Project Scheduling a Critical Review of Both Traditional and Metaheuristic Techniques

  • Chapter
  • First Online:
Computational Intelligence in Engineering and Project Management (CIIP 2023)

Abstract

Project planning is a problem usually discussed in the different project management standards as an essential problem to be addressed from the project initiation stage. It is a problem that has traditionally been treated by formal methodologies. But current trends in project development have a greater focus on agile methodologies. This situation causes greater variability in project plans. In the particular case of BIM methodologies, the approach is aimed at achieving the simulation of the production process through virtual construction. In this context, in this work, a critical analysis of different approaches that deal with the construction of project schedules is carried out. In particular, the problem is analyzed from a hybrid perspective. The approach proposed by project management standards and the approach to scheduling problems raised by computer science are analyzed. As a result of the analysis, a group of lines open to research are proposed that combine traditional tendencies with metaheuristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Vrchota J, Řehoř P, Maříková M, Pech M (2021) Critical success factors of the project management in relation to industry 4.0 for sustainability of projects. Sustainability 13:281. https://doi.org/10.3390/su13010281

  2. ISO (2018) ISO 19650-1:2018. Organization and digitization of information about buildings and civil engineering works. In: Including building information modelling (BIM)—Information management using building information modelling. Part 1: Concepts and Principles. In: ISO. https://www.iso.org/standard/68078.html. Accessed 10 Sep 2020

  3. Mesároš P, Mandičák T, Behúnová A (2020) Use of BIM technology and impact on productivity in construction project management. Wirel Netw. https://doi.org/10.1007/s11276-020-02302-6

    Article  Google Scholar 

  4. Loyola M (2019) Encuesta Nacional BIM 2019: Informe de resultados. University of Chile, Chile

    Google Scholar 

  5. González CFL (2019) Metodología BIM (building information modeling) aplicada a la prevención de riesgos laborales (PRL). J BIM Constr Manag 1:20–30

    Google Scholar 

  6. Dave B, Buda A, Nurminen A, Främling K (2018) A framework for integrating BIM and IoT through open standards. Autom Constr 95:35–45. https://doi.org/10.1016/j.autcon.2018.07.022

    Article  Google Scholar 

  7. Lynch J (2018) Project resolution benchmark for IBEX financial corp. The Standish Group International Inc., United States

    Google Scholar 

  8. Johnson J (2018) CHAOS report: decision latency theory: it is all about the interval. The Standish Group International Inc., Boston, MA

    Google Scholar 

  9. Villavicencio NE (2016) Modelo integrado para la mejora de la productividad en organizaciones orientadas a proyectos de tecnologías de la información. Tesis para optar al grado de: Máster en Diseño, Gestión y Dirección de de Proyectos, Fundación Universitaria Iberoamericana

    Google Scholar 

  10. Pupo IP, Vacacela RG, Pérez PP, Mahdi GSS, Peña M (2020) Experiencias en el uso de técnicas de softcomputing en laevaluación de proyectos de software. Investigación Oper 41:108–119

    Google Scholar 

  11. Bermúdez NV, Abreu MP, Valareso SB, Pupo IP (2016) Experiencias en la integración de procesos en las organizaciones orientadas a proyectos de software. Revista Cubana de Ciencias Informáticas 10:171–185

    Google Scholar 

  12. Project Management Institute (2021) A guide to the project management body of knowledge, 7th edn. Project Management Institute Inc., Newtown Square, Pennsylvania

    Google Scholar 

  13. ISO (2012) ISO 21500: guidance on project management. In: ISO. https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/05/00/50003.html. Accessed 16 Jan 2021

  14. Chaudhary M, Chopra A (2017) CMMI for development: implementation guide, 1st edn. Apress, India

    Book  Google Scholar 

  15. CMMI Product Team (2010) CMMI® for Development, Version 1.3. Software Engineering Institute, Carnegie Mellon University

    Google Scholar 

  16. Malcolm DG, Roseboom JH, Clark CE, Fazar W (1959) Application of a technique for research and development program evaluation. Oper Res 7:646–669. https://doi.org/10.1287/opre.7.5.646

    Article  Google Scholar 

  17. Blazewicz J, Ecker KH, Pesch E, Schmidt G, Sterna M, Weglarz J (2019) Handbook on scheduling: from theory to practice, 2nd ed. Springer International Publishing

    Google Scholar 

  18. Vanhoucke M (2023) The data-driven project manager. In: Vanhoucke M (ed) The illusion of control: project data, Computer algorithms and human intuition for project management and control. Springer Nature Switzerland, Cham, pp 29–48

    Google Scholar 

  19. Ulusoy G, Hazır Ö (2021) An introduction to project modeling and planning. Springer International Publishing, Cham

    Book  Google Scholar 

  20. Alves CGM de F, Meza LA (2023) A review of network DEA models based on slacks-based measure: evolution of literature, applications, and further research direction. Int Trans Oper Res. 30:2729–2760. https://doi.org/10.1111/itor.13284

  21. Liu H, Qu S, Li R, Razaa H (2021) Bi-objective robust project scheduling with resource constraints and flexible activity execution lists. Comput Ind Eng 156:107288. https://doi.org/10.1016/j.cie.2021.107288

    Article  Google Scholar 

  22. CubaIndustria (2020) Normas Cubanas Online. http://www.nconline.cubaindustria.cu:81/. Accessed 16 Jan 2021

  23. Carter M, Price CC, Rabadi G (2019) Operations research: a practical introduction, 2nd edn. CRC Press, Broken Sound Parkway NW

    Google Scholar 

  24. Sarjono H, Kurnia VD (2022) A systematic literature review: optimization of implementation of project development in the company with PERT and CPM method. © IEOM society international. Telangana, India, pp 2478–2486

    Google Scholar 

  25. Ballesteros-Pérez P, Larsen GD, González-Cruz MC (2018) Do projects really end late? On the shortcomings of the classical scheduling techniques. JOTSE: J Technol Sci Educ 8:17–33. https://doi.org/10.3926/jotse.303

  26. Marnada P, Raharjo T, Hardian B, Prasetyo A (2022) Agile project management challenge in handling scope and change: a systematic literature review. Procedia Comput Sci 197:290–300. https://doi.org/10.1016/j.procs.2021.12.143

    Article  Google Scholar 

  27. Redmine (2020) Overview—Redmine. In: Redmine—Project management and application management. https://www.redmine.org/. Accessed 16 Jan 2021

  28. Piñero Ramírez PE, Pérez Pupo I, Piñero Pérez PY, Marquez Ruiz Y, Fustiel Alvarez Y (2022) A software ecosystem for project management in BIM environments assisted by artificial intelligent techniques. In: Piñero Pérez PY, Bello Pérez RE, Kacprzyk J (eds) Artificial intelligence in project management and making decisions. Springer International Publishing, Cham, pp 191–212

    Chapter  Google Scholar 

  29. Pritsker AAB, Waiters LJ, Wolfe PM (1969) Multiproject scheduling with limited resources: a zero-one programming approach. Manage Sci 16:93–108. https://doi.org/10.1287/mnsc.16.1.93

    Article  Google Scholar 

  30. Gómez Sánchez M, Lalla-Ruiz E, Fernández Gil A, Castro C, Voß S (2023) Resource-constrained multi-project scheduling problem: a survey. Eur J Oper Res 309:958–976. https://doi.org/10.1016/j.ejor.2022.09.033

    Article  MathSciNet  Google Scholar 

  31. Rahimi I, Gandomi AH, Chen F, Mezura-Montes E (2023) A review on constraint handling techniques for population-based algorithms: from single-objective to multi-objective optimization. Arch Comput Methods Eng 30:2181–2209. https://doi.org/10.1007/s11831-022-09859-9

    Article  Google Scholar 

  32. Mezura-Montes E, Coello Coello CA (2011) Constraint-handling in nature-inspired numerical optimization: Past, present and future. Swarm Evol Comput 1:173–194. https://doi.org/10.1016/j.swevo.2011.10.001

    Article  Google Scholar 

  33. Zhu G, Feng Y, Chen Z, Lu H (2022) Hydrodynamic design of a circulating water channel based on a fractional-step multi-objective optimization. Ocean Eng 251:110959. https://doi.org/10.1016/j.oceaneng.2022.110959

    Article  Google Scholar 

  34. Mohamed AW, Oliva D, Suganthan PN (2022) Handbook of nature-inspired optimization algorithms: the state of the art: volume II: solving constrained single objective real-parameter optimization problems. Springer Nature

    Google Scholar 

  35. Runarsson TP, Yao X (2005) Search biases in constrained evolutionary optimization. IEEE Trans Syst Man Cybern Part C (Appl Rev) 35:233–243. https://doi.org/10.1109/TSMCC.2004.841906

  36. Balouka N, Cohen I (2019) A robust optimization approach for the multi-mode resource-constrained project scheduling problem. Eur J Oper Res. https://doi.org/10.1016/j.ejor.2019.09.052

    Article  Google Scholar 

  37. Stiti C, Driss OB (2019) A new approach for the multi-site resource-constrained project scheduling problem. Procedia Comput Sci 164:478–484. https://doi.org/10.1016/j.procs.2019.12.209

    Article  Google Scholar 

  38. Tao S, Dong ZS (2018) Multi-mode resource-constrained project scheduling problem with alternative project structures. Comput Ind Eng 125:333–347. https://doi.org/10.1016/j.cie.2018.08.027

    Article  Google Scholar 

  39. Tian J, Hao X, Gen M (2019) A hybrid multi-objective EDA for robust resource constraint project scheduling with uncertainty. Comput Ind Eng 130:317–326. https://doi.org/10.1016/j.cie.2019.02.039

    Article  Google Scholar 

  40. Ding H, Zhuang C, Liu J (2023) Extensions of the resource-constrained project scheduling problem. Autom Constr 153:104958. https://doi.org/10.1016/j.autcon.2023.104958

    Article  Google Scholar 

  41. Sayah D (2023) Continuous-time formulations for multi-mode project scheduling. Comput Oper Res 152:106147. https://doi.org/10.1016/j.cor.2023.106147

    Article  MathSciNet  Google Scholar 

  42. Chen JC, Lee H-Y, Hsieh W-H, Chen T-L (2022) Applying hybrid genetic algorithm to multi-mode resource constrained multi-project scheduling problems. J Chin Inst Eng 45:42–53. https://doi.org/10.1080/02533839.2021.1983461

    Article  Google Scholar 

  43. Brucker P, Drexl A, Möhring R, Neumann K, Pesch E (1999) Resource-constrained project scheduling: notation, classification, models, and methods. Eur J Oper Res 112:3–41. https://doi.org/10.1016/S0377-2217(98)00204-5

    Article  Google Scholar 

  44. Servranckx T, Vanhoucke M (2019) A tabu search procedure for the resource-constrained project scheduling problem with alternative subgraphs. Eur J Oper Res 273:841–860. https://doi.org/10.1016/j.ejor.2018.09.005

    Article  MathSciNet  Google Scholar 

  45. Kumar M, Mittal ML, Soni G, Joshi D (2019) A Tabu search algorithm for simultaneous selection and scheduling of projects. In: Yadav N, Yadav A, Bansal JC, Deep K, Kim JH (eds) Harmony search and nature inspired optimization algorithms. Springer, Singapore, pp 1111–1121

    Chapter  Google Scholar 

  46. Laurent A, Deroussi L, Grangeon N, Norre S (2017) A new extension of the RCPSP in a multi-site context: mathematical model and metaheuristics. Comput Ind Eng 112:634–644. https://doi.org/10.1016/j.cie.2017.07.028

    Article  Google Scholar 

  47. Debels D, Vanhoucke M (2005) A bi-population based genetic algorithm for the resource-constrained project scheduling problem O. In: Gervasi, Gavrilova ML, Kumar V, Laganá A, Lee HP, Mun Y, Taniar D, Tan CJK (eds) Computational science and its applications—ICCSA 2005. Springer, Berlin, Heidelberg, pp 378–387

    Chapter  Google Scholar 

  48. Peteghem VV, Vanhoucke M (2010) A genetic algorithm for the preemptive and non-preemptive multi-mode resource-constrained project scheduling problem. Eur J Oper Res 201:409–418. https://doi.org/10.1016/j.ejor.2009.03.034

    Article  MathSciNet  Google Scholar 

  49. Wang L, Fang C (2012) A hybrid estimation of distribution algorithm for solving the resource-constrained project scheduling problem. Expert Syst Appl 39:2451–2460. https://doi.org/10.1016/j.eswa.2011.08.095

    Article  Google Scholar 

  50. Ayodele M (2018) Effective and efficient estimation of distribution algorithms for permutation and scheduling problems. Ph.D. thesis. Robert Gordon University

    Google Scholar 

  51. Tian M, Liu RJ, Zhang GJ (2020) Solving the resource-constrained multi-project scheduling problem with an improved critical chain method. J Oper Res Soc 71:1243–1258. https://doi.org/10.1080/01605682.2019.1609883

    Article  Google Scholar 

  52. Yassine AA, Mostafa O, Browning TR (2017) Scheduling multiple, resource-constrained, iterative, product development projects with genetic algorithms. Comput Ind Eng 107:39–56. https://doi.org/10.1016/j.cie.2017.03.001

    Article  Google Scholar 

  53. Wang Y, He Z, Kerkhove L-P, Vanhoucke M (2017) On the performance of priority rules for the stochastic resource constrained multi-project scheduling problem. Comput Ind Eng 114:223–234. https://doi.org/10.1016/j.cie.2017.10.021

    Article  Google Scholar 

  54. Medrano BE (2013) Planificación de múltiples proyectos de desarrollo de software utilizando métodos metaheurísticos. Master Thesis, Universidad de La Habana

    Google Scholar 

  55. Dong N, Ge D, Fischer M, Haddad Z (2012) A genetic algorithm-based method for look-ahead scheduling in the finishing phase of construction projects. Adv Eng Inform 26:737–748. https://doi.org/10.1016/j.aei.2012.03.004

    Article  Google Scholar 

  56. Schmidt T, Kühn M, Genßler PR (2017) Design of project-oriented calculation models for job priorities by using a customized genetic algorithm S. In: Wenzel, Peter T (eds) 17th ASIM proceedings. Kassel University Press, Kassel, Germany, pp 99–108

    Google Scholar 

  57. Kühn M, Schmidt T, Völker M (2019) Simulation-based optimization approach for efficient generation of sequencing heuristics for solving the stochastic resource-constrained scheduling problem M. In: Putz, Schlegel A (eds) Simulation in produktion und logistik 2019. Verlag Wissenschaftliche Scripten, Auerbach, pp 403–412

    Google Scholar 

  58. Talbot FB (1982) Resource-constrained project scheduling with time-resource trade offs: the nonpreemptive case. Manag Sci 28:1197–1210. https://doi.org/10.1287/mnsc.28.10.1197

    Article  Google Scholar 

  59. Asta S, Karapetyan D, Kheiri A, Özcan E, Parkes AJ (2016) Combining Monte-Carlo and hyper-heuristic methods for the multi-mode resource-constrained multi-project scheduling problem. Inf Sci 373:476–498. https://doi.org/10.1016/j.ins.2016.09.010

    Article  Google Scholar 

  60. Kuehn M, Zahid T, Voelker M, Zhou Z, Rose O (2016) Investigation of genetic operators and priority heuristics for simulation based optimization of multi-mode resource constrained multi-project scheduling problems (MMRCMPSP). In: Thorsten C, Frank H, Michael M, Oliver R (eds) ECMS 2016 proceedings. ECMS, pp 481–487

    Google Scholar 

  61. Pinha D, Ahluwalia R, Senna P (2016) The combinatorial multi-mode resource constrained multi-project scheduling problem. Int J Supply Oper Manag 3:1391–1412. https://doi.org/10.22034/2016.3.03

  62. He N, Zhang DZ, Yuce B (2022) Integrated multi-project planning and scheduling—A multiagent approach. Eur J Oper Res 302:688–699. https://doi.org/10.1016/j.ejor.2022.01.018

    Article  Google Scholar 

  63. Speranza MG, Vercellis C (1993) Hierarchical models for multi-project planning and scheduling. Eur J Oper Res 64:312–325. https://doi.org/10.1016/0377-2217(93)90185-P

    Article  Google Scholar 

  64. Wang W, Wang X, Ge X, Deng L (2014) Multi-objective optimization model for multi-project scheduling on critical chain. In: Advances in engineering software, pp 33–39

    Google Scholar 

  65. Beşikci U, Bilge Ü, Ulusoy G (2015) Multi-mode resource constrained multi-project scheduling and resource portfolio problem. Eur J Oper Res 240:22–31. https://doi.org/10.1016/j.ejor.2014.06.025

    Article  MathSciNet  Google Scholar 

  66. Zhou Z, Angelidis E, Bohn D, Rose O (2017) A two-phase genetic algorithm to solve a multiobjective problem for complex assembly lines. In: Wenzel S, Peter T (eds) 17th ASIM proceedings. Kassel University Press, Kassel, Germany, pp 89–98

    Google Scholar 

  67. Sadowski C, Zimmermann T (2019) Rethinking productivity in software engineering, 1st ed. Springer Nature, Berkeley, CA

    Google Scholar 

  68. Kolisch R (2021) About the solution of multi-mode resource-constrained multi-project scheduling problem

    Google Scholar 

  69. Van Peteghem V, Vanhoucke M (2011) Using resource scarceness characteristics to solve the multi-mode resource-constrained project scheduling problem. J Heuristics 17:705–728. https://doi.org/10.1007/s10732-010-9152-0

    Article  Google Scholar 

  70. Damak N, Jarboui B, Siarry P, Loukil T (2009) Differential evolution for solving multi-mode resource-constrained project scheduling problems. Comput Oper Res 36:2653–2659. https://doi.org/10.1016/j.cor.2008.11.010

    Article  MathSciNet  Google Scholar 

  71. Sprecher A, Drexl A (1998) Multi-mode resource-constrained project scheduling by a simple, general and powerful sequencing algorithm. Eur J Oper Res 107:431–450. https://doi.org/10.1016/S0377-2217(97)00348-2

    Article  Google Scholar 

  72. Lova A, Tormos P, Cervantes M, Barber F (2009) An efficient hybrid genetic algorithm for scheduling projects with resource constraints and multiple execution modes. Int J Prod Econ 117:302–316. https://doi.org/10.1016/j.ijpe.2008.11.002

    Article  Google Scholar 

  73. Coelho J, Vanhoucke M (2011) Multi-mode resource-constrained project scheduling using RCPSP and SAT solvers. Eur J Oper Res 213:73–82. https://doi.org/10.1016/j.ejor.2011.03.019

    Article  MathSciNet  Google Scholar 

  74. Vanhoucke M, Coelho J (2016) An approach using SAT solvers for the RCPSP with logical constraints. Eur J Oper Res 249:577–591. https://doi.org/10.1016/j.ejor.2015.08.044

    Article  MathSciNet  Google Scholar 

  75. Hartmann S (2001) Project scheduling with multiple modes: a genetic algorithm. Ann Oper Res 102:111–135. https://doi.org/10.1023/A:1010902015091

    Article  MathSciNet  Google Scholar 

  76. Ayodele M, McCall J, Regnier-Coudert O (2016) BPGA-EDA for the multi-mode resource constrained project scheduling problem. In: 2016 IEEE Congress on evolutionary computation (CEC). Vancouver, Canada, pp 3417–3424

    Google Scholar 

  77. Wang L, Fang C (2012) An effective estimation of distribution algorithm for the multi-mode resource-constrained project scheduling problem. Comput Oper Res 39:449–460. https://doi.org/10.1016/j.cor.2011.05.008

    Article  Google Scholar 

  78. Soliman OS, Elgendi EAR (2014) A hybrid estimation of distribution algorithm with random walk local search for multi-mode resource-constrained project scheduling problems. IJCTT 8:57–64. https://doi.org/10.14445/22312803/IJCTT-V8P111

  79. Schnell A, Hartl RF (2017) On the generalization of constraint programming and boolean satisfiability solving techniques to schedule a resource-constrained project consisting of multi-mode jobs. Oper Res Perspect 4:1–11. https://doi.org/10.1016/j.orp.2017.01.002

    Article  MathSciNet  Google Scholar 

  80. Araujo JAS, Santos HG, Gendron B, Jena SD, Brito SS, Souza DS (2020) Strong bounds for resource constrained project scheduling: preprocessing and cutting planes. Comput Oper Res 113:104782. https://doi.org/10.1016/j.cor.2019.104782

    Article  MathSciNet  Google Scholar 

  81. Hao X, Sun L, Gen M (2018) Solving robust resource constrained scheduling problem by multi-objective optimization method based on hybridization of EDA and GA. Procedia Manuf 17:1187–1194. https://doi.org/10.1016/j.promfg.2018.10.001

    Article  Google Scholar 

  82. Zitzler E, Laumanns M, Thiele L (2001) SPEA2: improving the strength Pareto evolutionary algorithm. Eidgenössische Technische Hochschule Zürich (ETH), Institut für Technische Informatik und Kommunikationsnetze (TIK) 103. https://doi.org/10.3929/ETHZ-A-004284029

  83. Mühlenbein H (1997) The equation for response to selection and its use for prediction. Evol Comput 5:303–346. https://doi.org/10.1162/evco.1997.5.3.303

    Article  Google Scholar 

  84. Mühlenbein H, Mahnig T (1999) FDA-A scalable evolutionary algorithm for the optimization of additively decomposed functions. Evol Comput 7:353–376. https://doi.org/10.1162/evco.1999.7.4.353

    Article  Google Scholar 

  85. Mika M, Waligóra G, Wȩglarz J (2015) Overview and state of the art. In: Schwindt C, Zimmermann J (eds) Handbook on project management and scheduling, vol 1. Springer International Publishing, Cham, pp 445–490

    Chapter  Google Scholar 

  86. Hartmann S, Drexl A (1998) Project scheduling with multiple modes: a comparison of exact algorithms. Networks 32:283–297. https://doi.org/10.1002/(SICI)1097-0037(199812)32:4%3c283::AID-NET5%3e3.0.CO;2-I

    Article  MathSciNet  Google Scholar 

  87. Bouleimen K, Lecocq H (2003) A new efficient simulated annealing algorithm for the resource-constrained project scheduling problem and its multiple mode version. Eur J Oper Res 149:268–281. https://doi.org/10.1016/S0377-2217(02)00761-0

    Article  MathSciNet  Google Scholar 

  88. Jarboui B, Eddaly M, Siarry P (2009) An estimation of distribution algorithm for minimizing the total flowtime in permutation flowshop scheduling problems. Comput Oper Res 36:2638–2646. https://doi.org/10.1016/j.cor.2008.11.004

    Article  MathSciNet  Google Scholar 

  89. Kolisch R, Hartmann S (1999) Heuristic algorithms for the resource-constrained project scheduling problem: classification and computational analysis. In: Węglarz J (ed) Project scheduling: recent models, algorithms and applications. Springer, US, Boston, MA, pp 147–178

    Chapter  Google Scholar 

  90. Baluja S (1994) Population-based incremental learning. A method for integrating genetic search based function optimization and competitive learning. Carnegie-Mellon Univ Pittsburgh Pa Dept of Computer Science, Pittsburgh, Pennsylvania

    Google Scholar 

  91. Ayodele M, McCall J, Regnier-Coudert O (2016) RK-EDA: a novel random key based estimation of distribution algorithm J. In: Handl, Hart E, Lewis PR, López-Ibáñez M, Ochoa G, Paechter B (eds) Parallel problem solving from nature—PPSN XIV. Springer International Publishing, Cham, pp 849–858

    Chapter  Google Scholar 

  92. Dash S, Günlük O, Lee D (2020) Generalized Chvátal-Gomory closures for integer programs with bounds on variables. Math Program. https://doi.org/10.1007/s10107-020-01539-5

    Article  Google Scholar 

  93. Krejca MS, Witt C (2020) Theory of estimation-of-distribution algorithms B. In: Doerr, Neumann F (eds) Theory of evolutionary computation: recent developments in discrete optimization. Springer International Publishing, Cham, pp 405–442

    Chapter  Google Scholar 

  94. Dang D-C, Lehre PK, Nguyen PTH (2019) Level-Based analysis of the univariate marginal distribution algorithm. Algorithmica 81:668–702. https://doi.org/10.1007/s00453-018-0507-5

    Article  MathSciNet  Google Scholar 

  95. Madera J (2009) Hacia una generación más eficiente de algoritmos evolutivos con estimación de distribuciones: pruebas de independencia + paralelismo. Ph.D. thesis, Instituto de Cibernética, Matemática y Física

    Google Scholar 

  96. Kumar M, Soomro AM, Uddin W, Kumar L (2022) Optimal multi-objective placement and sizing of distributed generation in distribution system: a comprehensive review. Energies 15:7850. https://doi.org/10.3390/en15217850

    Article  Google Scholar 

  97. Soto M (2003) A single connected factorized distribution algorithm and its cost of evaluation. Ph.D. thesis. Universidad de La Habana

    Google Scholar 

  98. Muhlenbein H, Mahnig T (1999) The factorized distribution algorithm for additively decomposed functions. In: Proceedings of the 1999 congress on evolutionary computation-CEC99 (Cat. No. 99TH8406) vol 1, pp 752–759

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Yobanis Piñero Pérez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Piñero Pérez, P.Y., Pupo, I.P., Mahdi, G.S.S., Quintana, J.M., Acuña, L.A. (2024). Project Scheduling a Critical Review of Both Traditional and Metaheuristic Techniques. In: Piñero Pérez, P.Y., Kacprzyk, J., Bello Pérez, R., Pupo, I.P. (eds) Computational Intelligence in Engineering and Project Management. CIIP 2023. Studies in Computational Intelligence, vol 1134. Springer, Cham. https://doi.org/10.1007/978-3-031-50495-2_3

Download citation

Publish with us

Policies and ethics

Navigation