Log in

Accelerated microwave-assisted hydrothermal/solvothermal processing: Fundamentals, morphologies, and applications

  • Feature Article
  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

This article is designed to serve as a roadmap for understanding the fundamentals, the key advantages and the potential applications of microwave-assisted hydrothermal/solvothermal (MAH/S) processing. MAH/S synthesis is a versatile chemical method for preparing a diversity of materials such as metals, semiconductors, electroceramics, graphene and their composites as bulk powders, thin films, or single crystals. The key to improve performance of these materials is achieving controlled morphologies (0 to 3D dimensionality) that favor desirable physical-chemical phenomena at the surface, and in the bulk of these advanced materials. The main features related to the improvement of the thermal and non-thermal effects associated with the use of microwave power concurrently with hydrothermal or solvothermal methods are discussed. Furthermore, the main crystal growth mechanisms (Ostwald ripening and oriented attachment) of these solids in solution under MAH/S treatment are described. Products synthesized by the MAH/S, particularly of interest in the development of gas sensors, batteries, fuel cells, solar cells and photocatalysts are emphasized. We conclude by envisaging new future directions for the use of this rapid and versatile processing approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. F. Gao, Q.Y. Lu, S. Komarneni, Chem. Mater. 17, 856 (2005)

    Google Scholar 

  2. J. M. Kong, C. V. Wong, Z. Q. Gao, X. T. Chen, Synth. React. Inorganic, Met. Nano-Metal Chem. (2008), pp. 186–188

  3. A.M.R. Galletti, C. Antonetti, A.M. Venezia, G. Giambastiani, Appl. Catal. A Gen. 386, 124 (2010)

    Google Scholar 

  4. S.-W. Lee, L.M. Lozano-Sánchez, V. Rodríguez-González, J. Hazard. Mater. 263 Pt 1, 20 (2013)

    Google Scholar 

  5. V. Moghimifar, A. Raisi, A. Aroujalian, N.B. Bandpey, Adv. Mater. Res. 829, 846 (2013)

    Google Scholar 

  6. W. Cao, L. Chen, Z. Qi, J. Mol. Catal. A Chem. 401, 81 (2015)

    Google Scholar 

  7. S. Komarneni, Q. Li, K.M. Stefansson, R. Roy, J. Mater. Res. 8, 3176 (1993)

    Google Scholar 

  8. J.P. Cheng, Mater. Res. Innov. 1, 44 (1997)

    Google Scholar 

  9. S.F. Liu, I.R. Abothu, S. Komarneni, Mater. Lett. 38, 344 (1999)

    Google Scholar 

  10. A. Dias, V.S.T. Ciminelli, Chem. Mater. 15, 1344 (2003)

    Google Scholar 

  11. P. Wan, W. Yang, X. Wang, J. Hu, H. Zhang, Sensors Actuators B Chem. 214, 36 (2015)

    Google Scholar 

  12. S. Bai, C. Chen, R. Luo, A. Chen, D. Li, Sensors Actuators B Chem. 216, 113 (2015)

    Google Scholar 

  13. F. Ren, G. Zhu, P. Ren, K. Wang, X. Cui, X. Yan, Appl. Surf. Sci. 351, 40 (2015)

    Google Scholar 

  14. H. Meng, W. Yang, K. Ding, L. Feng, Y. Guan, J. Mater. Chem. A 3, 1174 (2015)

    Google Scholar 

  15. S. Khamlich, T. Mokrani, M.S. Dhlamini, B.M. Mothudi, M. Maaza, J. Colloid Interface Sci. 461, 154 (2016)

    Google Scholar 

  16. S. Komarneni, Y.D. Noh, J.Y. Kim, S.H. Kim, H. Katsuki, Z. Naturforsch. Sect. B. J. Chem. Sci. 65, 1033 (2010)

    Google Scholar 

  17. F.-H. Ko, Y.-C. Hsu, M.-T. Wang, G.S. Huang, Microelectron. Eng. 84, 1300 (2007)

    Google Scholar 

  18. C.D. Madhusoodana, R.N. Das, Y. Kameshima, K. Okada, J. Mater. Sci. 41, 1481 (2006)

    Google Scholar 

  19. J. Wang, G. Du, R. Zeng, B. Niu, Z. Chen, Z. Guo, S. Dou, Electrochim. Acta 55, 4805 (2010)

    Google Scholar 

  20. R.C. Lima, L.R. Macario, J.W.M. Espinosa, V.M. Longo, R. Erlo, N.L. Marana, J.R. Sambrano, M.L. dos Santos, A.P. Moura, P.S. Pizani, J. Andrés, E. Longo, J.A. Varela, J. Phys. Chem. A 112, 8970 (2008)

    Google Scholar 

  21. D. Zhang, G. Li, X. Yang, and J. C. Yu, Chem. Commun. (Camb). 4381 (2009)

  22. M.S. Anwar, S. Kumar, F. Ahmed, G.W. Kim, B.H. Koo, J. Nanosci. Nanotechnol. 12, 5523 (2012)

    Google Scholar 

  23. Z. Zhu, Y. Zhang, Y. Zhang, H. Liu, C. Zhu, Y. Wu, Ceram. Int. 39, 2567 (2013)

    Google Scholar 

  24. D.E. Motaung, G.H. Mhlongo, S.S. Nkosi, G.F. Malgas, B.W. Mwakikunga, E. Coetsee, H.C. Swart, H.M.I. Abdallah, T. Moyo, S.S. Ray, ACS Appl. Mater. Interfaces 6, 8981 (2014)

    Google Scholar 

  25. M. Poupon, N. Barrier, S. Petit, S. Clevers, V. Dupray, Inorg. Chem. 54, 5660 (2015)

    Google Scholar 

  26. L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu, M. Zong, Y. Wang, Nanoscale 6, 3157 (2014)

    Google Scholar 

  27. S.H. Jhung, J.-H. Lee, P.M. Forster, G. Férey, A.K. Cheetham, J.-S. Chang, Chemistry 12, 7899 (2006)

    Google Scholar 

  28. W. Liu, L. Ye, X. Liu, L. Yuan, X. Lu, J. Jiang, Inorg. Chem. Commun. 11, 1250 (2008)

    Google Scholar 

  29. Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, H. Zhong, CrystEngComm 14, 1760 (2012)

    Google Scholar 

  30. J. Huang, C. **a, L. Cao, X. Zeng, Mater. Sci. Eng. B 150, 187 (2008)

    Google Scholar 

  31. J. Ji, L.L. Zhang, H. Ji, Y. Li, X. Zhao, X. Bai, X. Fan, F. Zhang, R.S. Ruoff, ACS Nano 7, 6237 (2013)

    Google Scholar 

  32. L. Xu, Y.-S. Ding, C.-H. Chen, L. Zhao, C. Rimkus, R. Joesten, S.L. Suib, Chem. Mater. 20, 308 (2008)

    Google Scholar 

  33. Y. Liu, L. **a, Y. Lu, S. Dai, M. Takeguchi, H. Hong, Z. Pan, J. Colloid Interface Sci. 381, 24 (2012)

    Google Scholar 

  34. C. Yang, F. **ao, J. Wang, X. Su, Sensors Actuators B Chem. 207, 177 (2015)

    Google Scholar 

  35. C.-Y. Wu, D.S. Raja, C.-C. Yang, C.-T. Yeh, Y.-R. Chen, C.-Y. Li, B.-T. Ko, C.-H. Lin, CrystEngComm 16, 9308 (2014)

    Google Scholar 

  36. M. Zhou, Y. Hu, Y. Liu, W. Yang, H. Qian, CrystEngComm 14, 7686 (2012)

    Google Scholar 

  37. J.K. Vaishnav, S.S. Arbuj, S.B. Rane, D.P. Amalnerkar, RSC Adv. 4, 47637 (2014)

    Google Scholar 

  38. T. Cetinkaya, U. Tocoglu, M. Uysal, M.O. Guler, H. Akbulut, Microelectron. Eng. 126, 54 (2014)

    Google Scholar 

  39. Z. Cui, Y. Zhang, S. Li, S. Ge, Catal. Commun. 72, 97 (2015)

    Google Scholar 

  40. O. Mendiuk, M. Nawrocki, L. Kepinski, Ceram. Int. 42, 1998 (2016)

    Google Scholar 

  41. R. Adhikari, G. Gyawali, T.H. Kim, T. Sekino, S.W. Lee, Mater. Lett. 91, 294 (2013)

    Google Scholar 

  42. M.L. Moreira, G.P. Mambrini, D.P. Volanti, E.R. Leite, M.O. Orlandi, P.S. Pizani, V.R. Mastelaro, C.O. Paiva-Santos, E. Longo, J.A. Varela, Chem. Mater. 20, 5381 (2008)

    Google Scholar 

  43. A. Rizzuti, M. Dassisti, P. Mastrorilli, M.C. Sportelli, N. Cioffi, R.A. Picca, E. Agostinelli, G. Varvaro, R. Caliandro, J. Nanopart. Res. 17, 408 (2015)

    Google Scholar 

  44. K. Byrappa, T. Ohachi, Crystal Growth Technology (William Andrew Pub. ;Springer, Norwich, N.Y. Berlin; New York, 2003)

  45. K. Byrappa, M. Yoshimura, Handbook of Hydrothermal Technology: A Technology for Crystal Growth and Materials Processing, 1st ed (Noyes Publications, Park Ridge, 2001)

    Google Scholar 

  46. M. Yoshimura, K. Byrappa, J. Mater. Sci. 43, 2085 (2008)

    Google Scholar 

  47. K. Byrappa, T. Adschiri, Prog. Cryst. Growth Charact. Mater. 53, 117 (2007)

    Google Scholar 

  48. S. Diodati, P. Dolcet, M. Casarin, S. Gross, Chem. Rev. 115(20), 11449 (2015)

    Google Scholar 

  49. I. Bilecka, M. Niederberger, Nanoscale 2, 1358 (2010)

    Google Scholar 

  50. R.S. Varma, Green Chem. 1, 43 (1999)

    Google Scholar 

  51. V. Polshettiwar, R.S. Varma, Acc. Chem. Res. 41, 629 (2008)

    Google Scholar 

  52. V. Polshettiwar, M.N. Nadagouda, R.S. Varma, Aust. J. Chem. 62, 16 (2009)

    Google Scholar 

  53. M.N. Nadagouda, R.S. Varma, Cryst. Growth Des. 8, 291 (2008)

    Google Scholar 

  54. V. Polshettiwar, R.S. Varma, Green Chem. 12, 743 (2010)

    Google Scholar 

  55. V. Polshettiwar, R.S. Varma, Chem. Soc. Rev. 37, 1546 (2008)

    Google Scholar 

  56. V. Polshettiwar, R.S. Varma, Curr. Opin. Drug Discov. Dev. 10, 723 (2007)

    Google Scholar 

  57. B. Baruwati, V. Polshettiwar, R.S. Varma, Green Chem. 11, 926 (2009)

    Google Scholar 

  58. C. Gabriel, S. Gabriel, E.H. Grant, B.S.J. Halstead, D.M.P. Mingos, Chem. Soc. Rev. 27, 213 (1998)

    Google Scholar 

  59. D.M.P. Mingos, D.R. Baghurst, Chem. Soc. Rev. 20, 1 (1991)

    Google Scholar 

  60. B. L. Hayes, Microwave Synthesis: Chemistry at the Speed of Light (CEM Publishing, 2002)

  61. M.B. Gawande, S.N. Shelke, R. Zboril, R.S. Varma, Acc. Chem. Res. 47, 1338 (2014)

    Google Scholar 

  62. J.-S. Schanche, Mol. Divers. 7, 291 (2003)

    Google Scholar 

  63. A. de la Hoz, A. Diaz-Ortiz, A. Moreno, Chem. Soc. Rev. 34, 164 (2005)

    Google Scholar 

  64. K. Huang, X. Yang, W. Hua, G. Jia, L. Yang, New J. Chem. 33, 1486 (2009)

    Google Scholar 

  65. C. Antonio, R.T. Deam, Phys. Chem. Chem. Phys. 9, 2976 (2007)

    Google Scholar 

  66. J. Robinson, S. Kingman, D. Irvine, P. Licence, A. Smith, G. Dimitrakis, D. Obermayer, C.O. Kappe, Phys. Chem. Chem. Phys. 12, 4750 (2010)

    Google Scholar 

  67. M.R. Rosana, Y. Tao, A.E. Stiegman, G.B. Dudley, Chem. Sci. 3, 1240 (2012)

    Google Scholar 

  68. J.-Y. Li, S. **ong, J. Pan, Y. Qian, J. Phys. Chem. C (2010)

  69. D.P. Volanti, M.O. Orlandi, J. Andres, E. Longo, CrystEngComm 12, 1696 (2010)

    Google Scholar 

  70. L. Qin, J. Xu, X. Dong, Q. Pan, Z. Cheng, Q. **ang, F. Li, Nanotechnology 19, 185705 (2008)

    Google Scholar 

  71. A. Birkel, F. Reuter, D. Koll, S. Frank, R. Branscheid, M. Panthofer, E. Rentschler, W. Tremel, CrystEngComm 13, 2487 (2011)

    Google Scholar 

  72. S. Xuan, Y.-X.J. Wang, J.C. Yu, K. Cham-Fai Leung, Chem. Mater. 21, 5079 (2009)

    Google Scholar 

  73. H. Zhang, J. Feng, T. Fei, S. Liu, T. Zhang, Sensors Actuators B Chem. 190, 472 (2014)

    Google Scholar 

  74. G. Neri, S.G. Leonardi, M. Latino, N. Donato, S. Baek, D.E. Conte, P.A. Russo, N. Pinna, Sensors Actuators B Chem. 179, 61 (2013)

    Google Scholar 

  75. Z. Ai, L. Zhang, S. Lee, W. Ho, J. Phys. Chem. C 113, 20896 (2009)

    Google Scholar 

  76. X. Zou, H. Fan, Y. Tian, M. Zhang, X. Yan, Dalton Trans. 44, 7811 (2015)

    Google Scholar 

  77. P. Rai, W.-K. Kwak, Y.-T. Yu, ACS Appl. Mater. Interfaces 5, 3026 (2013)

    Google Scholar 

  78. R. Krishnapriya, S. Praneetha, A. Vadivel Murugan, CrystEngComm 17, 8353 (2015)

    Google Scholar 

  79. J. Chen, H. Bin Yang, J. Miao, H.-Y. Wang, B. Liu, J. Am. Chem. Soc. 136, 15310 (2014)

    Google Scholar 

  80. K. Manseki, Y. Kondo, T. Ban, T. Sugiura, T. Yoshida, Dalton Trans. 42, 3295 (2013)

    Google Scholar 

  81. G. Wulff, Z. Kryst. Mineral 34, 449 (1901)

    Google Scholar 

  82. H. Zhang, M. **, Y. **ong, B. Lim, Y. **a, Acc. Chem. Res. 46, 1783 (2013)

    Google Scholar 

  83. J. Andrés, L. Gracia, A.F. Gouveia, M.M. Ferrer, E. Longo, Nanotechnology 26, 405703 (2015)

    Google Scholar 

  84. H. Cölfen, Mesocrystals and Nonclassical Crystallization, 1st ed (John Wiley & Sons Ltd, Chichester, 2008)

    Google Scholar 

  85. J.W. Mullin, Crystallization, 4th ed (Butterworth-Heinemann, Oxford, 2001)

    Google Scholar 

  86. H. Cölfen, S. Mann, Angew. Chemie Int. Ed. 42, 2350 (2003)

    Google Scholar 

  87. W. Ostwald, Z. Phys. Chem. Stochiometrie Verwandtschaftslehre 34 (1900)

  88. Z. Wu, S. Yang, W. Wu, Nanoscale 8, 1237 (2016)

    Google Scholar 

  89. W. Chen, H. Ruan, Y. Hu, D. Li, Z. Chen, J. **an, J. Chen, X. Fu, Y. Shao, Y. Zheng, CrystEngComm 14, 6295 (2012)

    Google Scholar 

  90. Z. Kozakova, I. Kuritka, N.E. Kazantseva, V. Babayan, M. Pastorek, M. Machovsky, P. Bazant, P. Saha, Dalton Trans. 44, 21099 (2015)

    Google Scholar 

  91. A.P. Moura, L.S. Cavalcante, J.C. Sczancoski, D.G. Stroppa, E.C. Paris, A.J. Ramirez, J.A. Varela, E. Longo, Adv. Powder Technol. 21, 197 (2010)

    Google Scholar 

  92. G.J. Wilson, A.S. Matijasevich, D.R.G. Mitchell, J.C. Schulz, G.D. Will, Langmuir 22, 2016 (2006)

    Google Scholar 

  93. R.L. Penn, J.F. Banfield, Science (80-. ) 281, 969 (1998)

    Google Scholar 

  94. M. Niederberger, H. Cölfen, Phys. Chem. Chem. Phys. 8, 3271 (2006)

    Google Scholar 

  95. N.T.K. Thanh, N. Maclean, S. Mahiddine, Chem. Rev. 114, 7610 (2014)

    Google Scholar 

  96. R.L. Penn, J.A. Soltis, CrystEngComm 16, 1409 (2014)

    Google Scholar 

  97. M. Distaso, M. Mačković, E. Spiecker, W. Peukert, Chemistry 20, 8199 (2014)

    Google Scholar 

  98. S.-W. Cao, Y.-J. Zhu, Nanoscale Res. Lett. 6, 1 (2010)

    Google Scholar 

  99. C.-Y. Cao, Z.-M. Cui, C.-Q. Chen, W.-G. Song, W. Cai, J. Phys. Chem. C 114, 9865 (2010)

    Google Scholar 

  100. S. Vijayakumar, S. Nagamuthu, G. Muralidharan, ACS Appl. Mater. Interfaces 5, 2188 (2013)

    Google Scholar 

  101. T.M. Perfecto, C.A. de Zito, D.P. Volanti, RSC Adv. 6, 105171 (2016)

    Google Scholar 

  102. S. Komarneni, R. Roy, Q.H. Li, Mater. Res. Bull. 27, 1393 (1992)

    Google Scholar 

  103. M. Baghbanzadeh, L. Carbone, P.D. Cozzoli, C.O. Kappe, Angew. Chem. Int. Ed. 50, 11312 (2011)

    Google Scholar 

  104. C.O. Kappe, D. Dallinger, Nat. Rev. Drug Discov. 5, 51 (2006)

    Google Scholar 

  105. C.O. Kappe, Chem. Soc. Rev. 37, 1127 (2008)

    Google Scholar 

  106. D. Dallinger, C.O. Kappe, Chem. Rev. 107, 2563 (2007)

    Google Scholar 

  107. S. Komarneni, D.S. Li, B. Newalkar, H. Katsuki, A.S. Bhalla, Langmuir 18, 5959 (2002)

    Google Scholar 

  108. O.V. Belousov, N.V. Belousova, A.V. Sirotina, L.A. Solovyov, A.M. Zhyzhaev, S.M. Zharkov, Y.L. Mikhlin, Langmuir 27, 11697 (2011)

    Google Scholar 

  109. H.L. Nguyen, L.E.M. Howard, S.R. Giblin, B.K. Tanner, I. Terry, A.K. Hughes, I.M. Ross, A. Serres, H. Bürckstümmer, J.S.O. Evans, J. Mater. Chem. 15, 5136 (2005)

    Google Scholar 

  110. P.N. Njoki, L.V. Solomon, W. Wu, R. Alam, M.M. Maye, Chem. Commun. (Camb.) 47, 10079 (2011)

    Google Scholar 

  111. W. Wu, P.N. Njoki, H. Han, H. Zhao, E.A. Schiff, P.S. Lutz, L. Solomon, S. Matthews, M.M. Maye, J. Phys. Chem. C 115, 9933 (2011)

    Google Scholar 

  112. Y. Wang, J. Tian, C. Fei, L. Lv, X. Liu, Z. Zhao, G. Cao, J. Phys. Chem. C 118, 25931 (2014)

    Google Scholar 

  113. Z. Wang, X. Zhou, Z. Li, Y. Zhuo, Y. Gao, Q. Yang, X. Li, G. Lu, RSC Adv. 4, 23281 (2014)

    Google Scholar 

  114. A. Pimentel, D. Nunes, P. Duarte, J. Rodrigues, F.M. Costa, T. Monteiro, R. Martins, E. Fortunato, J. Phys. Chem. C 118, 14629 (2014)

    Google Scholar 

  115. X. Li, S. Yao, J. Liu, P. Sun, Y. Sun, Y. Gao, G. Lu, Sensors Actuators B Chem. 220, 68 (2015)

    Google Scholar 

  116. K. Manseki, T. Sugiura, T. Yoshida, New J. Chem. 38, 598 (2014)

    Google Scholar 

  117. A. Phuruangrat, D.J. Ham, S.J. Hong, S. Thongtem, J.S. Lee, J. Mater. Chem. 20, 1683 (2010)

    Google Scholar 

  118. J. Sungpanich, T. Thongtem, S. Thongtem, Ceram. Int. 38, 1051 (2012)

    Google Scholar 

  119. T.M. Perfecto, C.A. Zito, D.P. Volanti, CrystEngComm 19, 2733 (2017)

    Google Scholar 

  120. P. Rai, H.-M. Song, Y.-S. Kim, M.-K. Song, P.-R. Oh, J.-M. Yoon, Y.-T. Yu, Mater. Lett. 68, 90 (2012)

    Google Scholar 

  121. R.A. Silva, M.O. Orlandi, J. Nanomater., 4054058 (2016)

  122. F.V. Motta, R.C. Lima, A.P.A. Marques, E.R. Leite, J.A. Varela, E. Longo, Mater. Res. Bull. 45, 1703 (2010)

    Google Scholar 

  123. K. Chen, Y. Dong Noh, W. Huang, J. Ma, S. Komarneni, D. Xue, Ceram. Int. 40, 2877 (2014)

    Google Scholar 

  124. M. Song, P. Rai, K.-J. Ko, S.-H. Jeon, B.-S. Chon, C.-H. Lee, Y.-T. Yu, RSC Adv. 4, 3529 (2014)

    Google Scholar 

  125. P.-S. Shen, Y.-C. Tai, P. Chen, Y.-C. Wu, J. Power Sources 247, 444 (2014)

    Google Scholar 

  126. S. Yoon, E.-S. Lee, A. Manthiram, Inorg. Chem. 51, 3505 (2012)

    Google Scholar 

  127. Y. Yang, G. Wang, Q. Deng, D.H.L. Ng, H. Zhao, ACS Appl. Mater. Interfaces 6, 3008 (2014)

    Google Scholar 

  128. K.F. Moura, J. Maul, A.R. Albuquerque, G.P. Casali, E. Longo, D. Keyson, A.G. Souza, J.R. Sambrano, I.M.G. Santos, J. Solid State Chem. 210, 171 (2014)

    Google Scholar 

  129. A.A. Al-Ghamdi, F. Al-Hazmi, O.A. Al-Hartomy, F. El-Tantawy, F. Yakuphanoglu, J. Sol-Gel Sci. Technol. 63, 187 (2012)

    Google Scholar 

  130. V. Polshettiwar, B. Baruwati, R.S. Varma, ACS Nano 3, 728 (2009)

    Google Scholar 

  131. Z. Moorhead-Rosenberg, K.L. Harrison, T. Turner, A. Manthiram, Inorg. Chem. 52, 13087 (2013)

    Google Scholar 

  132. S. Ghosh, P. Kar, N. Bhandary, S. Basu, S. Sardar, T. Maiyalagan, D. Majumdar, S. K. Bhattacharya, A. Bhaumik, P. Lemmens, S. K. Pal, Catal. Sci. Technol. (2016)

  133. J. Sodtipinta, H.-K. Kim, S.-W. Lee, S.M. Smith, P. Pakawatpanurut, K.-B. Kim, J. Electroceram. 35, 111 (2015)

    Google Scholar 

  134. G. Anandha Babu, G. Ravi, T. Mahalingam, M. Kumaresavanji, Y. Hayakawa, Dalton Trans. 44, 4485 (2015)

    Google Scholar 

  135. T.A. Mulinari, F.A. La Porta, J. Andrés, M. Cilense, J.A. Varela, E. Longo, CrystEngComm 15, 7443 (2013)

    Google Scholar 

  136. S. Schmidt, E.T. Kubaski, D.P. Volanti, T. Sequinel, V.D.N. Bezzon, A. Beltrán, S.M. Tebcherani, J.A. Varela, Inorg. Chem. (2015)

  137. G. Qiu, S. Dharmarathna, Y. Zhang, N. Opembe, H. Huang, S.L. Suib, J. Phys. Chem. C 116, 468 (2012)

    Google Scholar 

  138. D.P. Volanti, A.G. Sato, M.O. Orlandi, J.M.C. Bueno, E. Longo, J. Andres, ChemCatChem 3, 839 (2011)

    Google Scholar 

  139. C. Sun, X. Su, F. **ao, C. Niu, J. Wang, Sensors Actuators B Chem. 157, 681 (2011)

    Google Scholar 

  140. S. Chen, Y. Zhao, B. Sun, Z. Ao, X. **e, Y. Wei, G. Wang, ACS Appl. Mater. Interfaces 7, 3306 (2015)

    Google Scholar 

  141. X. Liu, L. Pan, T. Lv, Z. Sun, C.Q. Sun, J. Colloid Interface Sci. 408, 145 (2013)

    Google Scholar 

  142. A.E. Souza, S.R. Teixeira, C.M. -Santos, W.H. Schreiner, P.N. Lisboa Filho, E. Longo, J. Mater. Chem. C 2, 7056 (2014)

    Google Scholar 

  143. I. Velasco-Davalos, F. Ambriz-Vargas, G. Kolhatkar, R. Thomas, A. Ruediger, AIP Adv. 6, 65117 (2016)

    Google Scholar 

  144. G. Kolhatkar, F. Ambriz-Vargas, R. Thomas, A. Ruediger, Cryst. Growth Des. 17, 5697 (2017)

    Google Scholar 

  145. V. Swaminathan, S.S. Pramana, T.J. White, L. Chen, R. Chukka, R.V. Ramanujan, ACS Appl. Mater. Interfaces 2, 3037 (2010)

    Google Scholar 

  146. L.M. Lozano-Sánchez, S.-W. Lee, T. Sekino, V. Rodríguez-González, CrystEngComm 15, 2359 (2013)

    Google Scholar 

  147. T.M. Mazzo, G.S. Do Nascimento Libanori, M.L. Moreira, W. Avansi, V.R. Mastelaro, J.A. Varela, E. Longo, J. Lumin. 165, 130 (2015)

    Google Scholar 

  148. M.L. Moreira, J. Andrés, V.R. Mastelaro, J.A. Varela, E. Longo, CrystEngComm 13, 5818 (2011)

    Google Scholar 

  149. K. De Keukeleere, J. Feys, M. Meire, J. De Roo, K. De Buysser, P. Lommens, I. Van Driessche, J. Nanopart. Res. 15, 2074 (2013)

    Google Scholar 

  150. I. Janowska, K. Chizari, O. Ersen, S. Zafeiratos, D. Soubane, V. da Costa, V. Speisser, C. Boeglin, M. Houllé, D. Begin, D. Plee, M.J. Ledoux, C. Pham-Huu, Nano Res. 3, 126 (2010)

    Google Scholar 

  151. S. Vadahanambi, J.H. Jung, I.K. Oh, Carbon N. Y. 49, 4449 (2011)

    Google Scholar 

  152. H. Hu, Z. Zhao, Q. Zhou, Y. Gogotsi, J. Qiu, Carbon N. Y. 50, 3267 (2012)

    Google Scholar 

  153. J. Long, M. Fang, G. Chen, J. Mater. Chem. 21, 10421 (2011)

    Google Scholar 

  154. M. M. Viana, M. C. F. S. Lima, J. C. Forsythe, M. Cho, Y. Cheng, G. G. Silva, and M. S. Wong, 26, 978 (2015)

  155. S.J.A. Moniz, J. Tang, ChemCatChem 7, 1595 (2015)

    Google Scholar 

  156. J. Geng, G.-H. Song, X.-D. Jia, F.-F. Cheng, J.-J. Zhu, J. Phys. Chem. C 116, 4517 (2012)

    Google Scholar 

  157. W. Yang, P. Wan, X. Zhou, J. Hu, Y. Guan, L. Feng, ACS Appl. Mater. Interfaces 6, 21093 (2014)

    Google Scholar 

  158. J. Huang, G. Tan, H. Ren, W. Yang, C. Xu, C. Zhao, A. **a, ACS Appl. Mater. Interfaces 6, 21041 (2014)

    Google Scholar 

  159. P. Rai, S.M. Majhi, Y.-T. Yu, J.-H. Lee, RSC Adv. 5, 17653 (2015)

    Google Scholar 

  160. N. Garino, A. Sacco, M. Castellino, J.A. Muñoz, A. Chiodoni, V. Agostino, V. Margaria, M. Gerosa, G. Massaglia, M. Quaglio, ACS Appl. Mater. Interfaces (2016)

  161. D. Wang, X. Li, J. Wang, J. Yang, D. Geng, R. Li, M. Cai, T.-K. Sham, X. Sun, J. Phys. Chem. C 116, 22149 (2012)

    Google Scholar 

  162. C. Zhong, J. Wang, Z. Chen, H. Liu, J. Phys. Chem. C 115, 25115 (2011)

    Google Scholar 

  163. L. Li, K.H. Seng, H. Liu, I.P. Nevirkovets, Z. Guo, Electrochim. Acta 87, 801 (2013)

    Google Scholar 

  164. C.-L. Liu, K.-H. Chang, C.-C. Hu, W.-C. Wen, J. Power Sources 217, 184 (2012)

    Google Scholar 

  165. Q. **ang, J. Yu, M. Jaroniec, Nano 3, 3670 (2011)

    Google Scholar 

  166. L.Q. Lu, Y. Wang, J. Mater. Chem. 21, 17916 (2011)

    Google Scholar 

  167. W. Zhou, F. Zhang, S. Liu, J. Wang, X. Du, D. Yin, L. Wang, RSC Adv. 4, 51362 (2014)

    Google Scholar 

  168. Z. Wang, Y. **ao, X. Cui, P. Cheng, B. Wang, Y. Gao, X. Li, T. Yang, T. Zhang, G. Lu, ACS Appl. Mater. Interfaces 6, 3888 (2014)

    Google Scholar 

  169. S.-H. Park, H.-K. Kim, K.C. Roh, K.-B. Kim, Electron. Mater. Lett. 11, 282 (2015)

    Google Scholar 

  170. Y. Zou, J. Kan, Y. Wang, J. Phys. Chem. C 115, 20747 (2011)

    Google Scholar 

  171. L. Kashinath, K. Namratha, K. Byrappa, Appl. Surf. Sci. 357, 1849 (2015)

    Google Scholar 

  172. R. Sharma, F. Alam, A.K. Sharma, V. Dutta, S.K. Dhawan, J. Mater. Chem. C 2, 8142 (2014)

    Google Scholar 

  173. Y. Gui, Z. Liu, S. Fang, J. Tian, F. Gong, J. Mater. Sci. Mater. Electron. (2015)

  174. Y. Gui, J. Zhao, W. Wang, J. Tian, M. Zhao, Mater. Lett. 155, 4 (2015)

    Google Scholar 

  175. C.A. Zito, T.M. Perfecto, D.P. Volanti, Sensors Actuators B Chem. 244, 466 (2017)

    Google Scholar 

  176. M. Chen, Z. Wang, D. Han, F. Gu, G. Guo, J. Phys. Chem. C 115, 12763 (2011)

    Google Scholar 

  177. Z. Wang, P. Sun, T. Yang, Y. Gao, X. Li, G. Lu, Y. Du, Sensors Actuators B Chem. 186, 734 (2013)

    Google Scholar 

  178. Q. Wang, C. Wang, H. Sun, P. Sun, Y. Wang, J. Lin, G. Lu, Sensors Actuators B Chem. 222, 257 (2016)

    Google Scholar 

  179. Y.-S. Kim, P. Rai, Y.-T. Yu, Sensors Actuators B Chem. 186, 633 (2013)

    Google Scholar 

  180. T. Yanagimoto, Y.-T. Yu, K. Kaneko, Sens. Actuators B 166–167, 31 (2012)

    Google Scholar 

  181. L.M. Sikhwivhilu, S. Mpelane, B.W. Mwakikunga, S. Sinha Ray, ACS Appl. Mater. Interfaces 4, 1656 (2012)

    Google Scholar 

  182. R.D. Martínez-Orozco, R. Antaño-López, V. Rodríguez-González, New J. Chem. 39, 8044 (2015)

    Google Scholar 

  183. P. Sun, C. Wang, J. Liu, X. Zhou, X. Li, X. Hu, G. Lu, ACS Appl. Mater. Interfaces 7, 19119 (2015)

    Google Scholar 

  184. C. Yang, X. Su, J. Wang, X. Cao, S. Wang, L. Zhang, Sensors Actuators B Chem. 185, 159 (2013)

    Google Scholar 

  185. C. Yang, X. Su, F. **ao, J. Jian, J. Wang, Sensors Actuators B Chem. 158, 299 (2011)

    Google Scholar 

  186. C.A. Zito, T.M. Perfecto, D.P. Volanti, Adv. Mater. Interfaces 4, 1700847 (2017)

    Google Scholar 

  187. D.P. Volanti, A.A. Felix, M.O. Orlandi, G. Whitfield, D.-J. Yang, E. Longo, H.L. Tuller, J.A. Varela, Adv. Funct. Mater. 23, 1759 (2013)

    Google Scholar 

  188. S. Kong, R. Dai, H. Li, W. Sun, Y. Wang, ACS Sustain. Chem. Eng. 3, 1830 (2015)

    Google Scholar 

  189. W.X. Chen, J.Y. Lee, Z.L. Liu, Chem. Commun. 2588 (2002)

  190. S. Ghosh, P. Kar, N. Bhandary, S. Basu, S. Sardar, T. Maiyalagan, D. Majumdar, S. K. Bhattacharya, A. Bhaumik, P. Lemmens, S. K. Pal, Cat. Sci. Technol. (2016)

  191. G. Byzynski, A.P. Pereira, D.P. Volanti, C. Ribeiro, E. Longo, J. Photochem. Photobiol. A Chem. 353, 358 (2018)

    Google Scholar 

  192. M. Yang, B. Ding, S. Lee, J.-K. Lee, J. Phys. Chem. C 115, 14534 (2011)

    Google Scholar 

  193. L. Liu, K. Hong, X. Ge, D. Liu, M. Xu, J. Phys. Chem. C 118, 15551 (2014)

    Google Scholar 

  194. A. Birkel, Y.-G. Lee, D. Koll, X. Van Meerbeek, S. Frank, M.J. Choi, Y.S. Kang, K. Char, W. Tremel, Energy Environ. Sci. 5, 5392 (2012)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge São Paulo Research Foundation (FAPESP), grants #2015/50526-4, #2015/05916-9 and #2014/17343-0; National Council for Scientific and Technological Development – CNPQ, grants #447760/2014-9, #444926/2014-3 and #443138/2016-8, and the Coordination for the Improvement of Higher Education Personnel – CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo O. Orlandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zito, C.A., Orlandi, M.O. & Volanti, D.P. Accelerated microwave-assisted hydrothermal/solvothermal processing: Fundamentals, morphologies, and applications. J Electroceram 40, 271–292 (2018). https://doi.org/10.1007/s10832-018-0128-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10832-018-0128-z

Keywords

Navigation