Abstract

Determining high-quality schedules is an important task in project management. This paper gives an overview of research in project scheduling. While other recent survey papers from the literature focus either only on models or discuss solution methods for a specific type of model, this contribution provides a broader survey that covers the most important models as well as related solution approaches. The paper sketches out and classifies the most important problem settings, with a focus on settings that are relevant for construction projects. This includes the basic resource-constrained project scheduling problem (RCPSP) as well as its major extensions such as multiple modes, generalized precedence relations, different resource categories, various objectives, and stochastic aspects. Moreover, related algorithms are outlined, ranging from exact to heuristic (and in particular metaheuristic) algorithms. Finally, current research directions in project scheduling are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Adhau, M. Mittal, A. Mittal, A multi-agent system for decentralized multi-project scheduling with resource transfers. Int. J. Prod. Econ. 146(2), 646–661 (2013)

    Article  Google Scholar 

  2. B. Afshar-Nadjafi, Multi-skilling in scheduling problems: a review on models, methods and applications. Comput. Ind. Eng. 151, 107004 (2020).

    Article  Google Scholar 

  3. B.F. Almeida, I. Correia, F. Saldanha-da-Gama, Modeling frameworks for the multi-skill resource-constrained project scheduling problem: a theoretical and empirical comparison. Int. Trans. Oper. Res. 26(3), 946–967 (2019)

    Article  MathSciNet  Google Scholar 

  4. R. Alvarez-Valdes, E. Crespo, J.M. Tamarit, F. Villa, GRASP and path relinking for project scheduling under partially renewable resources. Eur. J. Oper. Res. 189(3), 1153–1170 (2008)

    Article  MATH  Google Scholar 

  5. T. Atan, E. Eren, Optimal project duration for resource leveling. Eur. J. Oper. Res. 266(2), 508–520 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Bagherinejad, Z. Majd, Solving the MRCPSP/max with the objective of minimizing tardiness/earliness cost of activities with double genetic algorithms. Int. J. Adv. Manuf. Technol. 70, 573–582 (2014)

    Article  Google Scholar 

  7. F. Ballestín, When it is worthwhile to work with the stochastic RCPSP? J. Sched. 10(3), 153–166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Ballestín, R. Blanco, Theoretical and practical fundamentals for multi-objective optimisation in resource-constrained project scheduling problems. Comput. Oper. Res. 38(1), 51–62 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. F. Ballestín, A. Barrios, V. Valls, An evolutionary algorithm for the resource-constrained project scheduling problem with minimum and maximum time lags. J. Sched. 14, 391–406 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. A. Barrios, F. Ballestín, V. Valls, A double genetic algorithm for the MRCPSP/max. Comput. Oper. Res. 38(1), 33–43 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  11. M. Bartusch, R.H. Möhring, F.J. Radermacher, Scheduling project networks with resource constraints and time windows. Ann. Oper. Res. 16, 201–240 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. P. Baumann, C.-U. Fündeling, N. Trautmann, The resource-constrained project scheduling problem with work-content constraints, in Handbook on Project Management and Scheduling, vol. 1, ed. by C. Schwindt, J. Zimmermann (Springer, Berlin, 2015), pp. 533–544

    Chapter  Google Scholar 

  13. O. Bellenguez-Morineau, E. Néron, A branch-and-bound method for solving multi-skill project scheduling problem. RAIRO Oper. Res. 41(2), 155–170 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. T. Bhaskar, M.N. Pal, A.K. Pal, A heuristic method for RCPSP with fuzzy activity times. Eur. J. Oper. Res. 208(1), 57–66 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. L. Bianco, M. Caramia, An exact algorithm to minimize the makespan in project scheduling with scarce resources and generalized precedence relations. Eur. J. Oper. Res. 219(1), 73–85 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. J. Blazewicz, J.K. Lenstra, A.H.G. Rinnooy Kan, Scheduling subject to resource constraints: classification and complexity. Discret. Appl. Math. 5, 11–24 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. M. Bofill, J. Coll, J. Suy, M. Villaret, SMT encodings for resource-constrained project scheduling problems. Comput. Ind. Eng. 149, 106777 (2020)

    Article  Google Scholar 

  18. J. Böttcher, A. Drexl, R. Kolisch, F. Salewski, Project scheduling under partially renewable resource constraints. Manag. Sci. 45, 543–559 (1999)

    Article  MATH  Google Scholar 

  19. S. Chand, H. Singh, T. Ray, Evolving heuristics for the resource constrained project scheduling problem with dynamic resource disruptions. Swarm Evol. Comput. 44, 897–912 (2019)

    Article  Google Scholar 

  20. Z. Chen, E. Demeulemeester, S. Bai, Y. Guo, Efficient priority rules for the stochastic resource-constrained project scheduling problem. Eur. J. Oper. Res. 270(3), 957–967 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. H.N. Chiu, D.M. Tsai, An efficient search procedure for the resource-constrained multi-project scheduling problem with discounted cash flows. Constr. Manag. Econ. 20, 55–66 (2002)

    Article  Google Scholar 

  22. H. Chtourou, M. Haouari, A two-stage-priority-rule-based algorithm for robust resource-constrained project scheduling. Comput. Ind. Eng. 55(1), 183–194 (2008)

    Article  Google Scholar 

  23. S. Creemers, The preemptive stochastic resource-constrained project scheduling problem. Eur. J. Oper. Res. 277(1), 238–247 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  24. F. Deblaere, E. Demeulemeester, W. Herroelen, Proactive policies for the stochastic resource-constrained project scheduling problem. Eur. J. Oper. Res. 214(2), 308–316 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  25. E.L. Demeulemeester, W.S. Herroelen, A branch-and-bound procedure for the multiple resource-constrained project scheduling problem. Manag. Sci. 38, 1803–1818 (1992)

    Article  MATH  Google Scholar 

  26. E.L. Demeulemeester, W.S. Herroelen, A branch-and-bound procedure for the generalized resource-constrained project scheduling problem. Oper. Res. 45, 201–212 (1997)

    Article  MATH  Google Scholar 

  27. M. Dorigo, V. Maniezzo, A. Colorni, The ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. B 26, 29–41 (1996)

    Article  Google Scholar 

  28. S.E. Elmaghraby, Activity Networks: Project Planning and Control by Network Models (Wiley, New York, 1977)

    MATH  Google Scholar 

  29. B. Franck, K. Neumann, C. Schwindt, A capacity-oriented hierarchical approach to single-item and small-batch production using project scheduling methods. OR Spektrum 19, 77–85 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  30. P. Ghoddousi, E. Eshtehardian, S. Jooybanpour, A. Javanmardi, Multi-mode resource-constrained discrete time–cost-resource optimization in project scheduling using non-dominated sorting genetic algorithm. Autom. Constr. 30, 216–227 (2013)

    Article  Google Scholar 

  31. F. Glover, Tabu search—Part I. ORSA J. Comput. 1, 190–206 (1989a)

    Article  MATH  Google Scholar 

  32. F. Glover, Tabu search—Part II. ORSA J. Comput. 2, 4–32 (1989b)

    Article  MATH  Google Scholar 

  33. M. Gnägi, T. Rihm, A. Zimmermann, N. Trautmann, Two continuous-time assignment-based models for the multi-mode resource-constrained project scheduling problem. Comput. Ind. Eng. 129, 346–353 (2019)

    Article  Google Scholar 

  34. E.N. Goncharov, V.V. Leonov, Genetic algorithm for the resource-constrained project scheduling problem. Autom. Remote. Control. 78(6), 1101–1114 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  35. M. Hapke, R. Slowinski, Fuzzy priority heuristics for project scheduling. Fuzzy Sets Syst. 83(3), 291–299 (1996)

    Article  Google Scholar 

  36. S. Hartmann, Project scheduling with multiple modes: a genetic algorithm. Ann. Oper. Res. 102, 111–135 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. S. Hartmann, A self-adapting genetic algorithm for project scheduling under resource constraints. Nav. Res. Logist. 49, 433–448 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  38. S. Hartmann, Time-varying resource requirements and capacities, in Handbook on Project Management and Scheduling, vol. 1, ed. by C. Schwindt, J. Zimmermann (Springer, Berlin, 2015), pp. 163–176

    Chapter  Google Scholar 

  39. S. Hartmann, D. Briskorn, A survey of variants and extensions of the resource-constrained project scheduling problem. Eur. J. Oper. Res. 207, 1–14 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Hartmann, A. Drexl, Project scheduling with multiple modes: a comparison of exact algorithms. Networks 32, 283–297 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  41. W.S. Herroelen, R. Leus, Project scheduling under uncertainty: survey and research potentials. Eur. J. Oper. Res. 165(2), 289–306 (2005a)

    Article  MATH  Google Scholar 

  42. W.S. Herroelen, R. Leus, Project scheduling under uncertainty: survey and research potentials. Eur. J. Oper. Res. 165(2), 289–306 (2005b)

    Article  MATH  Google Scholar 

  43. W.S. Herroelen, P. van Dommelen, E.L. Demeulemeester, Project network models with discounted cash flows: a guided tour through recent developments. Eur. J. Oper. Res. 100, 97–121 (1997)

    Article  MATH  Google Scholar 

  44. H.J. Holland, Adaptation in Natural and Artificial Systems (University of Michigan Press, Ann Arbor, 1975)

    Google Scholar 

  45. O. Icmeli, S.S. Erenguc, A branch and bound procedure for the resource constrained project scheduling problem with discounted cash-flows. Manag. Sci. 42, 1395–1408 (1996)

    Article  MATH  Google Scholar 

  46. R.L. Kadri, F.F. Boctor, An efficient genetic algorithm to solve the resource-constrained project scheduling problem with transfer times: the single mode case. Eur. J. Oper. Res. 265(2), 454–462(2018)

    Google Scholar 

  47. A. Kimms, Maximizing the net present value of a project under resource constraints using a Lagrangian relaxation based heuristic with tight upper bounds. Ann. Oper. Res. 102(1–4), 221–236 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  48. S. Kirkpatrick, C.D. Gelatt, Jr., M.P. Vecchi, Optimization by simulated annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  49. R. Klein, Project scheduling with time-varying resource constraints. Int. J. Prod. Res. 38, 3937–3952 (2000)

    Article  MATH  Google Scholar 

  50. M. Knyazeva, A. Bozhenyuk, I. Rozenberg, Resource-constrained project scheduling approach under fuzzy conditions. Procedia Comput. Sci. 77, 56–64 (2015)

    Article  Google Scholar 

  51. R. Kolisch, Efficient priority rules for the resource-constrained project scheduling problem. J. Oper. Manag. 14, 179–192 (1996a)

    Article  Google Scholar 

  52. R. Kolisch, Serial and parallel resource-constrained project scheduling methods revisited: theory and computation. Eur. J. Oper. Res. 90, 320–333 (1996b)

    Article  MATH  Google Scholar 

  53. R. Kolisch, S. Hartmann, Heuristic algorithms for solving the resource-constrained project scheduling problem: classification and computational analysis, in Project Scheduling: Recent Models, Algorithms and Applications, ed. by J. Weglarz (Kluwer Academic Publishers, New York, 1999), pp. 147–178

    Chapter  Google Scholar 

  54. R. Kolisch, S. Hartmann, Experimental investigation of heuristics for resource-constrained project scheduling: an update. Eur. J. Oper. Res. 174, 23–37 (2006)

    Article  MATH  Google Scholar 

  55. R. Kolisch, A. Sprecher, PSPLIB—a project scheduling problem library. Eur. J. Oper. Res. 96, 205–216 (1996)

    Article  MATH  Google Scholar 

  56. S. Kreter, J. Rieck, J. Zimmermann, Models and solution procedures for the resource-constrained project scheduling problem with general temporal constraints and calendars. Eur. J. Oper. Res. 251(2), 387–403 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. O. Lambrechts, E. Demeulemeester, W. Herroelen, Time slack-based techniques for robust project scheduling subject to resource uncertainty. Ann. Oper. Res. 186, 443–464 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  58. S.R. Lawrence, T.E. Morton, Resource-constrained multi-project scheduling with tardy costs: comparing myopic, bottleneck, and resource pricing heuristics. Eur. J. Oper. Res. 64(2), 168–187 (1993)

    Article  MATH  Google Scholar 

  59. P. Leyman, M. Vanhoucke, A new scheduling technique for the resource–constrained project scheduling problem with discounted cash flows. Int. J. Prod. Res. 53(9), 2771–2786 (2015)

    Article  Google Scholar 

  60. H. Li, X. Dong, Multi-mode resource leveling in projects with mode-dependent generalized precedence relations. Expert Syst. Appl. 97, 193–204 (2018)

    Article  Google Scholar 

  61. F. Li, Z. Xu, A multi-agent system for distributed multi-project scheduling with two-stage decomposition. PLoS One 13(10), 1–24 (2018)

    Article  Google Scholar 

  62. Y. Liang, N. Cui, T. Wang, E. Demeulemeester, Robust resource-constrained max-NPV project scheduling with stochastic activity duration. OR Spectr. 41(1), 219–254 (2019)

    Article  MathSciNet  Google Scholar 

  63. H. Maghsoudlou, B. Afshar-Nadjafi, S.T.A. Niaki, A multi-objective invasive weeds optimization algorithm for solving multi-skill multi-mode resource constrained project scheduling problem. Comput. Chem. Eng. 88, 157–169 (2016)

    Article  Google Scholar 

  64. M. Mika, G. Waligóra, J. Wȩglarz, Modelling setup times in project scheduling, in Perspectives in Modern Project Scheduling, ed. by J. Józefowska, J. Wȩglarz (Springer, Berlin, 2006), pp. 131–165

    Google Scholar 

  65. C. Montoya, O. Bellenguez-Morineau, E. Pinson, D. Rivreau, Branch-and-price approach for the multi-skill project scheduling problem. Optim. Lett. 8, 1721–1734 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  66. A. Moukrim, A. Quilliot, H. Toussaint, An effective branch-and-price algorithm for the preemptive resource constrained project scheduling problem based on minimal interval order enumeration. Eur. J. Oper. Res. 244(2), 360–368 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  67. P.B. Myszkowski, L.P. Olech, M. Laszczyk, M.E. Skowronski, Hybrid differential evolution and greedy algorithm (DEGR) for solving multi-skill resource-constrained project scheduling problem. Appl. Soft Comput. 62, 1–14 (2018)

    Article  Google Scholar 

  68. A. Naber, R. Kolisch, MIP models for resource-constrained project scheduling with flexible resource profiles. Eur. J. Oper. Res. 239(2), 335–348 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  69. D. Paraskevopoulos, C. Tarantilis, G. Ioannou, Solving project scheduling problems with resource constraints via an event list-based evolutionary algorithm. Expert Syst. Appl. 39(4), 3983–3994 (2012)

    Article  Google Scholar 

  70. R. Pellerin, N. Perrier, F. Berthaut, A survey of hybrid metaheuristics for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 280(2), 395–416 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  71. J. Ponz-Tienda, A. Salcedo-Bernal, E. Pellicer, J. Benlloch-Marco, Improved adaptive harmony search algorithm for the resource leveling problem with minimal lags. Autom. Constr. 77, 82–92 (2017)

    Article  Google Scholar 

  72. J. Poppenborg, S. Knust, A flow-based tabu search algorithm for the RCPSP with transfer times. OR Spectr. 38, 305–334 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  73. A.A.B. Pritsker, L.J. Watters, P.M. Wolfe, Multiproject scheduling with limited resources: a zero-one programming approach. Manag. Sci. 16, 93–107 (1969)

    Article  Google Scholar 

  74. J. Qiao, Y. Li, Resource leveling using normalized entropy and relative entropy. Autom. Constr. 87, 263–272 (2018)

    Article  Google Scholar 

  75. S. Quintanilla, P. Lino, Á. Pérez, F. Ballestín, V. Valls, Integer preemption problems, in Handbook on Project Management and Scheduling, vol. 1, ed. by C. Schwindt, J. Zimmermann (Springer, Berlin, 2015), pp. 231–250

    Chapter  Google Scholar 

  76. A. Rahimi, H. Karimi, B. Afshar-Nadjafi, Using meta-heuristics for project scheduling under mode identity constraints. Appl. Soft Comput. 13(4), 2124–2135 (2013)

    Article  Google Scholar 

  77. J. Rieck, J. Zimmermann, Exact methods for resource leveling problems, in Handbook on Project Management and Scheduling, vol. 1, ed. by, C. Schwindt, J. Zimmermann (Springer, Berlin, 2015), pp. 361–387

    Chapter  Google Scholar 

  78. S.B. Rodrigues, D.S. Yamashita, An exact algorithm for minimizing resource availability costs in project scheduling. Eur. J. Oper. Res. 206(3), 562–568 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  79. F. Salewski, A. Schirmer, A. Drexl, Project scheduling under resource and mode identity constraints: model, complexity, methods, and application. Eur. J. Oper. Res. 102, 88–110 (1997)

    Article  MATH  Google Scholar 

  80. A. Schnell, R.F. Hartl, On the efficient modeling and solution of the multi-mode resource-constrained project scheduling problem with generalized precedence relations. OR Spectr. 38, 283–303 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  81. A. Schutt, T. Feydy, P.J. Stuckey, M.G. Wallace, Solving RCPSP/max by lazy clause generation. J. Sched. 16, 273–289 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  82. S. Shadrokh, F. Kianfar, A genetic algorithm for resource investment project scheduling problem, tardiness permitted with penalty. Eur. J. Oper. Res. 181(1), 86–101 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  83. M. Shariatmadari, N. Nahavandi, S.H. Zegordi, M.H. Sobhiyah, Integrated resource management for simultaneous project selection and scheduling. Comput. Ind. Eng. 109, 39–47 (2017)

    Article  Google Scholar 

  84. A. Sprecher, Scheduling resource-constrained projects competitively at modest memory requirements. Manag. Sci. 46, 710–723 (2000)

    Article  MATH  Google Scholar 

  85. A. Sprecher, R. Kolisch, A. Drexl, Semi-active, active and non-delay schedules for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 80, 94–102 (1995)

    Article  MATH  Google Scholar 

  86. F.B. Talbot, Resource-constrained project scheduling with time-resource tradeoffs: the nonpreemptive case. Manag. Sci. 28, 1197–1210 (1982)

    Article  MATH  Google Scholar 

  87. D. Thiruvady, M. Wallace, H. Gu, A. Schutt, A Lagrangian relaxation and ACO hybrid for resource constrained project scheduling with discounted cash flows. J. Heuristics 20, 643–676 (2014)

    Article  Google Scholar 

  88. P. Tormos, A. Lova, A competitive heuristic solution technique for resource-constrained project scheduling. Ann. Oper. Res. 102, 65–81 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  89. V. Valls, F. Ballestin, M.S. Quintanilla, Justification and RCPSP: a technique that pays. Eur. J. Oper. Res. 165, 375–386 (2005)

    Article  MATH  Google Scholar 

  90. V. Valls, F. Ballestín, S. Quintanilla, A hybrid genetic algorithm for the resource-constrained project scheduling problem. Eur. J. Oper. Res. 185(2), 495–508 (2008)

    Article  MATH  Google Scholar 

  91. S. Van de Vonder, E.L. Demeulemeester, W.S. Herroelen, A classification of predictive-reactive project scheduling procedures. J. Sched. 10(3), 195–207 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  92. V. Van Peteghem, M. Vanhoucke, An artificial immune system algorithm for the resource availability cost problem. Flex. Serv. Manuf. J. 25, 122–144 (2013)

    Article  Google Scholar 

  93. V. Van Peteghem, M. Vanhoucke, An experimental investigation of metaheuristics for the multi-mode resource-constrained project scheduling problem on new dataset instances. Eur. J. Oper. Res. 235(1), 62–72 (2014)

    Article  MATH  Google Scholar 

  94. V. Van Peteghem, M. Vanhoucke, Heuristic methods for the resource availability cost problem, in Handbook on Project Management and Scheduling, vol. 1, ed. by, C. Schwindt, J. Zimmermann (Springer, Berlin, 2015), pp. 339–359

    Chapter  Google Scholar 

  95. M. Vanhoucke, J. Coelho, Resource-constrained project scheduling with activity splitting and setup times. Comput. Oper. Res. 109, 230–249 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  96. Q. Wang, C. Liu, L. Zheng, A column-generation-based algorithm for a resource-constrained project scheduling problem with a fractional shared resource. Eng. Optim. 52(5), 798–816 (2020)

    Article  MathSciNet  Google Scholar 

  97. K. Watermeyer, J. Zimmermann, A branch-and-bound procedure for the resource-constrained project scheduling problem with partially renewable resources and general temporal constraints. OR Spectr. 42, 427–460 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  98. J. Wȩglarz, J. Józefowska, M. Mika, G. Waligóra, Project scheduling with finite or infinite number of activity processing modes—a survey. Eur. J. Oper. Res. 208(3), 177–205 (2011)

    Google Scholar 

  99. R. Zamani, An evolutionary search procedure for optimizing time–cost performance of projects under multiple renewable resource constraints. Comput. Ind. Eng. 66(2), 451–460 (2013)

    Article  Google Scholar 

  100. J. Zhu, X. Li, W. Shen, Effective genetic algorithm for resource-constrained project scheduling with limited preemptions. Int. J. Mach. Learn. Cybern. 2, 55–65 (2011)

    Article  Google Scholar 

  101. X. Zhu, R. Ruiz, S. Li, X. Li, An effective heuristic for project scheduling with resource availability cost. Eur. J. Oper. Res. 257(3), 746–762 (2017)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sönke Hartmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hartmann, S. (2021). Optimization Models and Solution Techniques. In: Golpîra, H. (eds) Application of Mathematics and Optimization in Construction Project Management. Springer, Cham. https://doi.org/10.1007/978-3-030-81123-5_2

Download citation

Publish with us

Policies and ethics

Navigation