Log in

Molecular dynamics simulations of atomistic hydration structures of poly(vinyl methyl ether)

  • Papers
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Molecular dynamics simulations have been performed on the aqueous solutions of poly(vinyl methyl ether) (PVME) at various concentrations. Both radial and spatial distribution functions are used to investigate the detailed hydration structures. The structures of water are found to get increasingly concentrated when polymers are introduced and the water motions are severely hindered by the polymer matrix. At low concentrations, larger populations of tt conformers in meso dyads than those at higher concentrationsare found and this phenomenon is believed to be due to the increasing in bonding of water molecule to two ether oxygens in meso dyad. At higher concentrations, the size and conformations of polymers are quite similar to those in bulk. A transition of hydrogen bond fractions between PVME and water at around the concentration of 0.3 is observed and this value is perfectly in agreement with the results of conformational analysis and Raman spectra. Second neighbor hydrogen bond statistics revealed the domination of complicated hydrogen bond networks at low concentrations, but single hydrogen bonds as well as isolated clusters composed of 2-4 water molecules are usual around each polymer repeat unit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Durme, K., Loozen, E., Nies, E. and van Mele, B., Macromolecules, 2005, 38: 10234

    Article  Google Scholar 

  2. Schafer-Soenen, H., Moerkerke, R., Berghmans, H., Koningsveld, R., Dusek, K. and Solc, K., Macromolecules, 1997, 30: 410

    Article  Google Scholar 

  3. Maeda, H., J. Polym. Sci., Part B: Polym. Phys., 1994, 32: 91

    Article  CAS  Google Scholar 

  4. van Durme, K., van Assche, G., Nies, E. and van Mele, B., J. Phys. Chem. B., 2007, 111: 1288

    Article  Google Scholar 

  5. Sun, B., Lai, H. and Wu, P., J. Phys. Chem. B., 2011, 115: 1335

    Article  CAS  Google Scholar 

  6. Némethy, G. and Scheraga, H.A., J. Chem. Phys., 1962, 36: 3401

    Article  Google Scholar 

  7. Frank, H.S. and Evans, M.W., J. Chem. Phys., 1945, 13: 507

    Article  CAS  Google Scholar 

  8. Tamai, Y.T. and Nakanishi, K., Macromolecules, 1996, 29: 6750

    Article  CAS  Google Scholar 

  9. Meeussen, F., Bauwens, Y., Moerkerke, R., Nies, E. and Berghmans, H., Polymer, 2000, 41: 3737

    Article  CAS  Google Scholar 

  10. Maeda, Y., Langmuir, 2001, 17: 1737

    Article  CAS  Google Scholar 

  11. Zhang, J., Berge, B., Meeussen, F., Nies, E., Berghmans, H. and Shen, D., Macromolecules, 2003, 36: 9145

    Article  CAS  Google Scholar 

  12. Zeng, X. and Yang, X., J. Phys. Chem. B, 2004, 108: 17384

    Article  CAS  Google Scholar 

  13. Loozen, E., Nies, E., Heremans, K. and Berghmans, H., J. Phys. Chem. B, 2006, 110: 7793

    Article  CAS  Google Scholar 

  14. Nies, E., Berghmans, H., Heenan, R.K. and King, S.M., J. Phys. Chem. B, 2006, 110: 5321

    Article  CAS  Google Scholar 

  15. Xavier, P. and Bose, S., J. Phys. Chem. B., 2013, 117: 8633

    Article  CAS  Google Scholar 

  16. Bharati, A., Xavier, P., Kar, G.P., Madras, G. and Bose, S., J. Phys. Chem. B, 2014, 118: 2214

    CAS  Google Scholar 

  17. van der Spoel, D., van Maaren, P.J., Larsson, P. and Timneanu, N., J. Phys. Chem. B, 2006, 110: 4393

    Article  Google Scholar 

  18. Kokubo, H. and Pettitt, B.M., J. Phys. Chem. B, 2007, 111: 5233

    Article  CAS  Google Scholar 

  19. Zhang, R., Li, H., Lei, Y. and Han, S., J. Phys. Chem. B, 2005, 109: 7482

    Article  CAS  Google Scholar 

  20. Vishnyakov, A., Lyubartsev, A.P. and Laaksonen, A., J. Phys. Chem. A, 2001, 105: 1702

    Article  CAS  Google Scholar 

  21. Jorgensen, W.L. and Tirado-Rives, J., J. Am. Chem. Soc., 1988, 110: 1657

    Article  CAS  Google Scholar 

  22. Berendsen, H.J.C., Grigera, J.R. and Straatsma, T.P., J. Phys. Chem., 1987, 91: 6269

    Article  CAS  Google Scholar 

  23. Kaminski, G.A., Friesner, R.A., Tirado-Rives, J. and Jorgensen, W.L., J. Phys. Chem. B, 2001, 105: 6474

    Article  CAS  Google Scholar 

  24. Jorgensen, W.L., Maxwell, D.S. and Tirado-Rives, J., J. Am. Chem. Soc., 1996, 118: 11225

    Article  CAS  Google Scholar 

  25. Jorgensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. and Klein, M.L., J. Chem. Phys., 1983, 79: 926

    Article  CAS  Google Scholar 

  26. Maaren, P.J.v. and Spoel, D.v.d., J. Phys. Chem. B, 2001, 105: 2618

    Article  Google Scholar 

  27. Spoel, D.v.d. and Maaren, P.J.v., J. Chem. Theo. Comput., 2006, 2: 1

    Article  Google Scholar 

  28. Guillot, B., J. Mol. Liq., 2002, 101: 219

    Article  CAS  Google Scholar 

  29. Spoel, D.v.d., Lindahl, E., Hess, B., Groenhof, G., Mark, A.E. and Berendsen, H.J.C., J. Comput. Chem., 2005, 26: 1701

    Article  Google Scholar 

  30. Ryckaert, J.P. and Bellemans, A., Far. Disc. Chem. Soc., 1978, 66: 95

    Article  Google Scholar 

  31. Nosé, S., Mol. Phys., 1984, 52: 255

    Article  Google Scholar 

  32. Hoover, W.G., Phys. Rev. A, 1985, 31: 1695

    Article  Google Scholar 

  33. Parrinello, M. and Rahman, A., J. Appl. Phys., 1981, 52: 7182

    Article  CAS  Google Scholar 

  34. Essmann, U., Perera, L., Berkowitz, M.L., Darden, T., Lee, H. and Pedersen, L.G., J. Chem. Phys., 1995, 103: 8577

    Article  CAS  Google Scholar 

  35. Darden, T., York, D. and Pedersen, L., J. Chem. Phys., 1993, 98: 10089

    Article  CAS  Google Scholar 

  36. Hess, B., Bekker, H., Berendsen, H.J.C. and Fraaije, J.G.E.M., J. Comput. Chem., 1997, 18: 1463

    Article  CAS  Google Scholar 

  37. Miyamoto, S. and Kollman, P.A., J. Comput. Chem., 1992, 13: 952

    Article  CAS  Google Scholar 

  38. Luzar, A. and Chandler, D., Nature, 1996, 379: 55

    Article  CAS  Google Scholar 

  39. Luzar, A. and Chandler, D., Phys. Rev. Lett., 1996, 76: 928

    Article  CAS  Google Scholar 

  40. Wu, R., Ji, Q., Kong, B. and Yang, X., Sci China Ser B-Chem, 2008, 51: 736

    Article  CAS  Google Scholar 

  41. Eisenberg, D. and Kauzmann, W. "The structure and properties of water", Oxford University Press, London, U.K., 1969

    Google Scholar 

  42. Shiomi, T., Hamada, F., Nasako, T., Yoneda, K., Imai, K. and Nakajima, A., Macromolecules, 1990, 23: 229

    Article  CAS  Google Scholar 

  43. Byutner, O.G. and Smith, G.D., Macromolecules, 2000, 33: 4264

    Article  CAS  Google Scholar 

  44. Redlich, O. and Kister, A.T., Ind. Eng. Chem., 1948, 40: 345

    Article  Google Scholar 

  45. Gubskaya, A.V. and Kusalik, P.G.J., Phys. Chem. A., 2004, 108: 7165

    Article  CAS  Google Scholar 

  46. Laaksonen, A., Kusalik, P.G. and Svishchev, I.M.J., Phys. Chem. A., 1997, 101: 5910

    Article  CAS  Google Scholar 

  47. Yang, X., Kang, S., Hsu, S.L., Stidham, H.D., Smith, P.B. and Leugers, A., Macromolecules, 2001, 34: 5037

    Article  CAS  Google Scholar 

  48. Yang, X., Su, Z., Wu, D., Hsu, S.L. and Stidham, H.D., Macromolecules, 1997, 30: 3796

    Article  CAS  Google Scholar 

  49. Scheiner, S., "Hydrogen bonding", Oxford University Press, New York, 1997

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rong-liang Wu  (吴荣亮).

Additional information

This work was financially supported by the National Natural Science Foundation of China (Nos. 21304017 and 21471030), the Fundamental Research Funds for the Central Universities, and the Innovation Program of Shanghai Municipal Education Commission, and the Innovation Program of Shanghai Science and Technology Commission (No.14521100600).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Rl., Qiu, Xl. & Yang, Xz. Molecular dynamics simulations of atomistic hydration structures of poly(vinyl methyl ether). Chin J Polym Sci 34, 1396–1410 (2016). https://doi.org/10.1007/s10118-016-1853-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-016-1853-x

Keywords

Navigation