Abstract

Magnetic nanomaterials have drawn considerable attention for biomedical applications, including bioimaging, hyperthermia, drug delivery, and diagnosis. Hyperthermia or thermotherapy is a process to destroy cancer cells by applying high temperatures, with minimal side effects on normal tissues. Out of many clinically approved hyperthermia approaches, magnetic hyperthermia (MH) is an advanced, efficient, targeted, and remotely controlled thermotherapy for cancer treatment. Magnetic resonance imaging (MRI) is a nondestructive medical technique for imaging living organs and tissues. The magnetic contrast agents enhance the sensitivity of MRI and are therefore beneficial to secure more information from the images. Moreover, multifunctional magnetic nanomaterials which incorporate different materials on the nanoparticles can be used not only for MRI but also for other imaging technologies such as computed tomography (CT), positron emission tomography (PET), and single-photon emission computed tomography (SPECT). Nanomaterials with a suitable size, shape, and composition allow high contrast bioimaging and can be coupled to a remotely controlled MH system. In both MH and bioimaging, controlled nanostructures are required for clinical success. This chapter is focused on the synthesis methods and important characteristics of magnetic nanomaterials for efficient hyperthermia and high contrast imaging. The heat generation mechanism, biocompatibility, clinical development, current and future trend of MH, and bioimaging are elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bush W. Uber den Finfluss wetchen heftigere Eryspelen zuweilen auf organlsierte Neubildungen dusuben. Verh Natruch Preuss Rhein Westphal. 1886;23:28–30.

    Google Scholar 

  2. Vander Vorst A, Rosen A, Kotsuka Y. RF/microwave interaction with biological tissues: New York Wiley; 2006.

    Google Scholar 

  3. Westermark F. Uber die Behandlung des ulcerirenden Cervix carcinoma mittels Knonstanter Warme. Zentralbl Gynakol. 1898;22:1335–7.

    Google Scholar 

  4. Hildebrandt B, Wust P, Ahlers O, Dieing A, Sreenivasa G, Kerner T, et al. The cellular and molecular basis of hyperthermia. Crit Rev Oncol Hematol. 2002;43:33–56.

    Article  Google Scholar 

  5. Wust P, Hildebrandt B, Sreenivasa G, Rau B, Gellermann J, Riess H, et al. Hyperthermia in combined treatment of cancer. Lancet Oncol. 2002;3:487–97.

    Article  CAS  Google Scholar 

  6. Wang Y, Zou L, Qiang Z, Jiang J, Zhu Z, Ren J. Enhancing targeted cancer treatment by combining hyperthermia and radiotherapy using Mn–Zn ferrite magnetic nanoparticles. ACS Biomater Sci Eng. 2020;6:3550–62.

    Article  CAS  Google Scholar 

  7. Attar MM, Haghpanahi M, Amanpour S, Mohaqeq M. Analysis of bioheat transfer equation for hyperthermia cancer treatment. J Mech Sci Technol. 2014;28:763–71.

    Article  Google Scholar 

  8. Mallidi S, Luke GP, Emelianov S. Photoacoustic imaging in cancer detection, diagnosis, and treatment guidance. Trends Biotechnol. 2011;29:213–21.

    Article  CAS  Google Scholar 

  9. Gilchrist RK, Medal R, Shorey WD, Hanselman RC, Parrott JC, Taylor CB. Selective inductive heating of lymph nodes. Ann Surg. 1957;146:596–606.

    Article  CAS  Google Scholar 

  10. Thiesen B, Jordan A. Clinical applications of magnetic nanoparticles for hyperthermia. Int J Hyperth. 2008;24:467–74.

    Article  CAS  Google Scholar 

  11. Kobayashi T. Cancer hyperthermia using magnetic nanoparticles. Biotechnol J. 2011;6:1342–7.

    Article  CAS  Google Scholar 

  12. Pankhurst QA, Connolly J, Jones SK, Dobson J. Applications of magnetic nanoparticles in biomedicine. J Phys D Appl Phys. 2003;36:R167.

    Article  CAS  Google Scholar 

  13. Bordet A, Landis RF, Lee Y, Tonga GY, Asensio JM, Li C-H, et al. Water-dispersible and biocompatible iron carbide nanoparticles with high specific absorption rate. ACS Nano. 2019;13:2870–8.

    Article  CAS  Google Scholar 

  14. Jordan A, Scholz R, Maier-Hauff K, van Landeghem FKH, Waldoefner N, Teichgraeber U, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neuro-Oncol. 2006;78:7–14.

    Article  CAS  Google Scholar 

  15. Johannsen M, Gneveckow U, Eckelt L, Feussner A, WaldÖFner N, Scholz R, et al. Clinical hyperthermia of prostate cancer using magnetic nanoparticles: presentation of a new interstitial technique. Int J Hyperth. 2005;21:637–47.

    Article  CAS  Google Scholar 

  16. Alphandéry E, Faure S, Seksek O, Guyot F, Chebbi I. Chains of magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. ACS Nano. 2011;5:6279–96.

    Article  Google Scholar 

  17. Mirza S, Ahmad MS, Shah MIA, Ateeq M. Magnetic nanoparticles: drug delivery and bioimaging applications (Chapter 11). In: Shah MR, Imran M, Ullah S Metal nanoparticles for drug delivery and diagnostic applications: Elsevier Amsterdam; 2020. p. 189–213.

    Google Scholar 

  18. Abenojar EC, Wickramasinghe S, Bas-Concepcion J, Samia ACS. Structural effects on the magnetic hyperthermia properties of iron oxide nanoparticles. Progr Nat Sci Mat Intl. 2016;26:440–8.

    Article  CAS  Google Scholar 

  19. Tishin AM, Spichkin YI, Zverev VI, Egolf PW. A review and new perspectives for the magnetocaloric effect: new materials and local heating and cooling inside the human body. Int J Refrig. 2016;68:177–86.

    Article  CAS  Google Scholar 

  20. Purushotham S, Ramanujan RV. Modeling the performance of magnetic nanoparticles in multimodal cancer therapy. J Appl Phys. 2010;107:114701.

    Article  Google Scholar 

  21. Gopalakrishnan S, Vaidyanathan K. Magnetic nanoparticles for hyperthermia a new revolution in cancer treatment. In: Joshy KS, Sabu T, Thakur VK, editors. Magnetic nanoparticles: a new platform for drug delivery. Singapore: Springer Singapore; 2021. p. 119–32.

    Chapter  Google Scholar 

  22. Rosenweig RE. Ferrohydrodynamics. New York: Cambridge University Press; 1985.

    Google Scholar 

  23. Périgo EA, Hemery G, Sandre O, Ortega D, Garaio E, Plazaola F, et al. Fundamentals and advances in magnetic hyperthermia. Appl Phys Rev. 2015;2:041302.

    Article  Google Scholar 

  24. Chaudhary R, Chaudhary V, Suda Y, Ramanujan RV, Steele TWJ. Optimizing the magnetocuring of epoxy resins via electromagnetic additives. Adv Mater Interf. 2021;17:2100881.

    Google Scholar 

  25. Chaudhary R, Chaudhary V, Ramanujan RV, Steele TWJ. Magnetocuring of temperature failsafe epoxy adhesives. Appl Mater Today. 2020;21:100824.

    Article  Google Scholar 

  26. Owuor PS, Chaudhary V, Woellner CF, Sharma V, Ramanujan RV, Stender AS, et al. High stiffness polymer composite with tunable transparency. Mater Today. 2018;21:475–82.

    Article  CAS  Google Scholar 

  27. Rosensweig RE. Heating magnetic fluid with alternating magnetic field. J Magn Magn Mater. 2002;252:370–4.

    Article  CAS  Google Scholar 

  28. Gonzales-Weimuller M, Zeisberger M, Krishnan KM. Size-dependant heating rates of iron oxide nanoparticles for magnetic fluid hyperthermia. J Magn Magn Mater. 2009;321:1947–50.

    Article  CAS  Google Scholar 

  29. Chaudhary V, Zhong Y, Parmar H, Sharma V, Tan X, Ramanujan RV. Mechanochemical synthesis of iron and cobalt magnetic metal nanoparticles and iron/calcium oxide and cobalt/calcium oxide nanocomposites. ChemistryOpen. 2018;7:590–8.

    Article  CAS  Google Scholar 

  30. Das R, Alonso J, Nemati Porshokouh Z, Kalappattil V, Torres D, Phan M-H, et al. Tunable high aspect ratio iron oxide nanorods for enhanced hyperthermia. J Phys Chem C. 2016;120:10086–93.

    Article  CAS  Google Scholar 

  31. Kallumadil M, Tada M, Nakagawa T, Abe M, Southern P, Pankhurst QA. Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater. 2009;321:1509–13.

    Article  CAS  Google Scholar 

  32. Sandler SE, Fellows B, Mefford OT. Best practices for characterization of magnetic nanoparticles for biomedical applications. ACS Publications; 2019.

    Google Scholar 

  33. Ortega D, Pankhurst QA. Magnetic hyperthermia. Nanoscience: volume 1: nanostructures through chemistry: the Royal Society of. Chemistry. 2013:60–88.

    Google Scholar 

  34. Akbarzadeh A, Samiei M, Davaran S. Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett. 2012;7:144.

    Article  Google Scholar 

  35. Morcos SK. Nephrogenic systemic fibrosis following the administration of extracellular gadolinium based contrast agents: is the stability of the contrast agent molecule an important factor in the pathogenesis of this condition? Br J Radiol. 2007;80

    Google Scholar 

  36. Ersoy H, Rybicki FJ. Biochemical safety profiles of gadolinium-based extracellular contrast agents and nephrogenic systemic fibrosis. J Magn Reson Imaging. 2007;26:1190.

    Article  Google Scholar 

  37. Kolosnjaj-Tabi J, Di Corato R, Lartigue L, Marangon I, Guardia P, Silva AKA, et al. Heat-generating iron oxide nanocubes: subtle “Destructurators” of the tumoral microenvironment. ACS Nano. 2014;8:4268–83.

    Article  CAS  Google Scholar 

  38. Parchur AK, Ansari AA, Singh BP, Hasan TN, Syed NA, Rai SB, et al. Enhanced luminescence of CaMoO4:Eu by core@shell formation and its hyperthermia study after hybrid formation with Fe3O4: cytotoxicity assessment on human liver cancer cells and mesenchymal stem cells. Integr Biol. 2014;6:53–64.

    Article  CAS  Google Scholar 

  39. Prasad AI, Parchur AK, Juluri RR, Jadhav N, Pandey BN, Ningthoujam RS, et al. Bi-functional properties of Fe3O4@YPO4: Eu hybrid nanoparticles: hyperthermia application. Dalton Trans. 2013;42:4885–96.

    Article  CAS  Google Scholar 

  40. Hugounenq P, Levy M, Alloyeau D, Lartigue L, Dubois E, Cabuil V, et al. Iron oxide monocrystalline nanoflowers for highly efficient magnetic hyperthermia. J Phys Chem C. 2012;116:15702–12.

    Article  CAS  Google Scholar 

  41. Niraula G, Garcia F, Longo JP, Coaquira JA, Menezes ASD, Zoppellaro G, et al. Engineering shape anisotropy of Fe3O4-γ-Fe2O3 hollow nanoparticles for magnetic hyperthermia. ACS Appl Nano Mater. 2021;4(3):3148–3158.

    Google Scholar 

  42. Hergt R, Hiergeist R, Zeisberger M, Schüler D, Heyen U, Hilger I, et al. Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater. 2005;293:80–6.

    Article  CAS  Google Scholar 

  43. Alphandéry E, Carvallo C, Menguy N, Chebbi I. Chains of cobalt doped magnetosomes extracted from AMB-1 magnetotactic bacteria for application in alternative magnetic field cancer therapy. J Phys Chem C. 2011;115:11920–4.

    Article  Google Scholar 

  44. Sharifi I, Shokrollahi H, Amiri S. Ferrite-based magnetic nanofluids used in hyperthermia applications. J Magn Magn Mater. 2012;324:903–15.

    Article  CAS  Google Scholar 

  45. Mazario E, Menéndez N, Herrasti P, Cañete M, Connord V, Carrey J. Magnetic hyperthermia properties of electrosynthesized cobalt ferrite nanoparticles. J Phys Chem C. 2013;117:11405–11.

    Article  CAS  Google Scholar 

  46. Cespedes E, Byrne JM, Farrow N, Moise S, Coker VS, Bencsik M, et al. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications. Nanoscale. 2014;6:12958–70.

    Article  CAS  Google Scholar 

  47. Adam A, Parkhomenko K, Duenas-Ramirez P, Nadal C, Cotin G, Zorn PE, et al. Orienting the pore morphology of core-shell magnetic mesoporous silica with the sol-gel temperature. Influence on MRI and magnetic hyperthermia properties. Molecules. 2021;26:971.

    Article  CAS  Google Scholar 

  48. Cardona JEM, Louaguef D, Gaffet E, Ashammakhi N, Alem H. Review of core/shell nanostructures presenting good hyperthermia properties for cancer therapy. Mater Chem Front. 2021;5:6429–43.

    Article  CAS  Google Scholar 

  49. Das R, Kim NP, Attanayake SB, Phan MH, Srikanth H. Role of magnetic anisotropy on the hyperthermia efficiency in spherical Fe3−xCoxO4 (X = 0–1) nanoparticles. Appl Sci (Switzerland). 2021;11:1–10.

    Google Scholar 

  50. Jamir M, Islam R, Pandey LM, Borah JP. Effect of surface functionalization on the heating efficiency of magnetite nanoclusters for hyperthermia application. J Alloys Compd. 2021;854

    Google Scholar 

  51. Lavorato GC, Das R, Alonso Masa J, Phan MH, Srikanth H. Hybrid magnetic nanoparticles as efficient nanoheaters in biomedical applications. Nanoscale Adv. 2021;3:867–88.

    Article  CAS  Google Scholar 

  52. Liu W, Chen L, Chen M, Wang W, Li X, Yang H, et al. Self-amplified apoptosis targeting Nanoplatform for synergistic magnetic–thermal/chemo therapy in vivo. Adv Healthc Mater. 2020;9:2000202.

    Article  CAS  Google Scholar 

  53. Ma X, Wang Y, Liu XL, Ma H, Li G, Li Y, et al. Fe3O4-Pd Janus nanoparticles with amplified dual-mode hyperthermia and enhanced ROS generation for breast cancer treatment. Nanoscale Horizons. 2019;4:1450–9.

    Article  CAS  Google Scholar 

  54. Marchianò V, Salvador M, Moyano A, Gutiérrez G, Matos M, Yáñez-Vilar S, et al. Electrodecoration and characterization of superparamagnetic iron oxide nanoparticles with bioactive synergistic nanocopper: magnetic hyperthermia-induced ionic release for anti-biofilm action. Antibiotics. 2021;10:1–15.

    Article  Google Scholar 

  55. Niraula G, Coaquira JAH, Aragon FH, Bakuzis AF, Villar BMG, Garcia F, et al. Stoichiometry and orientation- and shape-mediated switching field enhancement of the heating properties of Fe3O4 circular Nanodiscs. Phys Rev Appl. 2021;15

    Google Scholar 

  56. Niraula G, Coaquira JAH, Zoppellaro G, Villar BMG, Garcia F, Bakuzis AF, et al. Engineering shape anisotropy of Fe3O4-γ-Fe2O3 hollow nanoparticles for magnetic hyperthermia. ACS Appl Nano Mater. 2021;4:3148–58.

    Article  CAS  Google Scholar 

  57. Saghatchi F, Mohseni-Dargah M, Akbari-Birgani S, Saghatchi S, Kaboudin B. Cancer therapy and imaging through functionalized carbon nanotubes decorated with magnetite and gold nanoparticles as a multimodal tool. Appl Biochem Biotechnol. 2020;191:1280–93.

    Article  CAS  Google Scholar 

  58. Wang HY, Zhang Y, Ren XH, He XW, Li WY, Zhang YK. HA targeted-biodegradable nanocomposites responsive to endogenous and exogenous stimulation for multimodal imaging and chemo-/photothermal therapy. Nanoscale. 2021;13:886–900.

    Article  CAS  Google Scholar 

  59. Gavilán H, Avugadda SK, Fernández-Cabada T, Soni N, Cassani M, Mai BT, et al. Magnetic nanoparticles and clusters for magnetic hyperthermia: optimizing their heat performance and develo** combinatorial therapies to tackle cancer. Chem Soc Rev. 2021;50:11614–67.

    Article  Google Scholar 

  60. Deatsch AE, Evans BA. Heating efficiency in magnetic nanoparticle hyperthermia. J Magn Magn Mater. 2014;354:163–72.

    Article  CAS  Google Scholar 

  61. Guibert C, Dupuis V, Peyre V, Fresnais J. Hyperthermia of magnetic nanoparticles: experimental study of the role of aggregation. J Phys Chem C. 2015;119:28148–54.

    Article  CAS  Google Scholar 

  62. Lv Y, Yang Y, Fang J, Zhang H, Peng E, Liu X, et al. Size dependent magnetic hyperthermia of octahedral Fe3O4 nanoparticles. RSC Adv. 2015;5:76764–71.

    Article  CAS  Google Scholar 

  63. Guardia P, Di Corato R, Lartigue L, Wilhelm C, Espinosa A, Garcia-Hernandez M, et al. Water-soluble iron oxide nanocubes with high values of specific absorption rate for cancer cell hyperthermia treatment. ACS Nano. 2012;6:3080–91.

    Article  CAS  Google Scholar 

  64. Guardia P, Riedinger A, Nitti S, Pugliese G, Marras S, Genovese A, et al. One pot synthesis of monodisperse water soluble iron oxide nanocrystals with high values of the specific absorption rate. J Mater Chem B. 2014;2:4426–34.

    Article  CAS  Google Scholar 

  65. Tong S, Quinto CA, Zhang L, Mohindra P, Bao G. Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano. 2017;11:6808–16.

    Article  CAS  Google Scholar 

  66. Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, et al. Chitosan oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano. 2012;6:5266–73.

    Article  CAS  Google Scholar 

  67. Mohapatra J, Mitra A, Aslam M, Bahadur D. Octahedral-shaped Fe3O4 nanoparticles with enhanced specific absorption rate and ${R} _ {2} $ relaxivity. IEEE Trans Magn. 2015;51:1–3.

    Google Scholar 

  68. Nemati Z, Salili S, Alonso J, Ataie A, Das R, Phan M, et al. Superparamagnetic iron oxide nanodiscs for hyperthermia therapy: does size matter? J Alloys Compd. 2017;714:709–14.

    Article  CAS  Google Scholar 

  69. Yang Y, Liu X, Lv Y, Herng TS, Xu X, **a W, et al. Orientation mediated enhancement on magnetic hyperthermia of Fe3O4 nanodisc. Adv Funct Mater. 2015;25:812–20.

    Article  CAS  Google Scholar 

  70. Geng S, Yang H, Ren X, Liu Y, He S, Zhou J, et al. Anisotropic magnetite nanorods for enhanced magnetic hyperthermia. Chemistry Asian J. 2016;11:2996–3000.

    Article  CAS  Google Scholar 

  71. Slichter CP. Principles of magnetic resonance. Springer; 2013.

    Google Scholar 

  72. Lee N, Yoo D, Ling D, Cho MH, Hyeon T, Cheon J. Iron oxide based nanoparticles for multimodal imaging and Magnetoresponsive therapy. Chem Rev. 2015;115:10637–89.

    Article  CAS  Google Scholar 

  73. Tong S, Hou S, Zheng Z, Zhou J, Bao G. Coating optimization of superparamagnetic iron oxide nanoparticles for high T2 relaxivity. Nano Lett. 2010;10:4607–13.

    Article  CAS  Google Scholar 

  74. Gillis P, Moiny F, Brooks RA. On T2-shortening by strongly magnetized spheres: a partial refocusing model. Magn Reson Med. 2002;47:257–63.

    Article  Google Scholar 

  75. Zhao Z, Zhou Z, Bao J, Wang Z, Hu J, Chi X, et al. Octapod iron oxide nanoparticles as high-performance T2 contrast agents for magnetic resonance imaging. Nat Commun. 2013;4:2266.

    Article  Google Scholar 

  76. Lee N, Kim H, Choi SH, Park M, Kim D, Kim H-C, et al. Magnetosome-like ferrimagnetic iron oxide nanocubes for highly sensitive MRI of single cells and transplanted pancreatic islets. Proc Natl Acad Sci. 2011;108:2662–7.

    Article  CAS  Google Scholar 

  77. Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, et al. Iron oxide nanoparticles: diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev. 2019;138:302–25.

    Article  CAS  Google Scholar 

  78. Roca AG, Gutiérrez L, Gavilán H, Fortes Brollo ME, Veintemillas-Verdaguer S, Morales MP. Design strategies for shape-controlled magnetic iron oxide nanoparticles. Adv Drug Deliv Rev. 2019;138:68–104.

    Article  CAS  Google Scholar 

  79. Lee J-H, Huh Y-M, Jun Y-W, Seo J-W, Jang J-T, Song H-T, et al. Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging. Nat Med. 2007;13:95–9.

    Article  CAS  Google Scholar 

  80. Sun T, Liu Y, Zhou C, Zhang L, Kang X, **ao S, et al. Fluorine-mediated synthesis of anisotropic iron oxide nanostructures for efficient T2-weighted magnetic resonance imaging. Nanoscale. 2021;13:7638–47.

    Article  CAS  Google Scholar 

  81. Caspani S, Magalhães R, Araújo JP, Sousa CT. Magnetic nanomaterials as contrast agents for MRI. Materials. 2020;13:2586.

    Article  CAS  Google Scholar 

  82. Zhang S, Sun S. Iron oxide-based magnetic nanoparticles synthesized from the organic solution phase for advanced biological imaging. Nanotechnol Biomed Imaging Diagnos. 2014:25–48.

    Google Scholar 

  83. Anderson D, Anderson T, Fahmi F. Advances in applications of metal oxide nanomaterials as imaging contrast agents. Physica Status Solidi (a). 2019;216:1801008.

    Google Scholar 

  84. Huang J, Bu L, **e J, Chen K, Cheng Z, Li X, et al. Effects of nanoparticle size on cellular uptake and liver MRI with Polyvinylpyrrolidone-coated iron oxide nanoparticles. ACS Nano. 2010;4:7151–60.

    Article  CAS  Google Scholar 

  85. Li X, Li W, Wang M, Liao Z. Magnetic nanoparticles for cancer theranostics: advances and prospects. J Control Release. 2021;335:437–48.

    Article  CAS  Google Scholar 

  86. Luengo Morato Y, Marciello M, Lozano Chamizo L, Ovejero Paredes K, Filice M. 14 – hybrid magnetic nanoparticles for multimodal molecular imaging of cancer. In: Ehrmann A, Nguyen TA, Ahmadi M, Farmani A, Nguyen-Tri P, editors. Magnetic nanoparticle-based hybrid materials. Woodhead Publishing; 2021. p. 343–86.

    Chapter  Google Scholar 

  87. Nahrendorf M, Zhang H, Hembrador S, Panizzi P, Sosnovik DE, Aikawa E, et al. Nanoparticle PET-CT imaging of macrophages in inflammatory atherosclerosis. Circulation. 2008;117:379–87.

    Article  CAS  Google Scholar 

  88. Jarrett BR, Gustafsson B, Kukis DL, Louie AY. Synthesis of 64Cu-labeled magnetic nanoparticles for multimodal imaging. Bioconjug Chem. 2008;19:1496–504.

    Article  CAS  Google Scholar 

  89. Liu D, Li J, Wang C, An L, Lin J, Tian Q, et al. Ultrasmall Fe@Fe3O4 nanoparticles as T1–T2 dual-mode MRI contrast agents for targeted tumor imaging. Nanomedicine. 2021;32:102335.

    Article  CAS  Google Scholar 

  90. Tian X, Zhang L, Yang M, Bai L, Dai Y, Yu Z, et al. Functional magnetic hybrid nanomaterials for biomedical diagnosis and treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology. 2018, p. 10.

    Google Scholar 

  91. **e J, Yan C, Yan Y, Chen L, Song L, Zang F, et al. Multi-modal Mn–Zn ferrite nanocrystals for magnetically-induced cancer targeted hyperthermia: a comparison of passive and active targeting effects. Nanoscale. 2016;8:16902–15.

    Article  CAS  Google Scholar 

  92. Gao X, Fraulob M, Haïat G. Biomechanical behaviours of the bone–implant interface: a review. J R Soc Interface. 2019;16:20190259.

    Article  Google Scholar 

  93. Bartlett DW, Su H, Hildebrandt IJ, Weber WA, Davis ME. Impact of tumor-specific targeting on the biodistribution and efficacy of siRNA nanoparticles measured by multimodality in vivo imaging. Proc Natl Acad Sci. 2007;104:15549–54.

    Article  CAS  Google Scholar 

  94. **e J, Chen K, Huang J, Lee S, Wang J, Gao J, et al. PET/NIRF/MRI triple functional iron oxide nanoparticles. Biomaterials. 2010;31:3016–22.

    Article  CAS  Google Scholar 

  95. Choi JS, Park JC, Nah H, Woo S, Oh J, Kim KM, et al. A hybrid nanoparticle probe for dual-modality positron emission tomography and magnetic resonance imaging. Angew Chem. 2008;120:6355–8.

    Article  Google Scholar 

  96. Lee H-Y, Li Z, Chen K, Hsu AR, Xu C, **e J, et al. PET/MRI dual-modality tumor imaging using arginine-glycine-aspartic (RGD)–conjugated radiolabeled iron oxide nanoparticles. J Nucl Med. 2008;49:1371–9.

    Article  CAS  Google Scholar 

  97. Stephen ZR, Kievit FM, Zhang M. Magnetite nanoparticles for medical MR imaging. Mater Today. 2011;14:330–8.

    Article  CAS  Google Scholar 

  98. Issa B, Obaidat I, Albiss B, Haik Y. Magnetic nanoparticles: surface effects and properties related to biomedicine applications. Int J Mol Sci. 2013;14:21266.

    Article  CAS  Google Scholar 

  99. Gubin SP. Introduction. In: Magnetic nanoparticles. Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA; 2009. p. 1–23.

    Chapter  Google Scholar 

  100. Chaudhary V, Chaturvedi A, Sridhar I, Ramanujan RV. Fe-Ni-Mn nanoparticles for near room temperature magnetic cooling. IEEE Magn Lett. 2014;5:6800104–8.

    Article  Google Scholar 

  101. Chaudhary V, Maheswar Repaka DV, Chaturvedi A, Sridhar I, Ramanujan RV. Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles. J Appl Phys. 2014;116:163918–26.

    Article  Google Scholar 

  102. Chaudhary V, Ramanujan RV. Iron oxide-based magnetic nanoparticles for high temperature span magnetocaloric applications. MRS Online Proc Library. 2014;1708:vv10-08.

    Article  Google Scholar 

  103. Chaudhary V, Ramanujan RV. Magnetic and structural properties of high relative cooling power (Fe 70 Ni 30 ) 92 Mn 8 magnetocaloric nanoparticles. J Phys D Appl Phys. 2015;48:305003.

    Article  Google Scholar 

  104. Suresh G, Rajan BD. A simple wet-chemical approach to synthesize shape controlled high magnetic moment Fe71–Co29 nanocrystals. J Alloys Compd. 2011;509:10145–9.

    Article  CAS  Google Scholar 

  105. Lee B-H, Lee YJ, Min KH, Kim D-G, Kim YD. Synthesis of nano-sized Fe–Co alloy powders by chemical solution mixing of metal salts and hydrogen reduction (CSM-HR). Mater Lett. 2005;59:3156–9.

    Article  CAS  Google Scholar 

  106. Wu H-Q, Yuan P-S, Xu H-Y, Xu D-M, Geng B-Y, Wei X-W. Controllable synthesis and magnetic properties of Fe–Co alloy nanoparticles attached on carbon nanotubes. J Mater Sci. 2006;41:6889–94.

    Article  CAS  Google Scholar 

  107. Wang ZH, Choi CJ, Kim BK, Kim JC, Zhang ZD. Microstructure and magnetic property of Fe–Co nanoparticles prepared by chemical vapor condensation process. J Alloys Compd. 2003;351:319–23.

    Article  CAS  Google Scholar 

  108. Li Q, Li H, Pol VG, Bruckental I, Koltypin Y, Calderon-Moreno J, et al. Sonochemical synthesis, structural and magnetic properties of air-stable Fe/Co alloy nanoparticles. New J Chem. 2003;27:1194–9.

    Article  CAS  Google Scholar 

  109. Wang Q, Wu A, Yu L, Liu Z, Xu W, Yang H. Nanocomposites of iron−cobalt alloy and magnetite: controllable Solvothermal synthesis and their magnetic properties. J Phys Chem C. 2009;113:19875–82.

    Article  CAS  Google Scholar 

  110. Raúl P, Manuel O, Morales MP, Pedro T, Nuria ON, Carlos JS. Synthesis of acicular Fe–Co nanoparticles and the effect of Al addition on their magnetic properties. Nanotechnology. 2004;15:S190.

    Article  Google Scholar 

  111. Huh SH, Jeong JW, Jeon YT, Moon JY, Lee GH, Park J. FeCo and FeCr binary nanocluster wire (NCW) arrays. Intl J Modern Phys B. 2006;20:4413–21.

    Article  CAS  Google Scholar 

  112. Tzitzios V, Basina G, Niarchos D, Li W, Hadjipanayis G. Synthesis of air stable FeCo nanoparticles. J Appl Phys. 2011;109:07A313.

    Article  Google Scholar 

  113. Kodama D, Shinoda K, Sato K, Sato Y, Jeyadevan B, Tohji K. Synthesis of size-controlled Fe–Co alloy nanoparticles by modified polyol process. J Magn Magn Mater. 2007;310:2396–8.

    Article  CAS  Google Scholar 

  114. Cho UR, Lee YM, Kumar S, Lee CG, Koo BH. Effect of cu seed on the synthesis and characterization of FeCo alloy nano-particles by using polyol method. Science China-Technol Sci. 2009;52:19–22.

    Article  CAS  Google Scholar 

  115. Hütten A, Sudfeld D, Ennen I, Reiss G, Wojczykowski K, Jutzi P. Ferromagnetic FeCo nanoparticles for biotechnology. J Magn Magn Mater. 2005;293:93–101.

    Article  Google Scholar 

  116. Frey NA, Peng S, Cheng K, Sun S. Magnetic nanoparticles: synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem Soc Rev. 2009;38

    Google Scholar 

  117. Gao J, Gu H, Xu B. Multifunctional magnetic nanoparticles: design, synthesis, and biomedical applications. Acc Chem Res. 2009;42:1097–107.

    Article  CAS  Google Scholar 

  118. Hao R, **ng R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22:2729–42.

    Article  CAS  Google Scholar 

  119. Kodama D, Shinoda K, Sato K, Sato Y, Tohji K, Jeyadevan B. Morphology control of FeCo alloy particles synthesized by polyol process. AIP Conf Proc. 2007;898:126–9.

    Article  CAS  Google Scholar 

  120. Kodama D, Shinoda K, Sato K, Sato Y, Jeyadevan B, Tohji K. Synthesis of Fe-Co alloy particles by modified polyol process. IEEE Trans Magn. 2006;42:2796–8.

    Article  CAS  Google Scholar 

  121. Turgut Z, Huang M-Q, Gallagher K, McHenry ME, Majetich SA. Magnetic evidence for structural-phase transformations in Fe-Co alloy nanocrystals produced by a carbon arc. J Appl Phys. 1997;81:4039–41.

    Article  CAS  Google Scholar 

  122. Jeyadevan B, Shinoda K, Justin RJ, Matsumoto T, Sato K, Takahashi H, et al. Polyol process for Fe-based hard(fct-FePt) and soft(FeCo) magnetic nanoparticles. IEEE Trans Magn. 2006;42:3030–5.

    Article  CAS  Google Scholar 

  123. Desvaux C, Lecante P, Respaud M, Chaudret B. Structural and magnetic study of the annealing of Fe-Co nanoparticles. J Mater Chem. 2010;20:103–9.

    Article  CAS  Google Scholar 

  124. Joseyphus RJ, Shinoda K, Kodama D, Jeyadevan B. Size controlled Fe nanoparticles through polyol process and their magnetic properties. Mater Chem Phys. 2010;123:487–93.

    Article  CAS  Google Scholar 

  125. Wu H-Q, Cao Y-J, Yuan P-S, Xu H-Y, Wei X-W. Controlled synthesis, structure and magnetic properties of Fe1 − xNix alloy nanoparticles attached on carbon nanotubes. Chem Phys Lett. 2005;406:148–53.

    Article  CAS  Google Scholar 

  126. Lima E Jr, Drago V, Cardoso de Lima J, Papaleo Fichtner PF. Nanocrystalline FexNi1−x (x ≤ 0.65) alloys formed by chemical synthesis. J Alloys Compd. 2005;396:10–7.

    Article  CAS  Google Scholar 

  127. Wu H-Q, Xu D-M, Wang Q, Wang Q-Y, Su G-Q, Wei X-W. Composition-controlled synthesis, structure and magnetic properties of ternary FexCoyNi100−x−y alloys attached on carbon nanotubes. J Alloys Compd. 2008;463:78–83.

    Article  CAS  Google Scholar 

  128. Gurmen S, Ebin B, Stopić S, Friedrich B. Nanocrystalline spherical iron–nickel (Fe–Ni) alloy particles prepared by ultrasonic spray pyrolysis and hydrogen reduction (USP-HR). J Alloys Compd. 2009;480:529–33.

    Article  CAS  Google Scholar 

  129. Yang H, Li X, Zhou H, Zhuang Y, Hu H, Wu H, et al. Monodisperse water-soluble Fe–Ni nanoparticles for magnetic resonance imaging. J Alloys Compd. 2011;509:1217–21.

    Article  CAS  Google Scholar 

  130. Ban I, Drofenik M, Makovec D. The synthesis of iron–nickel alloy nanoparticles using a reverse micelle technique. J Magn Magn Mater. 2006;307:250–6.

    Article  CAS  Google Scholar 

  131. Wei X-W, Zhu G-X, Zhou J-H, Sun H-Q. Solution phase reduction to Fe–Ni alloy nanostructures with tunable shape and size. Mater Chem Phys. 2006;100:481–5.

    Article  CAS  Google Scholar 

  132. Chen Y, Luo X, Yue G-H, Luo X, Peng D-L. Synthesis of iron–nickel nanoparticles via a nonaqueous organometallic route. Mater Chem Phys. 2009;113:412–6.

    Article  CAS  Google Scholar 

  133. Chaubey GS, Barcena C, Poudyal N, Rong C, Gao J, Sun S, et al. Synthesis and stabilization of FeCo nanoparticles. J Am Chem Soc. 2007;129:7214–5.

    Article  CAS  Google Scholar 

  134. Kodama D, Shinoda K, Kasuya R, Tohji K, Doi M, Balachandran J. Synthesis of submicron sized Fe20Ni80 particles and their magnetic properties. J Appl Phys. 2010;107:09A320.

    Article  Google Scholar 

  135. Seyedi M, Haratian S, Khaki JV. Mechanochemical synthesis of Fe2O3 nanoparticles. Procedia Mater Sci. 2015;11:309–13.

    Article  CAS  Google Scholar 

  136. Iwasaki T, Kosaka K, Mizutani N, Watano S, Yanagida T, Tanaka H, et al. Mechanochemical preparation of magnetite nanoparticles by coprecipitation. Mater Lett. 2008;62:4155–7.

    Article  CAS  Google Scholar 

  137. Wu W, Wu Z, Yu T, Jiang C, Kim W-S. Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Sci Technol Adv Mater. 2015;16:023501.

    Article  Google Scholar 

  138. Lu AH, Salabas EL, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chem Int Ed. 2007;46:1222–44.

    Article  CAS  Google Scholar 

  139. Chaudhary V, Chaudhary R. Magnetic nanoparticles: synthesis, functionalization, and applications. In: Nalwa HS, editor. Encyclopedia of nanoscience and nanotechnology. Stevenson Ranch: American Scientific Publishers; 2018. p. 153–83.

    Google Scholar 

  140. Cotin G, Perton F, Blanco-Andujar C, Pichon B, Mertz D, Bégin-Colin S. Design of anisotropic iron-oxide-based nanoparticles for magnetic hyperthermia. Nanomaterials for Magnetic and Optical Hyperthermia Applications: Elsevier; 2019. p. 41–60.

    Google Scholar 

  141. Baaziz W, Pichon BP, Fleutot S, Liu Y, Lefevre C, Greneche J-M, et al. Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J Phys Chem C. 2014;118:3795–810.

    Article  CAS  Google Scholar 

  142. Park J, Lee E, Hwang N-M, Kang M, Kim SC, Hwang Y, et al. One-nanometer-scale size-controlled synthesis of monodisperse magnetic iron oxide nanoparticles. Angew Chem Int Ed. 2005;44:2872–7.

    Article  CAS  Google Scholar 

  143. Sun S, Zeng H. Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc. 2002;124:8204–5.

    Article  CAS  Google Scholar 

  144. Coey JMD. Magnetism and magnetic materials. Cambridge: Cambridge University Press; 2001.

    Book  Google Scholar 

  145. Gu S, ** Y, Chen P, Yan C, Della Torre E, Bennett LH. Modeling of magnetic material displaying magnetic aftereffect with slow decay rates. Phys B Condens Matter. 2012;407:1372–6.

    Article  CAS  Google Scholar 

  146. Demokritov SO, Demidov VE, Dzyapko O, Melkov GA, Serga AA, Hillebrands B, et al. Bose-Einstein condensation of quasi-equilibrium magnons at room temperature under pum**. Nature. 2006;443:430–3.

    Article  CAS  Google Scholar 

  147. Bennett LH, Della Torre E, Johnson PR, Watson RE. A phase diagram for the Bose-Einstein condensation of magnons. J Appl Phys. 2007;101:09G103.

    Article  Google Scholar 

  148. Mohapatra J, Mitra A, Bahadur D, Aslam M. Surface controlled synthesis of MFe2O4 (M = Mn, Fe, Co, Ni and Zn) nanoparticles and their magnetic characteristics. CrystEngComm. 2013;15:524–32.

    Article  CAS  Google Scholar 

  149. Guardia P, Labarta A, Batlle X. Tuning the size, the shape, and the magnetic properties of iron oxide nanoparticles. J Phys Chem C. 2011;115:390–6.

    Article  CAS  Google Scholar 

  150. Sun S, Zeng H, Robinson DB, Raoux S, Rice PM, Wang SX, et al. Monodisperse MFe2O4 (M = Fe, Co, Mn) nanoparticles. J Am Chem Soc. 2004;126:273–9.

    Article  CAS  Google Scholar 

  151. Noh S-h, Na W, Jang J-t, Lee J-H, Lee EJ, Moon SH, et al. Nanoscale magnetism control via surface and exchange anisotropy for optimized Ferrimagnetic hysteresis. Nano Lett. 2012;12:3716–21.

    Article  CAS  Google Scholar 

  152. Zhen G, Muir BW, Moffat BA, Harbour P, Murray KS, Moubaraki B, et al. Comparative study of the magnetic behavior of spherical and cubic superparamagnetic iron oxide nanoparticles. J Phys Chem C. 2011;115:327–34.

    Article  CAS  Google Scholar 

  153. de Montferrand C, Hu L, Milosevic I, Russier V, Bonnin D, Motte L, et al. Iron oxide nanoparticles with sizes, shapes and compositions resulting in different magnetization signatures as potential labels for multiparametric detection. Acta Biomater. 2013;9:6150–7.

    Article  Google Scholar 

  154. Larumbe S, Gomez-Polo C, Pérez-Landazábal JI, García-Prieto A, Alonso J, Fdez-Gubieda ML, et al. Ni doped Fe3O4 magnetic nanoparticles. J Nanosci Nanotechnol. 2012;12:2652–60.

    Article  CAS  Google Scholar 

  155. Gabal MA, Bayoumy WA. Effect of composition on structural and magnetic properties of nanocrystalline Ni0.8−xZn0.2MgxFe2O4 ferrite. Polyhedron. 2010;29:2569–73.

    Article  CAS  Google Scholar 

  156. Nemati Z, Alonso J, Rodrigo I, Das R, Garaio E, García JÁ, et al. Improving the heating efficiency of iron oxide nanoparticles by tuning their shape and size. J Phys Chem C. 2018;122:2367–81.

    Article  CAS  Google Scholar 

  157. Nemati Z, Alonso J, Martinez LM, Khurshid H, Garaio E, Garcia JA, et al. Enhanced magnetic hyperthermia in iron oxide nano-octopods: size and anisotropy effects. J Phys Chem C. 2016;120:8370–9.

    Article  CAS  Google Scholar 

  158. Doaga A, Cojocariu A, Amin W, Heib F, Bender P, Hempelmann R, et al. Synthesis and characterizations of manganese ferrites for hyperthermia applications. Mater Chem Phys. 2013;143:305–10.

    Article  CAS  Google Scholar 

  159. Sathya A, Guardia P, Brescia R, Silvestri N, Pugliese G, Nitti S, et al. CoxFe3–xO4 Nanocubes for Theranostic applications: effect of cobalt content and particle size. Chem Mater. 2016;28:1769–80.

    Article  CAS  Google Scholar 

  160. Yang Z, Li Z, Yang Y, Xu ZJ. Optimization of ZnxFe3–xO4 hollow spheres for enhanced microwave attenuation. ACS Appl Mater Interfaces. 2014;6:21911–5.

    Article  CAS  Google Scholar 

  161. Xavier B, Amílcar L. Finite-size effects in fine particles: magnetic and transport properties. J Phys D Appl Phys. 2002;35:R15.

    Google Scholar 

  162. Garanin DA, Kachkachi H. Surface contribution to the anisotropy of magnetic nanoparticles. Phys Rev Lett. 2003;90:065504.

    Article  CAS  Google Scholar 

  163. Bødker F, Mørup S, Linderoth S. Surface effects in metallic iron nanoparticles. Phys Rev Lett. 1994;72:282–5.

    Article  Google Scholar 

  164. Zhang Y, Li X, Zhang Y, Wei J, Wang W, Dong C, et al. Engineered Fe3O4-based nanomaterials for diagnosis and therapy of cancer. New J Chem. 2021;45:7918–41.

    Article  CAS  Google Scholar 

  165. Nguyen DT, Kim K-S. Functionalization of magnetic nanoparticles for biomedical applications. Korean J Chem Eng. 2014;31:1289–305.

    Article  CAS  Google Scholar 

  166. Bagheri S, Julkapli NM. Modified iron oxide nanomaterials: functionalization and application. J Magn Magn Mater. 2016;416:117–33.

    Article  CAS  Google Scholar 

  167. Ramanujan RV. Magnetic particles for biomedical applications. In: Narayan R, editor. Biomedical materials. Boston: Springer US; 2009. p. 477–91.

    Chapter  Google Scholar 

  168. Kayal S, Ramanujan RV. Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C. 2010;30:484–90.

    Article  CAS  Google Scholar 

  169. Purushotham S, Ramanujan R. Thermoresponsive magnetic composite nanomaterials for multimodal cancer therapy. Acta Biomater. 2010;6:502–10.

    Article  CAS  Google Scholar 

  170. Gupta AK, Gupta M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26:3995–4021.

    Article  CAS  Google Scholar 

  171. Chaurasia AK, Thorat ND, Tandon A, Kim J-H, Park SH, Kim KK. Coupling of radiofrequency with magnetic nanoparticles treatment as an alternative physical antibacterial strategy against multiple drug resistant bacteria. Sci Rep. 2016;6:33662.

    Article  CAS  Google Scholar 

  172. Yang J, Wang J, Li X, Wang D, Song H. Synthesis of urchin-like Fe3O4@SiO2@ZnO/CdS core-shell microspheres for the repeated photocatalytic degradation of rhodamine B under visible light. Cat Sci Technol. 2016;6:4525–34.

    Article  CAS  Google Scholar 

  173. Ankamwar B, Lai T, Huang J, Liu R, Hsiao M, Chen C, et al. Biocompatibility of Fe3O4 nanoparticles evaluated by in vitro cytotoxicity assays using normal, glia and breast cancer cells. Nanotechnology. 2010;21:075102.

    Article  CAS  Google Scholar 

  174. Li Y, Liu J, Zhong Y, Zhang J, Wang Z, Wang L, et al. Biocompatibility of Fe3O4@ Au composite magnetic nanoparticles in vitro and in vivo. Int J Nanomedicine. 2011;6:2805.

    Article  CAS  Google Scholar 

  175. Antoniak MA, Pązik R, Bazylińska U, Wiwatowski K, Tomaszewska A, Kulpa-Greszta M, et al. Multimodal polymer encapsulated CdSe/Fe3O4 nanoplatform with improved biocompatibility for two-photon and temperature stimulated bioapplications. Mater Sci Eng C. 2021;112224

    Google Scholar 

  176. Zare M, Sarkati MN. Chitosan-functionalized Fe3O4 nanoparticles as an excellent biocompatible nanocarrier for silymarin delivery. Polym Adv Technol. 2021;32:4094–100.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Varun Chaudhary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chaudhary, R., Chaudhary, V. (2022). Magnetic Nanomaterials for Hyperthermia and Bioimaging. In: Chaughule, R.S., Patkar, D.P., Ramanujan, R.V. (eds) Nanomaterials for Cancer Detection Using Imaging Techniques and Their Clinical Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-09636-5_4

Download citation

Publish with us

Policies and ethics

Navigation