Vibrational Spectroscopy in Analysis of Stimuli-Responsive Polymer–Water Systems

  • Chapter
  • First Online:
Molecular Spectroscopy—Experiment and Theory

Abstract

Over the last years, a rapid development in the material science, which is an answer to an increasing demand for functional, smart systems, has taken place. The recent progress in design, synthesis and characterization of stimuli-responsive polymer systems (SRPS) fits in this trend very well. However, extensive experiments, simulations as well as theoretical works are still conducted to deepen the knowledge about these systems, their complexity and diversity result in still insufficient understanding of some crucial phenomena. One of them is intermolecular interactions which change during swelling/deswelling processes, phase transitions (commonly leading to the phase separation) and loading or a release of various additives. Since the vibrational spectroscopy is considered to be the most powerful tool to study molecular interactions, this chapter presents various aspects related to the usage of vibrational spectroscopy in the field of SRPS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (Canada)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cabane E, Zhang X, Langowska K, Palivan CG, Meier W (2012) Stimuli-responsive polymers and their applications in nanomedicine. Biointerphases 7:9

    Article  CAS  PubMed  Google Scholar 

  2. Gil ES, Hudson SM (2004) Stimuli-reponsive polymers and their bioconjugates. Prog Polym Sci 29:1173–1222

    Article  CAS  Google Scholar 

  3. Delcea M, Mohwald H, Skirtach AG (2011) Stimuli-responsive LbL capsules and nanoshells for drug delivery. Adv Drug Deliv Rev 63:730–747

    Article  CAS  PubMed  Google Scholar 

  4. Liechty WB, Kryscio DR, Slaughter BV, Peppas NA (2010) Polymers for drug delivery systems. Annu Rev Chem Biomol Eng 1:149–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmaljohann D (2006) Thermo- and pH-responsive polymers in drug delivery. Adv Drug Deliv Rev 58:1655–1670

    Article  CAS  PubMed  Google Scholar 

  6. Wei M, Gao Y, Li X, Serpe MJ (2017) Stimuli-responsive polymers and their applications. Polym Chem 8:127–143

    Article  CAS  Google Scholar 

  7. Hu J, Meng H, Li G, Ibekwe SI (2012) A review of stimuli-responsive polymers for smart textile applications. Smart Mater Struct 21:053001

    Article  CAS  Google Scholar 

  8. Gao Y, Wei M, Li X, Xu W, Ahiabu A, Perdiz J, Liu Z, Serpe MJ (2017) Stimuli-responsive polymers: fundamental considerations and applications. Macromol Res 25:513–527

    Article  CAS  Google Scholar 

  9. Štular D, Simončič B, Tomšič B (2017) Stimuli-responsive hydrogels for textile functionalisation: a review. Tekstilec 60(2):76–96

    Article  Google Scholar 

  10. Ito S (1989) Phase transition of aqueous solution of poly (N-alkylacrylamide) derivatives-effects of side chain structure. Kobunshi Ronbunshu 46(7):437–443

    Article  CAS  Google Scholar 

  11. Ito S (1990) Phase transition of aqueous solutions of poly (N-alkoxyalkylacrylamide) derivatives effects of side chain structure. Kobunshi Ronbunshu 47(6):467–474

    Article  CAS  Google Scholar 

  12. Suwa K, Morishita K, Kishida A, Akashi M (1997) Synthesis and functionalities of poly(N-vinylalkylamide). V. Control of a lower critical solution temperature of poly(N-vinylalkylamide). J Polym Sci A 35:3087–3094

    Article  CAS  Google Scholar 

  13. Lutz JF (2008) Polymerization of oligo(ethylene glycol) (meth)acrylates: toward new generations of smart biocompatible materials. J Polym Sci A 46:3459–3470

    Article  CAS  Google Scholar 

  14. Roth PJ, Jochum FD, Forst FR, Zentel R, Theato P (2010) Influence of end groups on the stimulus-responsive behavior of poly[oligo(ethylene glycol) methacrylate] in water. Macromolecules 43:4638–4645

    Article  CAS  Google Scholar 

  15. Kojima C (2010) Design of stimuli-responsive dendrimers. Expert Opin Drug Deliv 7:307–319

    Article  CAS  PubMed  Google Scholar 

  16. Haba Y, Harada A, Takagishi T, Kono K (2004) Rendering poly(amidoamine) or poly(propylenimine) dendrimers temperature sensitive. JACS 126:12760–12761

    Article  CAS  Google Scholar 

  17. Haba Y, Kojima C, Harada A, Kono K (2007) Comparison of thermosensitive properties of poly(amidoamine) dendrimers with peripheral N-isopropylamide groups and linear polymers with the same groups. Angew Chem Int Ed 46:234–237

    Article  CAS  Google Scholar 

  18. Li W, Zhang A, Chen Y, Feldman K, Wud H, Schlüter D (2008) Low toxic, thermoresponsive dendrimers based on oligoethylene glycols with sharp and fully reversible phase transitions. Chem Commun 2008:5948–5950

    Article  CAS  Google Scholar 

  19. Parrott MC, Marchington EB, Valliant JF, Adronov A (2005) Synthesis and properties of carborane-functionalized aliphatic polyester dendrimers. JACS 127:12081–12089

    Article  CAS  Google Scholar 

  20. Pistolis G, Malliaris A, Tsiourvas D, Paleos CM (1999) Poly(propyleneimine) dendrimers as pH-sensitive controlled-release systems. Chem Eur J 5:1440–1444

    Article  CAS  Google Scholar 

  21. Sideratou Z, Tsiourvas D, Paleos CM (2000) Quaternized poly(propylene imine) dendrimers as novel pH-sensitive controlled-release systems. Langmuir 16:1766–1769

    Article  CAS  Google Scholar 

  22. Sideratou Z, Tsiourvas D, Paleos CM (2001) Solubilization and release properties of PEGylated diaminobutane poly(propylene imine) dendrimers. J Colloid Interface Sci 242:272–276

    Article  CAS  Google Scholar 

  23. Paleos CM, Tsiourvas D, Sideratou Z, Tziveleka L (2004) Acid- and salt-triggered multifunctional poly(propylene imine) dendrimer as a prospective drug delivery system. Biomacromol 5:524–529

    Article  CAS  Google Scholar 

  24. Kimura M, Kato M, Muto T, Hanabusa K, Shirai H (2000) Temperature-sensitive dendritic hosts: synthesis, characterization, and control of catalytic activity. Macromolecules 33:1117–1119

    Article  CAS  Google Scholar 

  25. You YZ, Hong CY, Pan CY, Wang PH (2004) Synthesis of a dendritic core–shell nanostructure with a temperature-sensitive. Shell Adv Mater 16:1953–1957

    Article  CAS  Google Scholar 

  26. Xu J, Luo S, Shi W, Liu S (2006) Two-stage collapse of unimolecular micelles with double thermoresponsive coronas. Langmuir 22:989–997

    Article  CAS  PubMed  Google Scholar 

  27. Yang Z, Zhang W, Zou J, Shi W (2007) Synthesis and thermally responsive characteristics of dendritic poly(ether-amide) grafting with PNIPAAm and PEG. Polymer 48:931–938

    Article  CAS  Google Scholar 

  28. Lee HI, Lee JA, Poon Z, Hammond PT (2008) Temperature-triggered reversible micellar self-assembly of linear–dendritic block copolymers. Chem Commun 2008:3726–3728

    Article  CAS  Google Scholar 

  29. Plummer R, Hill DTJ, Whittaker AK (2006) Solution properties of star and linear poly(N-isopropylacrylamide). Macromolecules 39:8379–8388

    Article  CAS  Google Scholar 

  30. Xu J, Liu S (2009) Synthesis of well-defined 7-arm and 21-arm poly(N-isopropylacrylamide) star polymers with β-cyclodextrin cores via click chemistry and their thermal phase transition behavior in aqueous solution. J Polym Sci A 47:404–419

    Article  CAS  Google Scholar 

  31. Liu YY, Zhong YB, Nan JK, Tian W (2010) Star polymers with both temperature sensitivity and inclusion functionalities. Macromolecules 43:10221–10230

    Article  CAS  Google Scholar 

  32. Lambeth RH, Ramakrishnan S, Mueller R, Poziemski JP, Miguel GS, Markoski LJ, Zukoski CF, Moore JS (2006) Synthesis and aggregation behavior of thermally responsive star polymers. Langmuir 22:6352–6360

    Article  CAS  PubMed  Google Scholar 

  33. Ni C, Wu G, Zhu C, Yao B (2010) The preparation and characterization of amphiphilic star block copolymer nano micelles using silsesquioxane as the core. J Phys Chem C 114:13471–13476

    Article  CAS  Google Scholar 

  34. Bai Y, Wei J, Yang L, He C, Lu X (2012) Temperature and pH dual-responsive behavior of polyhedral oligomeric silsesquioxane-based star-block copolymer with poly(acrylic acid-block-N-isopropylacrylamide) as arms. Colloid Polym Sci 290:507–515

    Article  CAS  Google Scholar 

  35. Zhu W, Nese A, Matyjaszewski K (2011) Thermoresponsive star triblock copolymers by combination of ROP and ATRP: from micelles to hydrogels. J Polym Sci A 49:1942–1952

    Article  CAS  Google Scholar 

  36. Guo Y, Li M, Li X, Shang Y, Liu H (2017) Stimuli-responsive and micellar behaviors of star-shaped poly[2-(dimethylamino)ethyl methacrylate]-b-poly[2-(2-methoxyethoxy)ethyl methacrylate] with a β-cyclodextrin core. React Funct Polym 116:77–86

    Article  CAS  Google Scholar 

  37. Das S, Chatterjee DP, Ghosh R, Das P, Nandi AK (2016) Water soluble stimuli-responsive star copolymers with multiple encapsulation and release properties. RSC Adv 6:8773–8785

    Article  CAS  Google Scholar 

  38. Kuckling D, Wycisk A (2013) Stimuli-responsive star polymers. Inc J Polym Sci A 51:2980–2994

    Article  CAS  Google Scholar 

  39. Huggins ML (1941) Solutions of long chain compounds. J Chem Phys 9:440

    Article  CAS  Google Scholar 

  40. Flory PJ (1941) Thermodynamics of high polymer solutions. J Chem Phys 9:660–661

    Article  CAS  Google Scholar 

  41. Flory PJ (1941) Molecular size distribution in three dimensional polymers. I. Gelation. JACS 63:3083–3090

    Article  CAS  Google Scholar 

  42. Flory PJ (1941) Molecular size distribution in three dimensional polymers. II. Trifunctional branching units. JACS 63:3091–3096

    Article  CAS  Google Scholar 

  43. Flory PJ (1941) Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching units. JACS 63:3096–3100

    Article  CAS  Google Scholar 

  44. Flory PJ (1942) Thermodynamics of high polymer solutions. J Chem Phys 10:51–61

    Article  CAS  Google Scholar 

  45. Stockmayer WH (1944) Theory of molecular size distribution and gel formation in Branched polymers II. General cross linking. J Chem Phys 12:125–131

    Article  CAS  Google Scholar 

  46. Flory PJ, Krigbaum WR (1950) Statistical mechanics of dilute polymer solutions II. J Chem Phys 18:1086–1094

    Article  CAS  Google Scholar 

  47. Krigbaum WR, Flory PJ (1953) Statistical mechanics of dilute polymer solutions. IV. Variation of the osmotic second coefficient with molecular weight. JACS 75:1775–1784

    Article  CAS  Google Scholar 

  48. Stockmayer WH (1950) Light scattering in multi-component systems. J Chem Phys 18:58–61

    Article  CAS  Google Scholar 

  49. Stockmayer WH (1960) Problems of the statistical thermodynamics of dilute polymer solutions. Macromol Chem Phys 35:54–74

    Article  CAS  Google Scholar 

  50. Flory JP (1953) Principles in polymer chemistry. Cornell University Press, Ithaca

    Google Scholar 

  51. Yamakawa H (1971) Modern theory of polymer solutions 1971. Harper & Row Publishers, New York

    Google Scholar 

  52. Teraoka I (2002) Polymer solutions: an introduction to physical properties. Wiley, New York

    Google Scholar 

  53. de Grotthuss CJT (1806) Memoir on the decomposition of water and of the bodies that it holds in solution by means of galvanic electricity. Ann Chim (Paris) 58:54–73 (Reprint in Eng de Grotthuss CJT Biochim Biophys Acta (2006) 1757:871–875)

    Google Scholar 

  54. Siwick BJ, Bakker HJ (2007) On the role of water in intermolecular proton-transfer reactions. JACS 129:13412–13420

    Article  CAS  Google Scholar 

  55. Imran AB, Seki T, Takeoka Y (2010) Recent advances in hydrogels in terms of fast stimuli responsiveness and superior mechanical performance. Polym J 42:839–851

    Article  CAS  Google Scholar 

  56. Sadlej J (2007) On the calculations of the vibrational Raman spectra of small water clusters. Chem Phys 342:163–172

    Article  CAS  Google Scholar 

  57. Walrafen GE, Hokmabadi MS, Yang WH (1986) Raman isosbestic points from liquid water. J Chem Phys 85:6964–6965

    Article  CAS  Google Scholar 

  58. Scatena LF, Brown MG, Richmond GL (2001) Water at hydrophobic surfaces: weak hydrogen bonding and strong orientation effects. Science 292:908–912

    Article  CAS  PubMed  Google Scholar 

  59. Bakker HJ, Skinner JL (2009) Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem Rev 110:1498–1517

    Article  CAS  Google Scholar 

  60. Walrafen GE (1967) Raman spectroscopy studies of the effect of temperature on water structure. J Chem Phys 47:114–126

    Article  CAS  Google Scholar 

  61. Green JL, Lacey AR, Sceats MG (1986) Spectroscopic evidence for spatial correlation of hydrogen bonds in liquid water. J Phys Chem 90:3958–3964

    Article  CAS  Google Scholar 

  62. Auer BM, Skinner JL (2008) IR and Raman spectra of liquid water: theory and interpretation. J Chem Phys 128(22):224511

    Article  CAS  PubMed  Google Scholar 

  63. Tominaga Y, Fujiwara A, Amo Y (1998) Dynamical structure of water by Raman spectroscopy. Fluid Phase Equilibira 144:323–330

    Article  CAS  Google Scholar 

  64. Walrafen GE, Hokmabadi MS, Yang WH (1988) Raman investigation of the temperature dependence of the bending ν2 and combination ν 2 + ν L bands from liquid water. J Phys Chem 92:2433–2438

    Article  CAS  Google Scholar 

  65. Maeda Y, Kakinoki K, Kitano H (1996) Raman spectroscopic study of water in lipid dispersions: changes in structure of hydrating water caused by gel-liquid crystal phase transition. J Raman Spec 27:425–427

    Article  CAS  Google Scholar 

  66. Luu DV, Cambon L (1990) Perturbation of liquid-water structure by ionic substances. J Mol Struc 237:411–419

    Article  CAS  Google Scholar 

  67. Green JL, Lacey AR, Sceats MG (1987) Collective proton motions in H2O/H2O2 mixture: evidence for defects and network reconstruction. J Chem Phys 86:1841–1847

    Article  CAS  Google Scholar 

  68. Marinov VS, Matsuura H (2002) Raman spectroscopic study of temperature dependence of water structure in aqueous solutions of a poly(oxyethylene) surfuctant. J Mol Struc 610:105–112

    Article  CAS  Google Scholar 

  69. Joachimiak A, Halamus T, Wojciechowski P, Ulanski J (2005) Structure of hydrogels based on lyotropic phases of cellulose derivative as studied by Raman spectroscopy. Macromol Chem Phys 206:59–65

    Article  CAS  Google Scholar 

  70. Pastorczak M, Kozanecki M, Ulanski J (2008) Raman resonance effect in liquid water. J Phys Chem A 112:10705–10707

    Article  CAS  PubMed  Google Scholar 

  71. Sándorfy C (2006) Hydrogen bonding: how much anharmonicity? J Mol Struc 790:50–54

    Article  CAS  Google Scholar 

  72. Waldron RD (1957) Infrared spectra of HDO in water and ionic solutions. J Chem Phys 26:809–814

    Article  CAS  Google Scholar 

  73. Lee HB, Jhon MS, Andrade JD (1975) Nature of water in synthetic hydrogels. I. Dilatometry, specific conductivity, and differential scanning calorimetry of polyhydroxyethyl methacrylate. J Coll Interface Sci 51:225–231

    Article  CAS  Google Scholar 

  74. Maeda Y, Kitano H (1995) The structure of water in polymer systems as revealed by Raman spectroscopy. Spectrochim Acta A 51:2433–2446

    Article  Google Scholar 

  75. Maeda Y, lde M, Kitano H (1999) Vibrational spectroscopic Study on the structure of water in polymer systems. J Mol Liq 80:149–163

    Article  CAS  Google Scholar 

  76. Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 43:3–12

    Article  Google Scholar 

  77. Lafleur M, Pigeon M, Pezolet M, Caille JP (1989) Raman spectrum of interstitial water in biological systems. J Phys Chem 93:1522–1526

    Article  CAS  Google Scholar 

  78. Cerveny S, Colmenero J, Alegria A (2005) Dielectric investigation of the low-temperature water dynamics in the poly(vinyl methyl ether)/H2O system. Macromolecules 38:7056–7063

    Article  CAS  Google Scholar 

  79. Johari GP (1981) The dipolar correlation factor, the electrostatic field, the dipole moment, and the Coulombic interaction energy of water molecules in clathrate hydrates. J Chem Phys 74:1326–1336

    Article  CAS  Google Scholar 

  80. Henry F, Gaudilla M, Costa LC, Lakkis F (2003) Free and/or bound water by dielectric measurements. Food Chem 82:29–34

    Article  CAS  Google Scholar 

  81. Craig D (1995) Dielectric analysis of pharmaceutical systems. CRC Press, Boca Raton

    Google Scholar 

  82. Beneduci A (2008) Which is the effective time scale of the fast Debye relaxation process in water? J Mol Liq 138:55–60

    Article  CAS  Google Scholar 

  83. Ellison WJ, Moreau JM (1996) Water: a dielectric reference. J Mol Liq 68:171–279

    Article  CAS  Google Scholar 

  84. Shinyashiki N, Shimomura M, Ushiyama T, Miyagawa T, Yagihara S (2007) Dynamics of water in partially crystallized polymer/water mixtures studied by dielectric spectroscopy. J Phys Chem B 111:10079–10087

    Article  CAS  PubMed  Google Scholar 

  85. Pastorczak M, Dominguez-Espinosa G, Okrasa L, Pyda M, Kozanecki M, Kadlubowski S, Rosiak JM, Ulanski J (2014) Poly(vinyl methyl ether) hydrogels at temperatures below the freezing point of water—molecular interactions and states of water. Colloid Polym Sci 292:1775–1784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Shen YR (2016) Fundamentals of sum-frequency spectroscopy. Cambridge molecular science. Cambridge University Press, Cambridge

    Book  Google Scholar 

  87. Fayer M (2013) Ultrafast infrared vibrational spectroscopy. CRC Press, Boca Raton

    Google Scholar 

  88. Hamm P, Zanni M (2011) Concepts and methods of 2D infrared spectroscopy. Cambridge University Press, Cambridge

    Book  Google Scholar 

  89. Cheng J, **e X. (2012) Coherent Raman scattering microscopy. CRC Press, Boca Raton

    Book  Google Scholar 

  90. Bakker HJ, Planken PCM (1990) Role of solvent on vibrational energy transfer in solution. Nature 347:745–747

    Article  CAS  Google Scholar 

  91. Woutersen S, Emmerichs U, Bakker HJ (1997) Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure. Science 278:658–660

    Article  CAS  Google Scholar 

  92. Woutersen S, Bakker HJ (1999) Resonant intermolecular transfer of vibrational energy in liquid water. Nature 402:507–509

    Article  CAS  Google Scholar 

  93. Rezus YLA, Bakker HJ (2005) On the orientational relaxation of HDO in liquid water. J Chem Phys 123:114502

    Article  CAS  PubMed  Google Scholar 

  94. Rezus YLA, Bakker HJ (2006) Orientational dynamics of isotopically diluted H2O and D2O. J Chem Phys 125:144512

    Article  CAS  PubMed  Google Scholar 

  95. Rezus YLA, Bakker HJ (2007) Observation of immobilized water molecules around hydrophobic groups. Phys Rev Lett 99:148301

    Article  CAS  PubMed  Google Scholar 

  96. Laage D, Hynes JT (2006) A molecular jump mechanism of water reorientation. Science 311:832–835

    Article  CAS  PubMed  Google Scholar 

  97. Mohammed OF, Pines D, Dreyer J, Pines E, Nibbering ETJ (2005) Sequential proton transfer through water bridges in acid-base reactions. Science 310:83–86

    Article  CAS  PubMed  Google Scholar 

  98. Cowan ML, Bruner BD, Huse N, Dwyer JR, Chugh B, Nibbering ETJ, Elsaesser T, Miller RJD (2005) Ultrafast memory loss and energy redistribution in the hydrogen bond network of liquid H2O. Nature 434:199–202

    Article  CAS  PubMed  Google Scholar 

  99. Fecko CJ, Eaves JD, Loparo JJ, Tokmakoff A, Geissler PL (2003) Ultrafast hydrogen-bond dynamics in the infrared spectroscopy of water. Science 301:1698–1702

    Article  CAS  PubMed  Google Scholar 

  100. Lock AJ, Bakker HJ (2002) Temperature dependence of vibrational relaxation in liquid H2O. J Chem Phys 117:1708–1713

    Article  CAS  Google Scholar 

  101. Ashihara S, Huse N, Espagne A, Nibbering ETJ, Elsaesser T (2006) Vibrational couplings and ultrafast relaxation of the O-H bending mode in liquid H2O. Chem Phys Lett 424:66–70

    Article  CAS  Google Scholar 

  102. Ashihara S, Huse N, Espagne A, Nibbering ETJ, Elsaesser T (2007) Ultrafast structural dynamics of water induced by dissipation of vibrational energy. J Phys Chem A 111:743–746

    Article  CAS  PubMed  Google Scholar 

  103. Lindner J, Vöhringer P, Pshenichnikov MS, Cringus D, Wiersma DA, Mostovoy M (2006) Vibrational relaxation of pure liquid water. Chem Phys Lett 421:329–333

    Article  CAS  Google Scholar 

  104. Nienhuys H-K, Woutersen S, van Santen RA, Bakker HJ (1999) Mechanism for vibrational relaxation in water investigated by femtosecond infrared spectroscopy. J Chem Phys 111:1494–1500

    Article  CAS  Google Scholar 

  105. Kropman MF, Nienhuys H-K, Woutersen S, Bakker HJ (2001) Vibrational relaxation and hydrogen-bond dynamics of HDO:H2O. J Phys Chem A 105:4622–4626

    Article  CAS  Google Scholar 

  106. Hunger J, Bernecker A, Bakker HJ, Bonn M, Richter RP (2012) Hydration dynamics of hyaluronan and dextran. Biophys J 103:L10–L12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Mazur K, Buchner R, Bonn M, Hunger J (2014) Hydration of sodium alginate in aqueous solution. Macromolecules 47:771–776

    Article  CAS  Google Scholar 

  108. Kocak G, Tuncer C, Butun V (2017) pH-responsive polymers. Polym Chem 8:144–176

    Article  CAS  Google Scholar 

  109. Chun MK, Cho CS, Choi HK (2002) Mucoadhesive drug carrier based on interpolymer complex of poly(vinyl pyrrolidone) and poly(acrylic acid) prepared by template polymerization. J Control Release 81:327–334

    Article  CAS  PubMed  Google Scholar 

  110. Tsukida N, Muranaka H, Ide M, Maeda Y, Kitano H (1997) Effect of neutralization of poly(acrylic acid) on the structure of water examined by Raman spectroscopy. J Phys Chem B 101:6676–6679

    Article  CAS  Google Scholar 

  111. Tamura T, Kawauchi S, Satoh M, Komiyama J (1997) Infrared spectroscopic study and ab initio calculation for dissociation of poly(α-hydroxy acrylic acid) in aqueous solutions. Polymer 38:2093–2098

    Article  CAS  Google Scholar 

  112. Santonicola MG, de Groot GW, Memesa M, Meszyńska A, Vancso GJ (2010) Reversible pH-controlled switching of poly(methacrylic acid) grafts for functional biointerfaces. Langmuir 26:17513–17519

    Article  CAS  PubMed  Google Scholar 

  113. Dong J, Ozaki Y, Nakashima K (1997) Infrared, Raman, and near-infrared spectroscopic evidence for the coexistence of various hydrogen-bond forms in poly(acrylic acid). Macromolecules 30:1111–1117

    Article  CAS  Google Scholar 

  114. Walczak WJ, Hoagland DA, Hsu SL (1992) Analysis of polyelectrolyte chain conformation of polarized Raman-spectroscopy. Macromolecules 25:7317–7323

    Article  CAS  Google Scholar 

  115. Hofmeister F (1888) Zur Lehre Von Der Wirkung Der Salze. Naunyn-Schmiedeberg’s. Arch Pharmacol 24:247–260

    Article  Google Scholar 

  116. Hofmeister F (1888) Zur Lehre Von Der Wirkung Der Salze. Naunyn-Schmiedeberg’s. Arch Pharmacol 25:1–30

    Article  Google Scholar 

  117. Kunz W, Henle J, Ninham BW (2004) ‘Zur Lehre von der Wirkung der Salze’ (about the science of the effect of salts): Franz Hofmeister’s historical papers. Curr Opin Coll Interface Sci 9:19–37

    Article  CAS  Google Scholar 

  118. Swann JMG, Bras W, Topham PD, Howse JR, Ryan AJ (2010) Effect of the hofmeister anions upon the swelling of a self-assembled pH-responsive hydrogel. Langmuir 26:10191–10197

    Article  CAS  PubMed  Google Scholar 

  119. Sadeghi R, Jahani F (2012) Salting-in and salting-out of water-soluble polymers in aqueous salt solutions. J Phys Chem B 116:5234–5241

    Article  CAS  PubMed  Google Scholar 

  120. Tielrooij KJ, Garcia-Araez N, Bonn M, Bakker HJ (2010) Cooperativity in ion hydration. Science 328:1006–1009

    Article  CAS  PubMed  Google Scholar 

  121. Pastorczak M, van der Post ST, Bakker HJ (2013) Cooperative hydration of carboxylate groups with alkali cations. Phys Chem Chem Phys 15:17767–17770

    Article  CAS  PubMed  Google Scholar 

  122. Liu L, Kou R, Liu G (2017) Ion specificities of artificial macromolecules. Soft Matter 13:68–80

    Article  CAS  Google Scholar 

  123. Willott JD, Murdoch TJ, Webber GB, Wanless EJ (2017) Physicochemical behaviour of cationic polyelectrolyte brushes. Prog Polym Sci 64:52–75

    Article  CAS  Google Scholar 

  124. Shen YR (1989) Surface properties probed by second-harmonic and sum-frequency generation. Nature 337:519–525

    Article  CAS  Google Scholar 

  125. Beaman DK, Robertson EJ, Richmond GL (2011) Unique assembly of charged polymers at the oil − water interface. Langmuir 27:2104–2106

    Article  CAS  PubMed  Google Scholar 

  126. Beaman DK, Robertson EJ, Richmond GL (2012) Ordered polyelectrolyte assembly at the oil–water interface. Proc Natl Acad Sci 109:3226–3231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Balzerowski P, Meister K, Versluis J, Bakker HJ (2016) Heterodyne-detected sum frequency generation spectroscopy of polyacrylic acid at the air/water-interface. Phys Chem Chem Phys 18:2481–2487

    Article  CAS  PubMed  Google Scholar 

  128. Kondo T, Nomura K, Murou M, Gemmei-Ide M, Kitano H, Noguchi H, Uosaki K, Ohno K, Saruwatari Y (2012) Structure of water in the vicinity of a zwitterionic polymer brush as examined by sum frequency generation method. Colloid Surf B 100:126–132

    Article  CAS  Google Scholar 

  129. Shibayama M, Tanaka T (1993) Volume phase transition and related phenomena of polymer gels. Adv Polym Sci 109:1–62

    Article  CAS  Google Scholar 

  130. Koetting MC, Peters JT, Steichen SD, Peppas NA (2015) Stimulus-responsive hydrogels: theory, modern advances, and applications. Mater Sci Eng R Rep. 93:1–49

    Article  PubMed  PubMed Central  Google Scholar 

  131. Wu C (1998) A comparison between the ‘coil-to-globule’ transition of linear chains and the ‘‘volume phase transition’’ of spherical microgels. Polymer 39:4609–4619

    Article  CAS  Google Scholar 

  132. Li Y, Tanaka T (1992) Phase transitions of gels. Annu Rev Mater Sci 22:243–277

    Article  Google Scholar 

  133. Olejniczak MN, Piechocki K, Kozanecki M, Koynov K, Adamus A, Wach RA (2016) The influence of selected NSAIDs on volume phase transition in poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels. J Mater Chem B 4:1528–1534

    Article  CAS  PubMed  Google Scholar 

  134. Tanaka T (1978) Collapse of gels and the critical endpoint. Phys Rev Lett 40(12):820–823

    Article  CAS  Google Scholar 

  135. Dusek K, Patterson D (1968) Transition in swollen polymer networks induced by intramolecular condensation. J Polym Sci A 6:1209–1216

    Article  CAS  Google Scholar 

  136. Pititsen OB, Eizner YE (1965) The theory of helix-coil transitions in macromolecules. Biofizika 10:3–6

    Google Scholar 

  137. DeGennes PG (1972) Exponents for the excluded volume problem as derived by the Wilson method. Phys Lett A 38:339–340

    Article  Google Scholar 

  138. Lifshitz IM, Grosberg AY, Khokhlov AR (1978) Some problems of the statistical physics of polymer chains with volume interaction. Rev Modern Phys 50:683–713

    Article  CAS  Google Scholar 

  139. Maeda Y, Nakamura T, Ikeda I (2002) Hydration and phase behavior of poly(N-vinylcaprolactam) and poly(N-vinylpyrrolidone) in water. Macromolecules 35:217–222

    Article  CAS  Google Scholar 

  140. Schafer-Soenen H, Moerkerke R, Berghmans H, Koningsveld R, Dusek K, Solc K (1997) Zero and off-zero critical concentrations in systems containing polydisperse polymers with very high molar masses. 2. The system water − poly(vinyl methyl ether). Macromolecules 30:410–416

    Article  Google Scholar 

  141. Pyda M, Van Durme K, Wunderlich B, Van Mele B (2005) Heat capacity of poly(vinyl methyl ether). J Polym Sci B 43:2141–2153

    Article  CAS  Google Scholar 

  142. Vancoillie G, Frank D, Hoogenboom R (2014) Thermoresponsive poly(oligo ethylene glycol acrylates). Prog Polym Sci 39:1074–1095

    Article  CAS  Google Scholar 

  143. Wach RA, Mitomo H, Yoshii F, Kum T (2002) Hydrogel of radiation-induced cross-linked hydroxypropylcellulose. Macromol Mater Eng 287:285–295

    Article  CAS  Google Scholar 

  144. **a X, Tang S, Lu X, Hu Z (2003) Formation and volume phase transition of hydroxypropyl cellulose microgels in salt solution. Macromolecules 36:3695–3698

    Article  CAS  Google Scholar 

  145. Cho EC, Lee J, Cho K (2003) Role of bound water and hydrophobic interaction in phase transition of poly(N-isopropylacrylamide) aqueous solution. Macromolecules 36:9929–9934

    Article  CAS  Google Scholar 

  146. Maeda Y, Kubota T, Yamauchi H, Nakaji T, Kitano H (2007) Hydration changes of poly(2-(2-methoxyethoxy)ethyl methacrylate) during thermosensitive phase separation in water. Langmuir 23:11259–11265

    Article  CAS  PubMed  Google Scholar 

  147. Deshmukht SA, Sankaranarayanan SKRS, Suthar K, Mancini DC (2012) Role of solvation dynamics and local ordering of water in inducing conformational transitions in poly(N-isopropylacrylamide) oligomers through the LCST. J Phys Chem B 116:2651–2663

    Article  CAS  Google Scholar 

  148. Kozanecki M, Halagan K, Saramak J, Matyjaszewski K (2016) Diffusive properties of water molecules in neighborhood of polymer chain as seen by Monte-Carlo simulations. Soft Matter 12:5519–5528

    Article  CAS  PubMed  Google Scholar 

  149. Saramak J, Halagan K, Kozanecki M, Polanowski P (2014) Computational studies of intermolecular interactions in aqueous solutions of poly (vinylmethylether). J Mol Model 20:2529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Loozen E, Van Durme K, Nies E, Van Mele B, Berghmans H (2006) The anomalous melting behavior of water in aqueous PVME solutions. Polymer 47:7034–7042

    Article  CAS  Google Scholar 

  151. Van Durme K, Loozen E, Nies E, Van Mele B (2005) Phase behavior of poly(vinyl methyl ether) in deuterium oxide. Macromolecules 38:10234–10243

    Article  CAS  Google Scholar 

  152. Meeussen F, Bauwens Y, Moerkerke R, Nies E, Berghmans H (2000) Molecular complex formation in the system poly(vinyl methyl ether)/water. Polymer 41:3737–3743

    Article  CAS  Google Scholar 

  153. Zhang J, Berge B, Meeussen F, Nies E, Berghmans H, Shen D (2003) influence of the interactions in aqueous mixtures of poly(vinyl methyl ether) on the crystallization behavior of water. Macromolecules 36:9145–9153

    Article  CAS  Google Scholar 

  154. Nies E, Li T, Berghmans H, Heenan RK, King SM (2006) Supper critical solution temperature phase behavior, composition fluctuations, and complex formation in poly (vinyl methyl ether)/D2O solutions: small-angle neutron-scattering experiments and wertheim lattice thermodynamic perturbation theory predictions. J Phys Chem B 110:5321–5329

    Article  CAS  PubMed  Google Scholar 

  155. Hidaka T, Sugihara S, Maeda Y (2013) Infrared spectroscopic study on LCST behavior of poly(N,N-bis(2-methoxyethyl)acrylamide). Eur Polym J 49:675–681

    Article  CAS  Google Scholar 

  156. Ide M, Maeda Y, Kitano H (1997) Effect of hydrophobicity of amino acids on the structure of water. J Phys Chem B 101:7022–7026

    Article  CAS  Google Scholar 

  157. Maeda Y, Higuchi T, Ikeda I (2000) Change in hydration state during the coil-globule transition of aqueous solutions of poly(n-isopropylacrylamide) as evidenced by FTIR spectroscopy. Langmuir 16:7503–7509

    Article  CAS  Google Scholar 

  158. Maeda Y, Yamamoto H, Ikeda I (2004) Micro-raman spectroscopic investigation on the phase separation of poly(vinyl methyl ether)/alcohol/water ternary mixtures. Langmuir 20:7339–7341

    Article  CAS  PubMed  Google Scholar 

  159. Maeda Y, Yamauchi H, Kubota T (2009) Confocal micro-Raman and infrared spectroscopic study on the phase separation of aqueous poly(2-(2-methoxyethoxy)ethyl (meth)acrylate) solutions. Langmuir 25:479–482

    Article  CAS  PubMed  Google Scholar 

  160. Maeda Y (2011) hydration of temperature-responsive polymers observed by ir spectroscopy. Macromol Symp 303:63–70

    Article  CAS  Google Scholar 

  161. Olejniczak MN, Kozanecki M, Saramak J, Matusiak M, Kadlubowski S, Matyjaszewski K (2017) Raman spectroscopy study on influence of network architecture on hydration of poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels. J Raman Spectr 48:465–473

    Article  CAS  Google Scholar 

  162. Pastorczak M, Kozanecki M, Ulanski J (2009) Water-polymer interactions in PVME hydrogels—Raman spectroscopy studies. Polymer 50(19):4535–4542

    Article  CAS  Google Scholar 

  163. Inomata H, Goto S, Otaka K, Saito S (1992) Effect of additives on phase transition of N-isopropylacrylamide gels. Langmuir 8:687–690

    Article  CAS  Google Scholar 

  164. Kokufuta E, Zhang YQ, Tanaka Y, Mamada A (1993) Effects of surfactants on the phase transition of poly (N-isopropylacrylamide) gel. Macromolecules 26:1053–1059

    Article  CAS  Google Scholar 

  165. Van Durme K, Rahier H, Van Mele B (2005) Influence of additives on the thermoresponsive behavior of polymers in aqueous solution. Macromolecules 38:10155–10163

    Article  CAS  Google Scholar 

  166. Suzuki Y, Suzuki N, Takasu Y, Nishio I (2007) A study on the structure of water in an aqueous solution by solvent effect on a volume phase transition of N-isopropylacrylamide gel and low-frequency Raman spectroscopy. J Chem Phys 107:5890–5897

    Article  Google Scholar 

  167. Otake K, Inomata H, Konno M, Saito S (1990) Thermal-analysis of the volume phase transition with N-isopropylacrylamide gels. Macromolecules 23:283–289

    Article  CAS  Google Scholar 

  168. Yoon JA, Gayathri C, Gil RR, Kowalewski T, Matyjaszewski K (2010) Comparison of the thermoresponsive deswelling kinetics of poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels prepared by ATRP and FRP. Macromolecules 43:4791–4797

    Article  CAS  Google Scholar 

  169. Zhu PW, Napper DH (1996) Volume phase transitions of poly(N-isopropylacrylamide) latex particles in mixed water-N, N-dimethylformamide solutions. Chem Phys Lett 256:51–56

    Article  CAS  Google Scholar 

  170. Ouyang JF, Bettens RPA (2015) Modelling water: a lifetime enigma. Chimia 69:104–111

    Article  CAS  PubMed  Google Scholar 

  171. Chen M, Ko HY, Remsing RC, Calegari Andrade MF, Santra B, Sun Z, Selloni A, Car R, Klein ML, Perdew JP, Wu X (2017) Ab initio theory and modeling of water. PNAS 114:10846–10851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Kotelyanskii M, Theodorou DN (2004) Simulation methods for polymers. Marcel Dekker, New York

    Google Scholar 

  173. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138

    Article  Google Scholar 

  174. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    Article  CAS  Google Scholar 

  175. Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ (1994) Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  176. Miertuš S, Scrocco E, Tomasi J (1981) Alectrostatic interaction of a solute with a continuum. A direct utilization of ab initio molecular potentials for the prevision of solvent effects. Chem Phys 55:117–129

    Article  Google Scholar 

  177. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092

    Article  CAS  Google Scholar 

  178. Hockney R, Eastwood J (1981) Computer simulation using particles. McGraw-Hill, New York

    Google Scholar 

  179. Bayly CI, Cieplak P, Cornell W, Kollman PA (1993) A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: the RESP model. J Phys Chem 97:10269–10280

    Article  CAS  Google Scholar 

  180. Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA (1995) A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. JACS 117:5179–5197

    Article  CAS  Google Scholar 

  181. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple Amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Genet 65:712–725

    Article  CAS  Google Scholar 

  182. Duan Y, Wu C, Chowdhury S, Lee MC, **ong GM, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang JM, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  PubMed  Google Scholar 

  183. van Gunsteren WF, Berendsen HJC (1987) Groningen molecular simulation (GROMOS) library manual. Biomos, Groningen, The Netherlands

    Google Scholar 

  184. van Gunsteren WF, Billeter S, Eising A, Hünenberger P, Krüger P, Mark A, Scott W, Tironi I (1996) Biomolecular simulation: the Gromos 96 manual and user guide. vdf Hochschulverlag AG an der ETH Zürich, Zürich, Switzerland

    Google Scholar 

  185. Jorgensen WL, Tirado-Rives J (1988) The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. JACS 110:1657–1666

    Article  CAS  Google Scholar 

  186. Vanommeslaeghe K, Hatcher E, Acharya C, Kundu S, Zhong S, Shim J, Darian E, Guvench O, Lopes P, Vorobyov I, Mackerell AD (2010) CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J Comput Chem 31:671–690

    CAS  PubMed  PubMed Central  Google Scholar 

  187. Sun H (1994) Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. J Comput Chem 15:752–768

    Article  CAS  Google Scholar 

  188. Berendsen HJC, Grigera JR, Straatsma TP (1987) The missing term in effective pair potentials. J Phys Chem 91:6269–6271

    Article  CAS  Google Scholar 

  189. Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  190. Abascal JLF, Vega C (2005) A general purpose model for the condensed phases of water: TIP4P/2005. J Chem Phys 123:234505

    Article  CAS  PubMed  Google Scholar 

  191. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103:227–249

    Article  CAS  PubMed  Google Scholar 

  192. Hoogerbrugge P, Koelman J (1992) Simulating microscopic hydrodynamic phenomena with dissipative particle dynamics. Europhys Lett 19:155–160

    Article  Google Scholar 

  193. Espanol P, Warren PB (2017) Perspective: dissipative particle dynamics. J Chem Phys 146:150901

    Article  PubMed  CAS  Google Scholar 

  194. Carmesin I, Kremer K (1988) The bond fluctuation method: a new effective algorithm for the dynamics of polymers in all spatial dimensions. Macromolecules 21:2819–2823

    Article  CAS  Google Scholar 

  195. Shaffer SJ (1994) Effects of chain topology on polymer dynamics: bulk melts. J Chem Phys 101:4205

    Article  CAS  Google Scholar 

  196. Meyer KH (1940) Proprietes de polymeres en solution XVI. Interpretation statistique des proprietes thermodynamiques de systemes binaires liquides. Helv Chirn Acta 23:1063–1070

    Article  CAS  Google Scholar 

  197. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E (1953) Equation of state calculations by fast computing machines. J Chem Phys 21:1087–1092

    Article  CAS  Google Scholar 

  198. Murat M, Witten TA (1990) Relaxation in bead-jump polymer simulations. Macromolecules 23:520–527

    Article  CAS  Google Scholar 

  199. Lal M (1969) ‘Monte Carlo’ computer simulation of chain molecules. Mol Phys 1:1757–1764

    Google Scholar 

  200. Olaj OF, Lantschbauer W (1982) Simulation of chain arrangement in bulk polymer, 1a,b). Chain dimensions and distribution of the end‐to‐end distance. Macromol Chem Rapid Commun

    Google Scholar 

  201. Pakula T (1987) Cooperative relaxations in condensed macromolecular systems. 1. A model for computer simulation. Macromolecules 20:679–682

    Article  CAS  Google Scholar 

  202. Pakula T (2000) Collective dynamics in simple supercooled and polymer liquids. J Mol Liq 86:109–121

    Article  CAS  Google Scholar 

  203. Polanowski P, Jeszka JK (2007) Microphase separation in two-dimensional athermal polymer solutions on a triangular lattice. Langmuir 23:8678–8680

    Article  CAS  PubMed  Google Scholar 

  204. Polanowski P, Jeszka JK, Li W, Matyjaszewski K (2011) Effect of dilution on branching and gelation in living copolymerization of monomer and divinyl cross-linker: modeling using dynamic lattice liquid model (DLL) and Flory-Stockmayer (FS) model. Polymer 52:5092–5101

    Article  CAS  Google Scholar 

  205. Polanowski P, Jeszka JK, Matyjaszewski K (2014) Synthesis of star polymers by “core-first” one–pot method via ATRP: Monte Carlo simulations. Polymer 55:2552–2561

    Article  CAS  Google Scholar 

  206. Polanowski P, Jeszka JK, Krysiak K, Matyjaszewski K (2015) Influence of intramolecular crosslinking on gelation in living copolymerization of monomer and divinyl cross-linker. Monte Carlo simulation studies. Polymer 79:171–178

    Article  CAS  Google Scholar 

  207. Polanowski P, Sikorski A (2017) Comparison of different models of motion in a crowded environment: a Monte Carlo study. Soft Matter 13:1693–1701

    Article  CAS  PubMed  Google Scholar 

  208. Aseyev V, Tenhu H, Winnik FM (2010) Non-ionic thermoresponsive polymers in water. Adv Polym Sci 242:29–89

    Article  CAS  Google Scholar 

  209. Longhi G, Lebon F, Abbate S, Fornili SL (2004) Molecular dynamics simulation of a model oligomer for poly(N-isopropylamide) in water. Chem Phys Lett 386:123–127

    Article  CAS  Google Scholar 

  210. Tamai Y, Tanaka H, Nakanishi K (1996) Molecular dynamics study of polymer–water interaction in hydrogels. 1. Hydrogen-bond structure. Macromolecules 29:6750–6760

    Article  CAS  Google Scholar 

  211. Wu R, Ji Q, Kong B, Yang X (2008) Molecular dynamics simulations of the hydration of poly(vinyl methyl ether): hydrogen bonds and quasi-hydrogen bonds. Sci China Ser B Chem 51:736–742

    Article  CAS  Google Scholar 

  212. Dalgakiran E, Tatlipinar H (2018) Atomistic insights on the LCST behavior of PMEO2MA in water by molecular dynamics simulations. J Polym Sci B 56:429–441

    Article  CAS  Google Scholar 

  213. Wu R, Qiu X, Yang X (2016) Molecular dynamics simulations of atomistic hydration structures of poly(vinyl methyl ether). Chin J Polym Sci 34:1396–1410

    Article  CAS  Google Scholar 

  214. Tavagnacco L, Zaccarelli E, Chiessi E (2018) On the molecular origin of the cooperative coil-to-globule transition of poly(N-isopropylacrylamide) in water. Phys Chem Chem Phys 20:9997–10010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Walter J, Ermatchkov V, Vrabec J, Hasse H (2010) Molecular dynamics and experimental study of conformation change of poly(N-isopropylacrylamide) hydrogels in water. Fluid Phase Equilib 296:164–172

    Article  CAS  Google Scholar 

  216. Bhandary M, Benkova Cordeiro MN, Singh JK (2016) Molecular dynamics study of wetting behavior of grafted thermo-responsive PNIPAAm brushes. Soft Matter 12:3093–3102

    Article  CAS  PubMed  Google Scholar 

  217. Min SH, Kwak SK Kim BS (2015) Atomistic simulation for coil-to-globule transition of poly(2-dimethylaminoethyl methacrylate). Soft Matter 11:2423–2433

    Article  CAS  PubMed  Google Scholar 

  218. Samsonova O, Glinca S, Biela A, Pfeiffer C, Dayyoub E, Sahin D, Klebe G, Kissel T (2013) The use of isothermal titration calorimetry and molecular dynamics to show variability in DNA transfection performance. Acta Biomater 9:4994–5002

    Article  CAS  PubMed  Google Scholar 

  219. Gangemi F, Longhi G, Abbate S, Lebon F, Cordone R, Ghilardi GP, Fornili SL (2008) Molecular dynamics simulation of aqueous solutions of 26-unit segments of p(NIPAAm) and of p(NIPAAm) “doped” with amino acid based comonomers. J Phys Chem B 112:11896–11906

    Article  CAS  PubMed  Google Scholar 

  220. Tamai Longhi Y, Tanaka H, Nakanishi K (1996) Molecular dynamics study of polymer–water interaction in hydrogels. 2. Hydrogen-bond dynamics. Macromolecules 29:6761–6769

    Article  Google Scholar 

  221. Caykara T, Kiper S, Demirel G (2006) Network parameters and volume phase transition behavior of poly(N-isopropylacrylamide) hydrogels. J Appl Polym Sci 101:1756–1762

    Article  CAS  Google Scholar 

  222. Tucker AK, Stevens MJ (2012) Study of the polymer length dependence of the single chain transition temperature in syndiotactic poly(N-isopropylacrylamide) oligomers in water. Macromolecules 45:6697–6703

    Article  CAS  Google Scholar 

  223. Shan J, Zhao Y, Granqvist N, Tenhu H (2009) Thermoresponsive properties of N-isopropylacrylamide oligomer brushes grafted to gold nanoparticles: effects of molar mass and gold core size. Macromolecules 42:2696–2701

    Article  CAS  Google Scholar 

  224. Deshmukh SA, Kamath G, Suthar KJ, Mancini DC, Sankaranarayanan SKRS (2014) Non-equilibrium effects evidenced by vibrational spectra during the coil-to-globule transition in poly(N-isopropylacrylamide) subjected to an ultrafast heating–cooling cycle. Soft Matter 10:1462–1480

    Article  CAS  PubMed  Google Scholar 

  225. Paradossi G, Chiessi E (2017) Tacticity-dependent interchain interactions of poly(N-isopropylacrylamide) in water: toward the molecular dynamics simulation of a thermoresponsive microgel. Gels 3:13

    Article  CAS  PubMed Central  Google Scholar 

  226. Abbott LJ, Tucker AK, Stevens MJ (2015) Single chain structure of a poly(N-isopropylacrylamide) surfactant in water. J Phys Chem B 119:3837–3845

    Article  CAS  PubMed  Google Scholar 

  227. Du H, Wickramasinghe R, Qian X (2010) Effects of salt on the lower critical solution temperature of poly (N-isopropylacrylamide). J Phys Chem B 114:16594–16604

    Article  CAS  PubMed  Google Scholar 

  228. Han X, Feng J, Dong F, Zhang X, Liu H, Hu Y (2014) Thermo-/pH-responsive behaviours of base-rich diblock polyampholytes in aqueous solution: experiment and simulation. Mol Phys 112:2046–2057

    Article  CAS  Google Scholar 

  229. Kai K, Diannan L, Zheng L (2012) Temperature-triggered protein adsorption and desorption on temperature-responsive PNIPAAm-grafted-silica: molecular dynamics simulation and experimental validation. Chin J Chem Eng 20:284–293

    Article  Google Scholar 

  230. Lin H-C, Hsieh B-Z, Lin Y-L, Sheng Y-J, Lin J-J (2012) Effect of grafting architecture on the surfactant-like behavior of clay-poly(NiPAAm) nanohybrids. J Coll Interface Sci 387:106–114

    Article  CAS  Google Scholar 

  231. Wang L, Zhao X, Zhang Y, Zhang W, Ren T, Chen Z, Wang F, Yang H (2015) Fabrication of intelligent poly(N-isopropylacrylamide)/silver nanoparticle composite films with dynamic surface-enhanced Raman scattering effect. RSC Adv 5:40437–40443

    Article  CAS  Google Scholar 

  232. Moghadam S, Larson RG (2017) Assessing the efficacy of poly(N-isopropylacrylamide) for drug delivery applications using molecular dynamics simulations. Mol Pharmaceutics 14:478–491

    Article  CAS  Google Scholar 

  233. Ko H, Javey A (2017) Smart actuators and adhesives for reconfigurable matter. Acc Chem Res 50:691–702

    Article  CAS  PubMed  Google Scholar 

  234. Braunecker WA, Matyjaszewski K (2007) Controlled/living radical polymerization: features, developments, and perspectives. Prog Polym Sci 32:93–146

    Article  CAS  Google Scholar 

  235. Matyjaszewski K, Tsarevsky NV (2009) Nanostructured functional materials prepared by atom transfer radical polymerization. Nat Chem 1:276–288

    Article  CAS  PubMed  Google Scholar 

  236. Matyjaszewski K (2012) Atom transfer radical polymerization (ATRP): current status and future perspectives. Macromolecules 45:4015–4039

    Article  CAS  Google Scholar 

  237. Matyjaszewski K, Tsarevsky NV (2014) Macromolecular engineering by atom transfer radical polymerization. JACS 136:6513–6533

    Article  CAS  Google Scholar 

  238. Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K (2016) Photoinduced atom transfer radical polymerization with ppm-level Cu catalyst by visible light in aqueous media. JACS 137(49):15430–15433

    Article  CAS  Google Scholar 

  239. Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K (2016) Photomediated controlled radical polymerization. Prog Polym Sci 62:73–125

    Article  CAS  Google Scholar 

  240. Moad G, Rizzardo E, Thang SH (2005) Living radical polymerization by the RAFT process. Aust J Chem 58:379–410

    Article  CAS  Google Scholar 

  241. Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok H-A (2017) Surface-initiated controlled radical polymerization: state-of-the-art, opportunities, and challenges in surface and interface engineering with polymer brushes. Chem Rev 117:1105–1318

    Article  CAS  PubMed  Google Scholar 

  242. Warren NJ, Armes SP (2014) Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. JACS 136:10174–10185

    Article  CAS  Google Scholar 

  243. Gröschel AH, Müller AHE (2015) Self-assembly concepts for multicompartment nanostructures. Nanoscale 7:11841–11876

    PubMed  Google Scholar 

  244. Han D, Lu Z, Chester SA, Lee H (2018) Micro 3D printing of a temperature-responsive hydrogel using projection micro-stereolithography. Scientific Reports 8:1963

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  245. Kubelka J (2009) Time-resolved methods in biophysics. 9. Laser temperature-jump methods for investigating biomolecular dynamics. Photochem Photobiol Sci 8:499–512

    Article  CAS  PubMed  Google Scholar 

  246. Causgrove TP, Dyer RB (2006) Nonequilibrium protein folding dynamics: laser-induced pH-jump studies of the helix–coil transition. Chem Phys 323:2–10

    Article  CAS  Google Scholar 

  247. Xu J, Zhu Z, Luo S, Wu C, Liu S (2006) First observation of two-stage collapsing kinetics of a single synthetic polymer chain. Phys Rev Lett 96:027802

    Article  PubMed  CAS  Google Scholar 

  248. Pastorczak M, Okrasa L, Yoon JA, Kowalewski T, Matyjaszewski K (2017) Kinetics of the temperature-induced volume phase transition in poly(2-(2-methoxyethoxy)ethyl methacrylate) hydrogels of various topologies. Polymer 110:25–35

    Article  CAS  Google Scholar 

  249. Bhattacharjee SM, Giacometti A, Maritan A (2013) Flory theory for polymers. J Phys Condens Matter 25:503101

    Article  PubMed  CAS  Google Scholar 

  250. Fu J, Schlenoff JB (2016) Driving forces for oppositely charged polyion association in aqueous solutions: enthalpic, entropic, but not electrostatic. JACS 138:980–990

    Article  CAS  Google Scholar 

  251. von Neumann J (1947) The Mathematician. In: Heywood RB (ed) The works of the mind. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support within the projects granted by National Science Centre, Poland: No. 2013/09/B/ST4/03010 (MK), No. 2014/14/A/ST5/00204 (KH, MK), No. DEC-2013/08/S/ST4/00556 (MP) and UMO-2015/17/B/ST4/04035 (MP). Special thanks to Prof. Jacek Ulanski and Prof. Piotr Polanowski from the Department of Molecular Physics for long and fruitful discussions. Also, the authors would like to acknowledge Prof. Piotr Ulanski and Prof. Slawomir Kadlubowski from the Institute of Applied Radiation Chemistry at Lodz University of Technology for everyday support and cooperation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Kozanecki .

Editor information

Editors and Affiliations

Additional information

The authors would like to dedicate this chapter to Prof. Jacek Ulanski from the Department of Molecular Physics, Lodz University of Technology—our teacher and mentor, who laid foundations of our knowledge, and believed (and still believes) in our progress and self-development.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kozanecki, M., Pastorczak, M., Halagan, K. (2019). Vibrational Spectroscopy in Analysis of Stimuli-Responsive Polymer–Water Systems. In: Koleżyński, A., Król, M. (eds) Molecular Spectroscopy—Experiment and Theory. Challenges and Advances in Computational Chemistry and Physics, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-030-01355-4_8

Download citation

Publish with us

Policies and ethics

Navigation