o microemulsion and Massart’s procedure. J. Mater. Process. Technol. 191, 235–237 (2007). https://doi.org/10.1016/j.jmatprotec.2007.03.011

    Article  CAS  Google Scholar 

  77. Zhang, G., Liao, Y., Baker, I.: Surface engineering of core/shell iron/iron oxide nanoparticles from microemulsions for hyperthermia. Mater. Sci. Eng. C 30, 92–97 (2010). https://doi.org/10.1016/j.msec.2009.09.003

    Article  CAS  Google Scholar 

  78. Panta, P.C., Romero, R.P.P., Forte, S.K., Bergmann, C.P.: Magnetic synthesis and characterization of superparamagnetic nanoparticles iron oxide stabilized with dextran. In: Ceramic Transactions, pp. 137–145 (2014)

    Google Scholar 

  79. Mounkachi, O., Lamouri, R., Abraime, B., et al.: Exploring the magnetic and structural properties of Nd-doped Cobalt nano-ferrite for permanent magnet applications. Ceram. Int. 43, 14401–14404 (2017). https://doi.org/10.1016/j.ceramint.2017.07.209

    Article  CAS  Google Scholar 

  80. Milanovic, M., Stijepovic, I., Pavlovic, V., Srdic, V.V.: Functionalization of zinc ferrite nanoparticles: Influence of modification procedure on colloidal stability. Process Appl. Ceram. (2016). https://doi.org/10.2298/PAC1604287M

    Article  Google Scholar 

  81. Millot, N., Le Gallet, S., Aymes, D., et al.: Spark plasma sintering of cobalt ferrite nanopowders prepared by coprecipitation and hydrothermal synthesis. J. Eur. Ceram. Soc. (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.141

    Article  Google Scholar 

  82. Liu, S., Yu, B., Wang, S., et al.: Preparation, surface functionalization and application of Fe3O4 magnetic nanoparticles. Adv. Colloid. Interface Sci. 281, 102165 (2020). https://doi.org/10.1016/j.cis.2020.102165

    Article  CAS  Google Scholar 

  83. Majidi, S., Zeinali Sehrig, F., Farkhani, S.M., et al.: Current methods for synthesis of magnetic nanoparticles. Artif. Cells, Nanomed. Biotechnol. 44, 722–734 (2016). https://doi.org/10.3109/21691401.2014.982802

    Article  CAS  Google Scholar 

  84. Foroughi, F., Hassanzadeh-Tabrizi, S.A., Amighian, J.: Microemulsion synthesis and magnetic properties of hydroxyapatite-encapsulated nano CoFe2O4. J. Magn. Magn. Mater. 382, 182–187 (2015). https://doi.org/10.1016/j.jmmm.2015.01.075

    Article  CAS  Google Scholar 

  85. Rozman, M., Drofenik, M.: Sintering of nanosized MnZn ferrite powders. J. Am. Ceram. Soc. 81, 1757–1764 (2005). https://doi.org/10.1111/j.1151-2916.1998.tb02545.x

    Article  Google Scholar 

  86. Zito, C.A., Orlandi, M.O., Volanti, D.P.: Accelerated microwave-assisted hydrothermal/solvothermal processing: Fundamentals, morphologies, and applications. J. Electroceramics (2018). https://doi.org/10.1007/s10832-018-0128-z

    Article  Google Scholar 

  87. Erhardt, C.S., Caldeira, L.E., Venturini, J., et al.: Sucrose as a sol-gel synthesis additive for tuning spinel inversion and improving the magnetic properties of CoFe2O4 nanoparticles. Ceram. Int. 46, 12759–12766 (2020). https://doi.org/10.1016/j.ceramint.2020.02.044

    Article  CAS  Google Scholar 

  88. Venturini, J., Tonelli, A.M., Wermuth, T.B., et al.: Excess of cations in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A pathway to switching the inversion degree of spinels. J. Magn. Magn. Mater. 482, 1–8 (2019). https://doi.org/10.1016/j.jmmm.2019.03.057

    Article  CAS  Google Scholar 

  89. Venturini, J., Zampiva, R.Y.S., Arcaro, S., Bergmann, C.P.: Sol-gel synthesis of substoichiometric cobalt ferrite (CoFe2O4) spinels: Influence of additives on their stoichiometry and magnetic properties. Ceram. Int. 44, 12381–12388 (2018). https://doi.org/10.1016/j.ceramint.2018.04.026

    Article  CAS  Google Scholar 

  90. Venturini, J., Wermuth, T.B., Machado, M.C., et al.: The influence of solvent composition in the sol-gel synthesis of cobalt ferrite (CoFe2O4): A route to tuning its magnetic and mechanical properties. J. Eur. Ceram. Soc. (2019). https://doi.org/10.1016/J.JEURCERAMSOC.2019.01.030

    Article  Google Scholar 

  91. Wermuth, T.B., Venturini, J., Guaglianoni, W.C., et al.: Enhancement of magnetic and dielectric properties of KNbO3–CoFe2O4 multiferroic composites via thermal treatment. Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.10.060

    Article  Google Scholar 

  92. Choudhury, H.A., Choudhary, A., Sivakumar, M., Moholkar, V.S.: Mechanistic investigation of the sonochemical synthesis of zinc ferrite. Ultrason Sonochem 20, 294–302 (2013). https://doi.org/10.1016/j.ultsonch.2012.06.006

    Article  CAS  Google Scholar 

  93. Yadav, R.S., Kuřitka, I., Vilcakova, J., et al.: Sonochemical synthesis of Gd3+ doped CoFe2O4 spinel ferrite nanoparticles and its physical properties. Ultrason Sonochem 40, 773–783 (2018). https://doi.org/10.1016/J.ULTSONCH.2017.08.024

    Article  CAS  Google Scholar 

  94. Sophia, D., Ragam, M., Arumugam, S.: Synthesis and characterisations of cobalt ferrite nanoparticles. Int. J. Sci. Res. Mod. Educ. 2455–5630 (2016)

    Google Scholar 

  95. Gaudisson, T., Vázquez-Victorio, G., Bañobre-López, M. et al.: The Verwey transition in nanostructured magnetite produced by a combination of chimie douce and spark plasma sintering. J. Appl. Phys. Am. Instit. Phys. Inc. 17E117 (2014)

    Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Coordination for the Improvement of Higher Education Personnel (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES/Brazil), National Council of Technological and Scientific Development (Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq/Brazil; process n. 161197/2020-5; 307761/2019-3) and Fundação de Amparo à Pesquisa e Inovação do Estado de Santa Catarina (Fapesc/Brazil) for supporting this work.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Polla, M.B., Montedo, O.R.K., Arcaro, S. (2022). Nanomaterials for Magnetic Hyperthermia. In: Kopp Alves, A. (eds) Technological Applications of Nanomaterials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-86901-4_10

Download citation

Publish with us

Policies and ethics

Navigation